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Abstract: A functional equivalence of feed-forward networks has been proposed to reduce the search space of
learning algorithms. A novel genetic learning algorithm for RBF networks and perceptrons with one hidden
layer that makes use of this theoretical property is proposed. Experimental results show that our procedure
outperforms the standard genetic learning.
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1 Introduction /O function. It means that during the learning phase,
We consider a feedforward network as a devidde parameters of the network can be assigned in such
for computing a real function of several real var® Way that the desired function (usually described by a
ables which depend on a set of network paramet&f§ of examples of input/output values) is approximated
(weights). A function realized by the network is rewith arbitrary precision. In practice this typically re-
ferred to as amput/output (or 1/0) functiorof the net- quires to solve a non-linear optimization problem in the
work. The logical question which functions can be apigh-dimensional space of network parameters. This
proximated by a class of networks of a given type hEotivates one to search for possibilities to simplify this
been answered in recent years. A so calledersal task. One of the approaches is to reduce the search
approximation propertythe possibility to approximateSPace by identifying the classes of functionally equiv-
any reasonable, e.g. continuous, function arbitrarjent networks and by selecting a single representative
well) was examined. It has been proven that many coffi-each class. An algorithm which is able to restrict the
mon network architectures, including multilayer pelearning only to these representatives operates on much
ceptrons and RBF networks which satisfy certain mifgnaller search space and thus may perform faster.

conditions on the activation or radial function, posses ) . L
P Hecht-Nielsen [3] pointed out that characterization

this property. ) _ L
property of functionally equivalent network parameterizations

Thfl.JSé theortetlcalﬂly,ffor any rfasor:ﬁb:e functut)n Wrﬁight speed up some learning algorithms. Several au-
can find a network of a given type that compules @i, s stydied functionally equivalent weight vectors for
arbitrarily close approximation of this function as |t8ne hidden layer perceptron-type networks with vari-
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dial function. The notion of unique parameterization It is clear that a parameterizatidd (or Q) deter-
property has been proposed byikova to summarize mines a unique 1/O function of an RBF network ac-
results common to important non-trivial network archeéording to the formula (1) (or a perceptron network ac-
tectures. cording to (2)).

Two network parameterizatio®® andP’ arefunc-
tionally equivalentif they determine the same in-

2 Functional eql_leaIence put/output function. Two network parameterizations
From now on we consider two types of feed-forwargle .ledinterchange equivalentf k = &' and there
network architectures. By aRBF networkwe mean gyiqts 4 permutation of the set{1, ... , k}, such that

the feed-forward network with one hidden layer coRs,. oohi (1. k) w; = w;(i) and b =

taining radial-basis-function (RBF) units with a radlabl, 0 and ¢; = c;r(i) for RBF network parameteri-

functiony : R, — R and a metricp onR" (n is the Wt' g t work
number of input units) and with a single linear outpuz? I0NS, Olv; = Vo (;) 1O perceptron network parame-

unit. Such a network computes the function: terizations. . . . .
We are interested in relationship between the

k . functional equivalence and interchange equivalence.
_ plx c:) ene -
Fx) =Y wiy (T) : (1) Clearly the later implies the former, so it is the non-
=1 ’ trivial reverse implication that is in our focus.

Here, theperceptron networkneans a feed-forward Letn € N. Functiony has aunique parameteriza-
network withn inputs, one hidden layer containing petion propertywith respect to, if for every two reduced
ceptron units and one linear output unit. This netwoparameterizations of perceptron networks w(gt.n)
computes the functiori : R — R of the form: (or RBF networks w.r.t(¢y, n, p)) functional equiva-
lence implies interchange equivalence.

The most general characterization of functions satis-
fying the unique parameterization property of percep-

tron networks is due to [5].
wherek € N is the number of hidden unitsy;, b; €

R,v; € R™ andy : R — R is an activation function. Theorem 1 Let ¢ be bounded, non-constant and
A radial-basis-function network parameterizatiomsymptotically constant activation function, € .
with respect to (4,n,p) is a sequenceP = Theny has a unique parameterization property of per-
(wi,ci, b5 1 = 1,...,k), wherek is the number of ceptron networks with respect ig if and only if it is
hidden units and for the-th hidden unit the vector neither self-affine, nor affinely recursive.
c; € R" describes the centroid while the real num-
bersb; andw; are widths and output weights, respec- Many popular activation functions, including logis-
tively (see(1)). If additionally, for everyc {1,...,k} tic sigmoid or Gaussian, are not affinely recursive. On
w; # 0, and for everyi,j € {1,...,k}, such that the contrary, polynomials are affinely recursive, so they
i # j eitherc; # c; orb; # b;, itis calleda reduced do not posses the unique parameterization property.
parameterization Similarly, aperceptron network pa- Self-affinity requires a finer analysis which is described
rameterization with respect t@,n) is a sequencein the original paper. Roughly speaking, trivial param-
Q = (w;,vi,b;; 1 = 1,..., k) with the meaning of eter changes such as sign flips also have to be taken into
symbols described by (2). Additionally, if for everyaccount.
i€{l,...,k} w; #0, and for everyi,j € {1,...,k} In the case of RBF networks, the standard choice of
i # j implies that eithew; # v, orb; # b; and there a radial function is Gaussian and the most popular met-
exists at least oné such thatv; = 0, it is calleda rics are those induced by various inner products (such
reduced parameterization as Euclidean), or the maximum metrics. Our previous

k
fx) =Y wip(vix + b;) (2)
i-1



results [6] show that the unique parameterization prgparameterizations and assigning each parameterization
erty is satisfied in these cases. the corresponding network I/O function. Moreover, we
restrict the space by bounding all the parameters by an
ez?_rbitrary but fixed constar® € R. We will also sup-
pose that the number of hidden units is bounded by a
numberK € N. Thus, without a loss of generality, we
can consider all the parameterizations to be elements
Preceding theorems enables to describe a canafia compact hypercubg-B; B]X("+2), Shorter pa-
cal representation of a network computing a partimmeterizations whose < K are simply padded by a
ular function easily. One of the possible choicesufficient number of zeros.
is to impose a condition on a parameterization thatThe factor spaceS defined as: § =
weight vectors corresponding to hidden units are ip-B; B]X(*+2/ ~ can be considered identical
creasing in a lexicographic ordering on a parameteio-the space of all canonical parameterizations.

Theorem 2 Letn be a positive integerp metrics on

rics. Theny(t) = exp(—t?) has a unique parameteri-
zation property of a corresponding RBF network.

zation. Represent a parameterizatipn;, k;,c;;i =  F[tis then defined asF? : S — C([-B; B)).
1,...,k} or {w;,ki,vi;i = 1,...,k} as a vec- «
tor p = {pi,....pr} € RF®T2  where FR(P) (P(X, Cz’)>

=) witp 3)
P:i = {wiabiacila"'ac’in} S Rn+21 or Pi = ¢ ; ' bl
{w;, b;, vi1, ..., vin} € R™2, are weight vectors cor-

responding to the-th hidden RBF, or perceptron, unit. The following theorem states that the inverse/it
Let < denotes the lexicographic ordering @®f*t2, is continuous, which means that a small change of the

i.e. forp,q € R*2 p < q if there exists an indexfunction introduces only a small change in the parame-
m € {1,...,d + 2} such thatp; = g, for j < m, terization.

andp,, < ¢,. We call a network parameterizatidh
canonicalif p; < p2 < ... < pk.

In this terminology, theorems 1 and 2 guarantee t
for every network parameterization a canonical para
eterization determining the same input-output fun
tIOf? exists. Thus, the set _of canonical paramet_erl- nalogously, we can define the functidff LS
zations corresponds to a minimal search set—we@lf

f

- . — B; BJ).for perceptron networks and derive the fol-
space subset containing exactly one representative Of.
) : : owing counterpart of theorem 3.
each class of functionally equivalent weight vectors—
proposed in [3]. k
An important extension of our previous results con- .7-"CP(P) = Z with(vix + b;) 4)
cerning the approximate version of functional equiva- i=1

lence exists. The strict functional equivalence, as WASeorem 4 Let B be a positive real constanty, K
introduced, may not be a sufficient answer in manysitive integersF” be defined by (4) wherg(t) is

problems. Especially when dealing with approxim%- continuous and bounded function. TheR’) ! is
tion problems we are interested in the case where tygh .0 ous.

functions realized by networks are not exactly the same

but their difference is small. This case is also of a big

importance in practical problems when we, by naturd, Geometrical View

operate with inexact values. Klrkova and Kainen in [5] have shown an interest-
Let us focus on the case of RBF networks first. Datg property that stresses the importance of (percep-

fine a function F£ operating on a set of canonicatron) networks with one input. Roughly speaking, they

Theorem 3 Let B be a positive real constanty, K
Hpgsitive integers,F* be defined by (3) wherg(t) is
g continuous and bounded radial function, ani pg.
Lhen(Ff)~!is continuous.



proved that—considering perceptron networks with &rm of a function in 2-D differs depending on the met-
asymptotically constant activation function—if funcrics chosen. For Euclidean metrics we get cones, while
tional equivalence implies interchange equivalence fmaximum or Manhattan metrics give square pyramids.
one-input networks, the same holds for a network willtevertheless, it is not clear for any of those metrices
any number of inputs. This means that we can limit obow to compose one pyramid out of larger number of
investigations to a one-dimensional case only. its copies.
This result is in interesting accordance with a dimen-
sion reduction theorem used in some proofs of the uni- ¢
versal approximation property, e.g. in [7]. No such 2
result has been proven in the case of RBF networks, so :
far, and it is an open problem whether such a relation- 0
ship holds. Cf
Let us illustrate the problem from the geometrical
point of view. If a functiony of a single argument :
2 € R does not satisfy the property of the functional |
equivalence implying the interchange equivalence it ‘
can be expressed as:

N
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) Figure 1: Functionally equivalent RBF networks and
B(t) = Zwﬂﬁ(vit Fh)+e (5) corresponding hat functions

i=1
wherew; # 0, v; # 0 and ifi # j, then eithew; # v;,
or b; # b;, and moreover, ib; = 0, thenv; # 1. If £ in
the formula (5) equal$, we callv) self-affine If (5) is :
satisfied fork > 2, ¢ is calledaffinely recursive
Functions which are odd or even represent simple
examples of self-affine functions. Affinely recursive
functions can be represented as a linear combination
of their shifted and/or translated copies. Imagine for a
moment the most simple RBF and perceptron networks /
with piecewise linear activation function and single in-
put. Figure 1 shows two networks that are functionally
equivalent. These networks differ not only in param
eters values, but also in the number of hidden units.

Geometrically we compose a graph of one hat funCt'i}?gure 2. Functionally equivalent MLP networks and

by means of its three copies. corresponding step functions
Similar example for the case of two different func- P g step

tionally equivalent perceptron networks and their cor-

responding functions is shown in Figure 2. A shift to a

higher dimensional input space is quite straightiorwafl  Canonical genetic algorithm

for this model. So, in the perceptron case we are abldroorder to take advantage of the previous results a
compose one step out of several smaller steps indedeafning algorithm that can operate only on canoni-

dently of the input dimension. On the other hand, in tloal parameterizations is needed. Unfortunately, nei-
RBF case, the situation is more complicated. First, ttieer back propagation nor more complicated three step

-1 0 1 -1 0 1



learning algorithms of RBF networks (cf. [4]) are suition. The experiments were made on the PC with
able, since the analytical solution obtained in each s@&@0Mhz Pentium and 128MB RAM running Linux.
of the iterative process cannot in principle be limitetihe software called GARB used in these tests lig-w
to a certain weight space subset. This is not so withn in C++ by the author and is publicly available [9].
genetic algorithm whose operations can be changed to
preserve the property of being canonical. The first task was a XOR problem defined by four
The core of canonical GA is the same as usual: ffigining examples. We used 50 networks in the popula-
the beginning a population af. canonical parameter-tion and elitist selection for the two best networks. Er-
izationsPy = {Py,...,P,,} is generated at randomror values for the first 500 iterations are plotted on Fig-
Having populatior;, the successive populatiop ., ure 3. Both algorithms were able to successfully learn
is generated by means of three basic genetic operatidf§: given task quite fast; the canonical algorithm was
reproduction crossoverandmutationthat are proposedabout two times faster in terms of error decrease. Run-
such that they generate only canonical parameterid times of both algorithms were roughly identical—
tions. about 2 seconds per 1000 iterations.

To generate thénitial population of canonical pa- . o
rameterizations at random, one has to preserve thd "€ S€cond experiment was an approximation of the
property that for each parameterizatid@ it holds: UNCtion f(z,y) = sin(z) - sin(y) given by a10 x 10
Ds < Poii mesh of points regularly taken from[@ 27| x [0; 27]

s .

The reproductionoperator represents a probabilistitd4are- Again, both algorlthms with _5_0 network§ n
selection of parameterizatid®, € P; according to the population were used with the same elitist rate as in the

values of objective functio(P;) which is computed previous experiment. The Iearnln_g _speed is show_n on
by means of the error function (i.e. the sum of gi&igure 4. The performance was similar to the previous

tances between the actual and desired output of the f&REMMent: the canonical GA was again about twice
work over all of the patterns from the training set). VJ@Ster' The average speed of 1000 iterations was 30

use the roulette wheel selection together with the elif§¢C"dS:

mechanism.
The mutation operates on two levels—first an ele-
. . 12 T T T T
mentp; is chosen randomly as a candidate for muta- canonca cn —

tion. Its neighborg,_; andp,; then determine the
lower and upper border of the range in which theis
changed at random. 0s

The crossoveroperator chooses two parameteriza-
tionsP = (p1,...,px) andQ = (qi,...,qg) in P;
and generates a new offspri®y € P;.;. A posi-
tion s is found at random such that the parameteriza-
tionP’ = (p1,...,Ps, As+1, - - - » Q) Still satisfies the
condition: ps < qs1-

02
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5 Experiments

In the following we describe our experiments testirgigure 3: Comparison of error decrease for the XOR
the performance of canonical and standard learning étperiment.

gorithms of RBF networks on two problems: the XOR

problem and the approximation gf(z) - sin(y) func-
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Figure 4: Comparison of error decrease forghgzx) -
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6 Conclusions [6] V. Kurkova and R. Neruda. Uniqueness of the

We have presented results concerning functional equiv- functional representations for the Gaussian ba-
alence property for the case of Gaussian RBF networks SIS functions. InProceedings of the ICANN'94
and one hidden layer perceptron networks. Based Pages 474-477. Springer Verlag: London, 1994.

on these we have proposed the canonical genetic TJI'] M. Leshno. V. Lin. A. Pinkus. and S. Schocken
gorithm for learning feed-forward neural networks. M.ultilayer ’fe(.edfor,wa;rd netvx;orks vvﬁh a non--

The proposed algorithm has been realized and tested polynomial activation function can approximate

for the case Of_RBF networks. It has bgen shown any function.Neural Networks6:861-867, 1993.
that for small/middle-size tasks the canonical GA is

about twice faster in reaching the same error threshol{B] R. Neruda. Functional equivalence and genetic
Moreover, the canonical GA does not show any rele- |earning of RBF networks. IRroceedings of the
vant increase in time for one iteration in comparison to  ICANNGA'95 pages 53-56. Springer Verlag: Vi-
standard GA. Thus, the twice better times hold also in  enna, 1995.

real time. An interesting comparison would be against _ _

the standard learning algorithms of feed-forward nef®] R. Neruda. Genetic learning of RBF networks
works, such as back propagation. This is one of the With GARB. Technical Report V=713, Institute
directions of our further work. of Computer Science, Prague, 1997.

The results presented as theorems 3 and 4 assure#b'it
d

our approach is valid in the case of approximation a minimal feedforward nets with a given input-

can be used in !orgctlcal prpb!ems worl_<|ng Wlth inex- output map. Neural Networks 5(4):589-594,
act values and limited precission machine arithmetics. 1992

Moreover, we hope that these results can be further ex-
tended to derive estimates of approximation error.
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