
A 64-bit, Scalable File System for Storage Area Networks

GYOUNG-BAE KIM, CHANG-SOO KIM, BUM-JOO SHIN
Internet Service Department

Computer and Software Technology Labs.
ETRI(Electronics and Telecommunications Research Institute)

161 Kajong-Dong, Yusong-Gu, Taejon, 305-350
KOREA

Abstract: - By merging network and channel interfaces, resulting interfaces allow multiple computers to physically
share the storage devices in storage area network (SAN). In SAN, computers service local file requests directly
from shared storage devices. Direct device access eliminates the server machines as bottlenecks to performance
and availability. Communication is unnecessary between computers, since each machine views the storage as
being locally attached. SAN provides us to very large physical storage up to 64-bit address space, but traditional
file systems can’t adapt to the file system for SAN because they have the limitation of scalability. In this paper, we
describe the architecture and design features of a new scalable file system, SANtopia, which is being developed at
ETRI as global shared cluster file system for 64-bit address space file in the SAN environment. SANtopia manages
to deal in large file, large directories, and the large number of files using new metadata structure. SANtopia will
perform well as a local file system as a traditional network file system, and as a high performance cluster file
system running over SAN. SANtopia provides a key cluster enabling technology for Linux, helping to bring the
availability, scalability, and load balancing benefits of clustering to Linux.

Key-Words: - Global File System, Storage Area Network, Cluster File System, Linux, SANtopia

1 Introduction
The growth of Internet allows increasing number of
users to access vast amount of information stored at
shared disks. However, long propagation delays
between clients and servers, as well as hot spots of
network and server load yield high latencies for data
access in traditional storage system.

 Recently, the advances of switching technology
are allowed to order-of-magnitude improvements in
the network latency and bandwidth through new
technologies like Fibre Channel[1]. The Fibre
Channel standard integrates both storages and
networking capabilities into a single serial interface.
Hundreds of Fibre Channel disks and host
computers are able to combine in the
shared-bandwidth loops or across switches, which is
capable of maintaining several simultaneous gigabit
transfers. This network-like connection among the
disk drives and hosts has prompted a shift in the way
storage systems are viewed. In contrast, today’s
parallel SCSI technology supports only about 8
devices per bus with each bus extending at most

25m making the technology effectively
unscalable[2].

Storage Area Network (SAN)[3] is the
combination of network attached FC storage devices
and computers with the FC network adapters on a
loop or fabric. Each computer accesses to all the
drives effectively. SAN eliminates the bandwidth
bottlenecks and the limitations of scalability
imposed by the previous SCSI-based architectures
and LAN connections between server and stored
data.

SAN provides us to very large physical storage up
to 64-bit address space. We needed a file system that
could manage even petabytes of storage, but all of
the file systems we know of are limited to either a
few gigabytes or a few terabytes in size. These
limitations stem from the use of data structures that
don't scale and the use of 32 bit block pointers
throughout the on-disk structures of the file system.

In this paper we introduce a new scalable file
system, called SANtopia[4], for SAN in Linux.
SANtopia is being developed at ETRI as the global
shared cluster file system for 64-bits address space
file in the SAN environment. SANtopia manages to
deal in the large file, large directories, and large

numbers of files using new metadata structure.
SANtopia uses a new file system layout, which
supports us to a 64-bits address space for large file
system and modifies inode and directory structure
for large file and directory. For fast recovery in file
system failure, SANtopia adapts to metadata
journaling. SANtopia will perform well as a local
file system as a traditional network file system and
as a high performance cluster file system running
over SAN. SANtopia provides a key cluster
enabling technology for Linux, helping to bring the
availability, scalability, and load balancing benefits
of clustering to Linux.

The rest of the paper is organized as follows:
Section 2 reviews related works in the area of
distributed file system for huge file and other SAN
file systems. Section 3 describes the problems of
huge global file system. Section 4 describes the
SANtopia architecture and each component. In
Section 5, we present the techniques of SANtopia
system for globally shared file system in detail. For
supporting the large file system, large directories,
and huge file, we design a new file system layout,
inode and directory structures. We conclude the
paper in Section 6.

2 Related Works

2.1 Global File System (GFS)
GFS[5] was developed in Minnesota for shared file
system in 1995. At that time, GFS was primarily
interested in exploiting the Fibre Channel technology
to post-process large scientific datasets on Silicon
Graphics (SGI) hardware. By the spring of 1998, GFS
began porting their code to the open source Linux
operating system. In addition, GFS had shed our
narrow focus on large data applications and had
broadened our efforts to design a general-purpose file
system that scaled from a single desktop machine to a
large, heterogeneous network enabled for device
sharing. Because they had kernel source GFS could
finally support metadata and file data caching, but this
required changes to the lock specification, detailed in
[6].

2.2 Frangipani
Frangipani [7] is a new scalable distributed file system
that manages a collection of disks on multiple
machines as a single shared pool of storage. The

machines are assumed to be under a common
administration and to be able to communicate
securely. One distinguish feature of Frangipani is that
it has a very simple internal structure-a set of
cooperating machines use a common store and
synchronize access to that store with locks. This
simple structure enables us to handle system recovery,
reconfiguration, and load balancing with very little
machinery.

Frangipani is layered on top of Petal[8], an
easy-to-administer distributed storage system that
provides virtual disks to its clients. Like a physical
disk, a Petal virtual disk provides storage that can be
read or written in blocks. Unlike physical disk, a
virtual disk provides a sparse 264 bytes address space,
with physical storage allocated only on demand. Petal
also provides efficient snapshots to support consistent
backup. Frangipani inherits much of its scalability,
fault tolerance, and easy administration from the
underlying storage system, but careful design was
required to extend these properties to the file system
level.

2.3 XFS
XFS[9] is the next generation local file system for
SGI's workstations and servers. It is a general purpose
Unix file system that runs on workstations with 16
megabytes of memory and a single disk drive and also
on large SMP network servers with gigabytes of
memory and terabytes of disk capacity. In this paper
we describe the XFS file system with a focus on the
mechanisms it uses to manage large file systems on
large computer systems.
 The most notable mechanism used by XFS to
increase the scalability of the file system is the
pervasive use of B+ trees[10]. B+ trees are used for
tracking free extents in the file system rather than
bitmaps. B+ trees are used to index directory entries
rather than using linear lookup structures. B+ trees are
used to manage file extent maps that overflow the
number of direct pointers kept in the inodes. Finally,
B+ trees are used to keep track of dynamically
allocated inodes scattered throughout the file system.
In addition, XFS uses an asynchronous write ahead
logging scheme for protecting complex metadata
updates and allowing fast file system recovery after a
crash. We also support very high throughput file I/O
using large, parallel I/O requests and DMA to transfer
data directly between user buffers and the underlying
disk drives. These mechanisms allow us to recover
even very large file systems after a crash in typically

less than 15 seconds, to manage very large file systems
efficiently, and to perform file I/O at hardware speeds
that can exceed 300 MB/sec.

3 Problems of Scalable File System
In designing and developing file system for huge file,
we focused in on the specific problems with the
traditional file systems that we felt we needed to
address. In this section we consider the several
problems of the specific scalability addressed in the
design of SANtopia and why the mechanisms used in
other file systems are not sufficient.

3.1 To Support Large File System
We needed a file system that could manage even
petabytes of storage, but all of the file systems we
know of are limited to either a few gigabytes or a few
terabytes in size. Traditional file systems are limited
to only 8 gigabytes in size. These limitations stem
from the use of data structures that don't scale, for
example the bitmap in EFS, and from the use of 32 bit
block pointers throughout the on-disk structures of the
file system. The 32 bit block pointers can address at
most 4 billion blocks, so even with an 8 KB block size
the file system is limited to a theoretical maximum of
32 terabytes in size

3.2 To Support Large File System
None of the file systems we looked at support full a
64-bits files. Traditional file system did not support
sparse files at all. Most others use the block mapping
scheme created for FFS. We decided early on that we
would manage space in files with variable length
extents (which we will describe later), and the FFS
style scheme does not work with variable length
extents. Entries in the FFS block map point to
individual blocks in the file, and up to three levels of
indirect blocks can be used to track blocks throughout
the file. This scheme requires that all entries in the
map point to extents of the same size. This is because
it does not store the offset of each entry in the map
with the entry, and thus forces each entry to be in a
fixed location in the tree so that it can be found. Also, a
64-bits file address space cannot be supported at all
without adding more levels of indirection to the FFS
block map.

3.3 To Support Large Directories
Another area, which has not been addressed by other
Unix file systems or Linux, is support for directories
with more than a few thousand entries. While some,
for example VxFS[11], at least speed up searching for
entries within a directory block via hashing, most file
systems use directory structures, which require a
linear scan of the directory blocks in searching for a
particular file. The lookup and update performance of
these unindexed formats degrades linearly with the
size of the directory. Others use in-memory hashing
schemes layered over simple on-disk structures. These
in memory schemes work well to a point, but in very
large directories they require a large amount of
memory. This problem has been addressed in some
non-Unix file systems, like NTFS, by using B trees to
index the entries in the directory.

3.4 To Support Large Number of File
While traditional file systems can theoretically support
very large numbers of files in a file system, in practice
they do not. The reason is that the number of inodes
allocated in these file systems is fixed at the time the
file system is created. Choosing a very large number
of inodes up front wastes the space allocated to those
inodes when they are not actually used. The real
number of files that will reside in a file system is rarely
known at the time the file system is created. Being
forced to choose makes the management of large file
systems more difficult than it should be. VxFS solve
this problem by allowing the number of inodes in the
file system to be increased dynamically. In summary,
there are several problems with traditional file systems
that we wanted to address in the design of SANtopia.
While these problems may not have been important in
the past, we believe the rules of file system design
have changed.

3.5 To Support Fast Recovery
A file system with a crash recovery procedure that is
dependent on the file system size cannot be practically
used on large systems, because the data on the system
is unavailable for an unacceptably long period after a
crash. EFS and file systems based on the BSD Fast
File System falter in this area due to their dependence
on a file system scavenger program to restore the file
system to a consistent state after a crash. Running fsck
over an 8 gigabyte file system with a few hundred
thousand inodes today takes a few minutes. This is
already too slow to satisfy modern availability

requirements, and the time it takes to recover in this
way only gets worse when applied to larger file
systems with more files. Most recently designed file
systems apply database recovery techniques to their
metadata recovery procedure to avoid this pitfall.

4 Architecture of SANtopia
Figure 1 shows the architecture of SANtopia, which
supports the global file sharing in SAN environments.
SANtopia consists of the four parts: the global file
manager, the system manager, the global buffer and
lock manager, and the logical volume manager.

Figure 1. Architecture of SANtopia

 The users require the operation of the SANtopia file
system using VNODE operation and system call in
VFS (Virtual File System). The global file manager of
SANtopia processes metadata structures and its
operation is for functions having a large volume of file
sharing. Each operation is defined as a transaction that
is a unit of file operation and recovery.

The system manager provides performance
monitoring, on-line backup, and the system
configuration of SANtopia. Using the system
manager tools, the system manager is able to attach
or detach some nodes, and add or delete the shared
disks for a logical volume.

The global lock and buffer manager fulfills the
function of the global buffer sharing to minimize the
disk I/O. Especially, to reduce communication
overhead between the local server and global server
for buffer coherency, we integrated the lock
manager, which controls file access, and the buffer
manager, which provides file sharing, in SANtopia.

The logical volume manager enables the file
manager to coalesce a large logical volume (storage
pool) into a heterogeneous collection of shared
storages. This manager has the several functions in
LVM, 1) addition of a physical disk into logical
volume, 2) software RAID, 3) mapping the logical
address into the physical address, 4) transfer of the
data page form the disk into the buffer.

5 Development of Scalable File System
The SANtopia file system has been designed with
many improvements over the traditional file systems,
such as the Unix or Linux file systems. There are a
number of SAN file systems available today, with two
prevailing architectures. One approach is to use a
distributed lock manager and essentially treat the SAN
node as a tight cluster, similar to a VAX cluster. GFS
is a popular choice from that category, due to the fact
that it is freely available on Linux. However, the
cluster approach tends to be proprietary and
homogeneous.
 The alterative is a split data-metadata architecture.
This architecture uses a single server per logical file
system as the coordinator of all metadata traffic. File
system metadata contains information such as the files
name, allocation information, security and ownership
specifications, and other information about the file.
This information is typically very small and easily
communicated over a LAN between peers. Using a
LAN allows the benefit of presenting the storage as a
network volume, so that most heterogeneous
operability issues are eliminated.

5.1 Layout of SANtopia for Large File System
In the traditional file system, it divides the allocation
area into inodes, directories, inode bit maps, and data
blocks. The number of inode bit map entries for each
inode is allocated one entry per 4KB data blocks in the
Linux file system. This causes serious problems since
the inode table will be full, in spite of the fact that the
file system has free space, when a huge number of
huge small files exist in file system.

For supporting large file systems, SANtopia uses
64-bit address space. In figure 2, the layout of the
SANtopia file system consists of a boot area, super
block, allocation area, and bitmap area. The boot
area stores the booting images for the operating
system. The super block stores the information on
the file system such as the total size of the file
system, block size, bitmap size, and several
traditional super block data.

 Figure. 2 file system layout for a 64-bit address

Therefore, there is no division in the allocation

area among inodes, directories, and data blocks.
Since information on the allocation area manages
the bitmap table using two bits, we assigned the
value of bit map as follows: 00 is a free allocation
blocks (extent), 01 is an inode, 10 is a directory
entry, and 11 is a data extent. Using this method,
there is no limitation in the number of inode table
entries.

Data block 2
(extent)

root inode

.

.

.

.

.

pointer 1

(internal

node)
pointer 2

(data block)

pointer k

pointer 3

pointer 4

inode

information

Data block 1
(extent)

Data block 3
(extent)

Data block l
(extent)

Data block l+2
(extent)

.

.

.

.

Data block l+1
(extent)

Data block l+3
(extent)

Data block 2l
(extent).

.

.

.

Data block m*l
(extent)

.

.

.

.

.

.

.

.

.

pointer 0

(internal

node)

Data block i
(extent)

Data block i+1
(extent)

Data block i+l-1
(extent)

.

.

.

.

Data block n
(extent)

Level 2Level 2
(double indirect(double indirect

node)node)

Level 1Level 1
(single indirect node)(single indirect node)

Level 0Level 0
(direct node)(direct node)

Figure 3. Multi-Level inode structure for large file

5.2 Multi-Level inode Structure for Large Files
SANtopia provides a 64-bits address space for each
file. The support for 64 bits files means that there are
potentially a very large number of blocks to be
indexed for every file. In order to keep the number of
entries in the file allocation map small, SANtopia uses
an extent map rather than a block map for each file.
 In the SANtopia file system, we designed a new
inode scheme, called MLI (Multi-Level Inode) for
huge sized file. The level of MLI is dynamically up
when file size was increased and there is no a free
pointer in mid-level. Figure 3 shows our MLI
structure.

5.3 Directory management for large directories
and large numbers of file
One serious problem encountered when we adapted
traditional file systems to the SAN environment was
that they did not perform well with large directories.
Most traditional file systems such as the Unix file
system (UFS) and Linux file system (Ext2) were
designed for small sized file systems. So they have a
limitation in the number of files possible in the

directory. Also, they store files in the directory as an
unsorted linear list of directory entries. This is
satisfactory for small directories, but it greatly
increases the directory operations time for larger ones.
On average, we must search through half of the
directory to find any random entry presents in the
directory. In the traditional directory structure, large
directories can take up megabytes of disk space, so
this is costly not only in terms of the CUP time but also
I/O time. Two alternatives are proposed for large
directory. One approach is using a B-tree for entries in
the directory, such as in the xFS file system. The other
approach is Extensible Hashing [12], such as GFS.

The SANtopia file system is adapted to Extensible
Hashing due to its directory structure. Extensible
Hashing provides a way of storing a directory entry
so that any one entry can be found very quickly.
However, since the basic Extensible Hashing
method is not designed for large directory, we
modified its traditional data structure for an
extent-based large directory and refer to it as an
Extent-based Multi-Level Extensible Hashing
(EBMLEH).
Figure 4 shows our EBMLEH structure.

Dir
Info.

00

01

10

11

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Directory
Node

(Extent)

Indirect
hash

root
hash

2
4

Dir
Info.

00

01

10

11

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Directory
Node

(Extent)

Indirect
hash

root
hash

2
4

Figure 4. Extent-Based Multi-Level EH

The EBMLEH uses a multi-bit hash of each
filename. A subset of the bits is used as a unique
index in a hash table. Each pointer of the leaf hash

table points to a leaf extent block that contains the
directory entries. The EBMLEH has multi-level
hashing structures that contain a root node and
indirect nodes that are sets of hash values and block
pointers in the hashing tables. Each node has an
indicator that represents the bit size of the hash value
to be compared in the hash table.

The small size directory only uses root hash nodes,
the pointer of which points directly to the directory
entries block. However, in a large directory, the
capacity of the root node will reach its limitation
when the number of directory entries keeps
increasing. The EBMLEH uses indirect hash nodes
in that case. In Figure 4, for example, if the capacity
of the root node is 4 and indicator of the hash bits is
2 in the root node, the number of directory entries
has already exceeded its limitation, so that the root
node has 4 indirect hash nodes. The root node points
to the indirect hash node and each indirect hash
nodes point to a real block that stores directory
entries. Two steps are needed to find any particular
directory entry in figure 4. The number of directory
entries that can be pointed to in the directory blocks
is increased rapidly when the root node splits into
indirect hash nodes in EBMLEH.

5.4 Metadata Journaling for Fast Recovery
Metadata journaling provides the fast restart of file
system in the event of a system crash. Using database
journaling techniques, SANtopia can restore a file
system to a consistent state in a matter of seconds or
minutes, versus hours or days with non-journaled file
systems such as HPFS, ext2, and traditional UNIX file
systems. In the event of system failure, these file
systems rely on restart-time utilities (that is, fsck),
which examine all of the file system's meta-data (such
as directories and disk addressing structures) to detect
and repair structural integrity problems. This is serious
problem in SAN file system, because it is a
time-consuming and error-prone process, which, in the
worst case, can lose or misplace data.

 So, the journaling of SANtopia provides a
log-based, byte-level file system that was developed
for transaction-oriented, high performance systems.
Scalable and robust, its advantage over
non-journaled file systems is its quick restart
capability. SANtopia uses techniques originally
developed for databases to log information about
operations performed on the file system meta-data
as atomic transactions. In the event of a system
failure, a file system is restored to a consistent state

by replaying the log and applying log records for the
appropriate transactions. The recovery time
associated with this log-based approach is much
faster since the replay utility need only examine the
log records produced by recent file system activity
rather than examine all file system metadata.

6 Conclusion
In this paper, we present the architectural and design
features of SANtopia, which allows multiple machines
to access and share disk and tape devices on a Fibre
Channel or SCSI storage network in a Linux system. It
will perform well as a local file system, as a traditional
network file system running over IP environments,
and as a high performance cluster file system running
over storage area networks. SANtopia provides a key
cluster enabling technology for Linux, helping to
bring the availability, scalability, and load balancing
benefits of clustering to Linux.

The mechanisms in SANtopia for satisfying the
requirements of huge file systems also make it a
high performance general-purpose file system. The
use of dynamic multi-level inode structure and
extent-based extensible hashing throughout the file
system efficiently manages very large files and large
directories in the file system. Using metadata
journaling, SANtopia eliminates many of the
metadata update performance problems in the
traditional file systems.

References:
[1] Alan F. Benner. Fibre Channel: Gigabit

Communications and I/O for Computer Network.
McGraw-Hill, 1996.

[2] Friedhelm Schmidt. The SCSI Bus & IDE
Interface. Addison-Wesley, second edition, 1998.

[3] Randy H. Katz, “High-Performance Network and
Channel Based Storage”, Proceedings of IEEE,
Vol.80, No.8, pp.1238-1261, 1992.

[4] G. B. Kim, C. S. Kim, and B. J. Shin, “Global File
Sharing System for SAN”, The 3rd Int. Conf. On
Advanced Communication Technology,
pp.870-874, Feb. 2001.

[5] Kenneth W. et al., “Implementation Journaling in
a Linux Shared Disk File System”, Proc. Of the 8th
NASA Goddard Conference on Mass Storage
System and Technologies in cooperation with the
17th IEEE Symposium on Mass Storage Systems,
March 2000.

[6] Steve Soltis et al. “The Global File System”, In
The Fifth NASA Conference on Mass Storage
System and Technologies, pp.319-342, Colleage
Park, Maryland, March 1996.

[7] Chandramohan A. Thekkath, Timothy Mann,
Edward K. Lee. “Frangipani: A Scalable
Distributed File System”, ACM Operating
Systems Review, Vol. 31, no.5, Dec. 1997.

[8] Chandramohan A. Thekkath, Timothy Mann,
Edward K. Lee, “Petal : Distributed Virtual
Disks”, In Proc. 7th Intl. Conf. In Architectural
Support for Programming Languages and
Operating Systems, pp.84-92, Oct. 1996.

[9] http://oss.sgi.com/projects/xfs/
[10] Comer, D., "The Ubiquitous B-Tree," Computing

Surveys, Vol. 11, No. 2, June 1979, pp.121-137.
[11] Veritas Software, http://www.veritas.com
[12] Michael J. Folk et al., File Structures,

Addison-Wesley, March 1998.

