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Abstract: A functional equivalence of feed-forward networks has been proposed to reduce the search space of
learning algorithms. A novel genetic learning algorithm for RBF networks and perceptrons with one hidden
layer that makes use of this theoretical property is proposed. Experimental results show that our procedure
outperforms the standard genetic learning.
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1 Introduction
We consider a feedforward network as a device
for computing a real function of several real vari-
ables which depend on a set of network parameters
(weights). A function realized by the network is re-
ferred to as aninput/output (or I/O) functionof the net-
work. The logical question which functions can be ap-
proximated by a class of networks of a given type has
been answered in recent years. A so calleduniversal
approximation property(the possibility to approximate
any reasonable, e.g. continuous, function arbitrarily
well) was examined. It has been proven that many com-
mon network architectures, including multilayer per-
ceptrons and RBF networks which satisfy certain mild
conditions on the activation or radial function, posses
this property.

Thus, theoretically, for any reasonable function we
can find a network of a given type that computes an
arbitrarily close approximation of this function as its
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I/O function. It means that during the learning phase,
the parameters of the network can be assigned in such
a way that the desired function (usually described by a
set of examples of input/output values) is approximated
with arbitrary precision. In practice this typically re-
quires to solve a non-linear optimization problem in the
high-dimensional space of network parameters. This
motivates one to search for possibilities to simplify this
task. One of the approaches is to reduce the search
space by identifying the classes of functionally equiv-
alent networks and by selecting a single representative
of each class. An algorithm which is able to restrict the
learning only to these representatives operates on much
smaller search space and thus may perform faster.

Hecht-Nielsen [3] pointed out that characterization
of functionally equivalent network parameterizations
might speed up some learning algorithms. Several au-
thors studied functionally equivalent weight vectors for
one hidden layer perceptron-type networks with vari-
ous activation functions ([1], [5], [10]). In [6], [8] we
have characterized the form of functional equivalence
of Radial Basis Function networks with Gaussian ra-



dial function. The notion of unique parameterization
property has been proposed by K˚urková to summarize
results common to important non-trivial network archi-
tectures.

2 Functional equivalence
From now on we consider two types of feed-forward
network architectures. By anRBF networkwe mean
the feed-forward network with one hidden layer con-
taining radial-basis-function (RBF) units with a radial
function : R+ ! R and a metrics� onRn (n is the
number of input units) and with a single linear output
unit. Such a network computes the function:

f(x) =
kX
i=1

wi 

�
�(x; ci)

bi

�
: (1)

Here, theperceptron networkmeans a feed-forward
network withn inputs, one hidden layer containing per-
ceptron units and one linear output unit. This network
computes the functionf : Rn ! R of the form:

f(x) =
kX
i=1

wi (vix+ bi) ; (2)

wherek 2 N is the number of hidden units,wi; bi 2
R, vi 2 Rn and : R ! R is an activation function.

A radial-basis-function network parameterization
with respect to ( ; n; �) is a sequenceP =

(wi; ci; bi; i = 1; : : : ; k), wherek is the number of
hidden units and for thei-th hidden unit the vector
ci 2 Rn describes the centroid while the real num-
bersbi andwi are widths and output weights, respec-
tively (see(1)). If additionally, for everyi 2 f1; : : : ; kg
wi 6= 0, and for everyi; j 2 f1; : : : ; kg; such that
i 6= j eitherci 6= cj or bi 6= bj , it is calleda reduced
parameterization. Similarly, aperceptron network pa-
rameterization with respect to( ; n) is a sequence
Q = (wi;vi; bi; i = 1; : : : ; k) with the meaning of
symbols described by (2). Additionally, if for every
i 2 f1; : : : ; kg wi 6= 0, and for everyi; j 2 f1; : : : ; kg
i 6= j implies that eithervi 6= vj , or bi 6= bj and there
exists at least onei such thatvi = 0, it is called a
reduced parameterization.

It is clear that a parameterizationP (or Q) deter-
mines a unique I/O function of an RBF network ac-
cording to the formula (1) (or a perceptron network ac-
cording to (2)).

Two network parameterizationsP andP0 are func-
tionally equivalent if they determine the same in-
put/output function. Two network parameterizations
are calledinterchange equivalent, if k = k0 and there
exists a permutation� of the setf1; : : : ; kg, such that
for eachi 2 f1; : : : ; kg wi = w0

�(i) and bi =

b0
�(i) and ci = c0

�(i) for RBF network parameteri-
zations, orvi = v0

�(i) for perceptron network parame-
terizations.

We are interested in relationship between the
functional equivalence and interchange equivalence.
Clearly the later implies the former, so it is the non-
trivial reverse implication that is in our focus.

Let n 2 N . Function has aunique parameteriza-
tion propertywith respect ton, if for every two reduced
parameterizations of perceptron networks w.r.t.( ; n)

(or RBF networks w.r.t.( ; n; �)) functional equiva-
lence implies interchange equivalence.

The most general characterization of functions satis-
fying the unique parameterization property of percep-
tron networks is due to [5].

Theorem 1 Let  be bounded, non-constant and
asymptotically constant activation function,n 2 N .
Then has a unique parameterization property of per-
ceptron networks with respect ton, if and only if it is
neither self-affine, nor affinely recursive.

Many popular activation functions, including logis-
tic sigmoid or Gaussian, are not affinely recursive. On
the contrary, polynomials are affinely recursive, so they
do not posses the unique parameterization property.
Self-affinity requires a finer analysis which is described
in the original paper. Roughly speaking, trivial param-
eter changes such as sign flips also have to be taken into
account.

In the case of RBF networks, the standard choice of
a radial function is Gaussian and the most popular met-
rics are those induced by various inner products (such
as Euclidean), or the maximum metrics. Our previous



results [6] show that the unique parameterization prop-
erty is satisfied in these cases.

Theorem 2 Let n be a positive integer,� metrics on
Rn induced by an inner product, or a maximum met-
rics. Then
(t) = exp(�t2) has a unique parameteri-
zation property of a corresponding RBF network.

Preceding theorems enables to describe a canoni-
cal representation of a network computing a partic-
ular function easily. One of the possible choices
is to impose a condition on a parameterization that
weight vectors corresponding to hidden units are in-
creasing in a lexicographic ordering on a parameteri-
zation. Represent a parameterizationfwi; ki; ci; i =

1; : : : ; kg or fwi; ki;vi; i = 1; : : : ; kg as a vec-
tor p = fpi; : : : ;pkg 2 Rk(n+2), where
pi = fwi; bi; ci1; : : : ; cing 2 Rn+2, or pi =

fwi; bi; vi1; : : : ; ving 2 R
n+2, are weight vectors cor-

responding to thei-th hidden RBF, or perceptron, unit.
Let � denotes the lexicographic ordering onRn+2,
i.e. for p;q 2 Rd+2 p � q if there exists an index
m 2 f1; : : : ; d + 2g such thatpj = qj for j < m,
andpm < qm. We call a network parameterizationP
canonicalif p1 � p2 � : : : � pk:

In this terminology, theorems 1 and 2 guarantee that
for every network parameterization a canonical param-
eterization determining the same input-output func-
tion exists. Thus, the set of canonical parameteri-
zations corresponds to a minimal search set—weight
space subset containing exactly one representative of
each class of functionally equivalent weight vectors—
proposed in [3].

An important extension of our previous results con-
cerning the approximate version of functional equiva-
lence exists. The strict functional equivalence, as was
introduced, may not be a sufficient answer in many
problems. Especially when dealing with approxima-
tion problems we are interested in the case where two
functions realized by networks are not exactly the same
but their difference is small. This case is also of a big
importance in practical problems when we, by nature,
operate with inexact values.

Let us focus on the case of RBF networks first. De-
fine a functionFR

c operating on a set of canonical

parameterizations and assigning each parameterization
the corresponding network I/O function. Moreover, we
restrict the space by bounding all the parameters by an
arbitrary but fixed constantB 2 R. We will also sup-
pose that the number of hidden units is bounded by a
numberK 2 N . Thus, without a loss of generality, we
can consider all the parameterizations to be elements
of a compact hypercube[�B;B]K(n+2). Shorter pa-
rameterizations whosek � K are simply padded by a
sufficient number of zeros.

The factor space S defined as: S =

[�B;B]K(n+2)= � can be considered identical
to the space of all canonical parameterizations.
FR
c is then defined as:FR

c : S ! C([�B;B]):

FR
c (P) =

KX
i=1

wi 

�
�(x; ci)

bi

�
(3)

The following theorem states that the inverse ofFR
c

is continuous, which means that a small change of the
function introduces only a small change in the parame-
terization.

Theorem 3 Let B be a positive real constant,n;K
positive integers,FR

c be defined by (3) where (t) is
a continuous and bounded radial function, and� is �E.
Then(FR

c )�1 is continuous.

Analogously, we can define the functionFP
c : S !

C([�B;B]):for perceptron networks and derive the fol-
lowing counterpart of theorem 3.

FP
c (P) =

kX
i=1

wi (vix+ bi) (4)

Theorem 4 Let B be a positive real constant,n;K
positive integers,FP

c be defined by (4) where (t) is
a continuous and bounded function. Then(FP

c )�1 is
continuous.

3 Geometrical View
Kůrková and Kainen in [5] have shown an interest-
ing property that stresses the importance of (percep-
tron) networks with one input. Roughly speaking, they



proved that—considering perceptron networks with an
asymptotically constant activation function—if func-
tional equivalence implies interchange equivalence for
one-input networks, the same holds for a network with
any number of inputs. This means that we can limit our
investigations to a one-dimensional case only.

This result is in interesting accordance with a dimen-
sion reduction theorem used in some proofs of the uni-
versal approximation property, e.g. in [7]. No such
result has been proven in the case of RBF networks, so
far, and it is an open problem whether such a relation-
ship holds.

Let us illustrate the problem from the geometrical
point of view. If a function of a single argument
x 2 R does not satisfy the property of the functional
equivalence implying the interchange equivalence it
can be expressed as:

 (t) =
kX
i=1

wi (vit+ bi) + c ; (5)

wherewi 6= 0, vi 6= 0 and if i 6= j, then eithervi 6= vj ,
or bi 6= bj, and moreover, ifbi = 0, thenvi 6= 1. If k in
the formula (5) equals1, we call self-affine. If (5) is
satisfied fork � 2,  is calledaffinely recursive.

Functions which are odd or even represent simple
examples of self-affine functions. Affinely recursive
functions can be represented as a linear combination
of their shifted and/or translated copies. Imagine for a
moment the most simple RBF and perceptron networks
with piecewise linear activation function and single in-
put. Figure 1 shows two networks that are functionally
equivalent. These networks differ not only in param-
eters values, but also in the number of hidden units.
Geometrically we compose a graph of one hat function
by means of its three copies.

Similar example for the case of two different func-
tionally equivalent perceptron networks and their cor-
responding functions is shown in Figure 2. A shift to a
higher dimensional input space is quite straightforward
for this model. So, in the perceptron case we are able to
compose one step out of several smaller steps indepen-
dently of the input dimension. On the other hand, in the
RBF case, the situation is more complicated. First, the

form of a function in 2-D differs depending on the met-
rics chosen. For Euclidean metrics we get cones, while
maximum or Manhattan metrics give square pyramids.
Nevertheless, it is not clear for any of those metrices
how to compose one pyramid out of larger number of
its copies.
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Figure 1: Functionally equivalent RBF networks and
corresponding hat functions
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Figure 2: Functionally equivalent MLP networks and
corresponding step functions

4 Canonical genetic algorithm
In order to take advantage of the previous results a
learning algorithm that can operate only on canoni-
cal parameterizations is needed. Unfortunately, nei-
ther back propagation nor more complicated three step



learning algorithms of RBF networks (cf. [4]) are suit-
able, since the analytical solution obtained in each step
of the iterative process cannot in principle be limited
to a certain weight space subset. This is not so with
genetic algorithm whose operations can be changed to
preserve the property of being canonical.

The core of canonical GA is the same as usual: In
the beginning a population ofm canonical parameter-
izationsP0 = fP1; : : : ;Pmg is generated at random.
Having populationPi, the successive populationPi+1
is generated by means of three basic genetic operations:
reproduction, crossoverandmutationthat are proposed
such that they generate only canonical parameteriza-
tions.

To generate theinitial population of canonical pa-
rameterizations at random, one has to preserve the
property that for each parameterizationP it holds:
ps � ps+1.

The reproductionoperator represents a probabilistic
selection of parameterizationPl 2 Pi according to the
values of objective functionG(Pl) which is computed
by means of the error function (i.e. the sum of dis-
tances between the actual and desired output of the net-
work over all of the patterns from the training set). We
use the roulette wheel selection together with the elitist
mechanism.

The mutationoperates on two levels—first an ele-
mentps is chosen randomly as a candidate for muta-
tion. Its neighborsps�1 andps+1 then determine the
lower and upper border of the range in which theps is
changed at random.

The crossoveroperator chooses two parameteriza-
tionsP = (p1; : : : ;pk) andQ = (q1; : : : ;qk) in Pi
and generates a new offspringP0 2 Pi+1. A posi-
tion s is found at random such that the parameteriza-
tionP0 = (p1; : : : ;ps; qs+1; : : : ;qk) still satisfies the
condition:ps � qs+1.

5 Experiments
In the following we describe our experiments testing
the performance of canonical and standard learning al-
gorithms of RBF networks on two problems: the XOR
problem and the approximation ofsin(x) � sin(y) func-

tion. The experiments were made on the PC with
400Mhz Pentium and 128MB RAM running Linux.
The software called GARB used in these tests is writ-
ten in C++ by the author and is publicly available [9].

The first task was a XOR problem defined by four
training examples. We used 50 networks in the popula-
tion and elitist selection for the two best networks. Er-
ror values for the first 500 iterations are plotted on Fig-
ure 3. Both algorithms were able to successfully learn
the given task quite fast; the canonical algorithm was
about two times faster in terms of error decrease. Run-
ning times of both algorithms were roughly identical—
about 2 seconds per 1000 iterations.

The second experiment was an approximation of the
functionf(x; y) = sin(x) � sin(y) given by a10 � 10

mesh of points regularly taken from a[0; 2�] � [0; 2�]

square. Again, both algorithms with 50 networks in
population were used with the same elitist rate as in the
previous experiment. The learning speed is shown on
Figure 4. The performance was similar to the previous
experiment: the canonical GA was again about twice
faster. The average speed of 1000 iterations was 30
seconds.
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Figure 3: Comparison of error decrease for the XOR
experiment.
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Figure 4: Comparison of error decrease for thesin(x) �

sin(y) experiment.

6 Conclusions
We have presented results concerning functional equiv-
alence property for the case of Gaussian RBF networks
and one hidden layer perceptron networks. Based
on these we have proposed the canonical genetic al-
gorithm for learning feed-forward neural networks.
The proposed algorithm has been realized and tested
for the case of RBF networks. It has been shown
that for small/middle-size tasks the canonical GA is
about twice faster in reaching the same error threshold.
Moreover, the canonical GA does not show any rele-
vant increase in time for one iteration in comparison to
standard GA. Thus, the twice better times hold also in
real time. An interesting comparison would be against
the standard learning algorithms of feed-forward net-
works, such as back propagation. This is one of the
directions of our further work.

The results presented as theorems 3 and 4 assure that
our approach is valid in the case of approximation and
can be used in practical problems working with inex-
act values and limited precission machine arithmetics.
Moreover, we hope that these results can be further ex-
tended to derive estimates of approximation error.
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