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Abstract: - By merging network and channel interfaces, resulting interfaces allow multiple computers to physically 
share the storage devices in storage area network (SAN). In SAN, computers service local file requests directly 
from shared storage devices. Direct device access eliminates the server machines as bottlenecks to performance 
and availability. Communication is unnecessary between computers, since each machine views the storage as 
being locally attached. SAN provides us to very large physical storage up to 64-bit address space, but traditional 
file systems can’t adapt to the file system for SAN because they have the limitation of scalability. In this paper, we 
describe the architecture and design features of a new scalable file system, SANtopia, which is being developed at 
ETRI as global shared cluster file system for 64-bit address space file in the SAN environment. SANtopia manages 
to deal in large file, large directories, and the large number of files using new metadata structure. SANtopia will 
perform well as a local file system as a traditional network file system, and as a high performance cluster file 
system running over SAN. SANtopia provides a key cluster enabling technology for Linux, helping to bring the 
availability, scalability, and load balancing benefits of clustering to Linux. 
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1   Introduction 
The growth of Internet allows increasing number of 
users to access vast amount of information stored at 
shared disks. However, long propagation delays 
between clients and servers, as well as hot spots of 
network and server load yield high latencies for data 
access in traditional storage system.  

 Recently, the advances of switching technology 
are allowed to order-of-magnitude improvements in 
the network latency and bandwidth through new 
technologies like Fibre Channel[1]. The Fibre 
Channel standard integrates both storages and 
networking capabilities into a single serial interface. 
Hundreds of Fibre Channel disks and host 
computers are able to combine in the 
shared-bandwidth loops or across switches, which is 
capable of maintaining several simultaneous gigabit 
transfers. This network-like connection among the 
disk drives and hosts has prompted a shift in the way 
storage systems are viewed. In contrast, today’s 
parallel SCSI technology supports only about 8 
devices per bus with each bus extending at most 

25m making the technology effectively 
unscalable[2]. 

Storage Area Network (SAN)[3] is the 
combination of network attached FC storage devices 
and computers with the FC network adapters on a 
loop or fabric. Each computer accesses to all the 
drives effectively. SAN eliminates the bandwidth 
bottlenecks and the limitations of scalability 
imposed by the previous SCSI-based architectures 
and LAN connections between server and stored 
data.  

SAN provides us to very large physical storage up 
to 64-bit address space. We needed a file system that 
could manage even petabytes of storage, but all of 
the file systems we know of are limited to either a 
few gigabytes or a few terabytes in size. These 
limitations stem from the use of data structures that 
don't scale and the use of 32 bit block pointers 
throughout the on-disk structures of the file system.   

In this paper we introduce a new scalable file 
system, called SANtopia[4], for SAN in Linux. 
SANtopia is being developed at ETRI as the global 
shared cluster file system for 64-bits address space 
file in the SAN environment. SANtopia manages to 
deal in the large file, large directories, and large 



numbers of files using new metadata structure. 
SANtopia uses a new file system layout, which 
supports us to a 64-bits address space for large file 
system and modifies inode and directory structure 
for large file and directory. For fast recovery in file 
system failure, SANtopia adapts to metadata 
journaling. SANtopia will perform well as a local 
file system as a traditional network file system and 
as a high performance cluster file system running 
over SAN. SANtopia provides a key cluster 
enabling technology for Linux, helping to bring the 
availability, scalability, and load balancing benefits 
of clustering to Linux. 

The rest of the paper is organized as follows: 
Section 2 reviews related works in the area of 
distributed file system for huge file and other SAN 
file systems. Section 3 describes the problems of 
huge global file system. Section 4 describes the 
SANtopia architecture and each component. In 
Section 5, we present the techniques of SANtopia 
system for globally shared file system in detail. For 
supporting the large file system, large directories, 
and huge file, we design a new file system layout, 
inode and directory structures. We conclude the 
paper in Section 6. 

 
 

2   Related Works 
 
2.1    Global File System (GFS) 
GFS[5] was developed in Minnesota for shared file 
system in 1995. At that time, GFS was primarily 
interested in exploiting the Fibre Channel technology 
to post-process large scientific datasets on Silicon 
Graphics (SGI) hardware. By the spring of 1998, GFS 
began porting their code to the open source Linux 
operating system. In addition, GFS had shed our 
narrow focus on large data applications and had 
broadened our efforts to design a general-purpose file 
system that scaled from a single desktop machine to a 
large, heterogeneous network enabled for device 
sharing. Because they had kernel source GFS could 
finally support metadata and file data caching, but this 
required changes to the lock specification, detailed in 
[6]. 
 
 
2.2   Frangipani 
Frangipani [7] is a new scalable distributed file system 
that manages a collection of disks on multiple 
machines as a single shared pool of storage. The 

machines are assumed to be under a common 
administration and to be able to communicate 
securely. One distinguish feature of Frangipani is that 
it has a very simple internal structure-a set of 
cooperating machines use a common store and 
synchronize access to that store with locks. This 
simple structure enables us to handle system recovery, 
reconfiguration, and load balancing with very little 
machinery. 

Frangipani is layered on top of Petal[8], an 
easy-to-administer distributed storage system that 
provides virtual disks to its clients. Like a physical 
disk, a Petal virtual disk provides storage that can be 
read or written in blocks. Unlike physical disk, a 
virtual disk provides a sparse 264 bytes address space, 
with physical storage allocated only on demand. Petal 
also provides efficient snapshots to support consistent 
backup. Frangipani inherits much of its scalability, 
fault tolerance, and easy administration from the 
underlying storage system, but careful design was 
required to extend these properties to the file system 
level. 

 
 

2.3   XFS 
XFS[9] is the next generation local file system for 
SGI's workstations and servers. It is a general purpose 
Unix file system that runs on workstations with 16 
megabytes of memory and a single disk drive and also 
on large SMP network servers with gigabytes of 
memory and terabytes of disk capacity. In this paper 
we describe the XFS file system with a focus on the 
mechanisms it uses to manage large file systems on 
large computer systems. 
   The most notable mechanism used by XFS to 
increase the scalability of the file system is the 
pervasive use of B+ trees[10]. B+ trees are used for 
tracking free extents in the file system rather than 
bitmaps. B+ trees are used to index directory entries 
rather than using linear lookup structures. B+ trees are 
used to manage file extent maps that overflow the 
number of direct pointers kept in the inodes. Finally, 
B+ trees are used to keep track of dynamically 
allocated inodes scattered throughout the file system. 
In addition, XFS uses an asynchronous write ahead 
logging scheme for protecting complex metadata 
updates and allowing fast file system recovery after a 
crash. We also support very high throughput file I/O 
using large, parallel I/O requests and DMA to transfer 
data directly between user buffers and the underlying 
disk drives. These mechanisms allow us to recover 
even very large file systems after a crash in typically 



less than 15 seconds, to manage very large file systems 
efficiently, and to perform file I/O at hardware speeds 
that can exceed 300 MB/sec. 
 
 
3   Problems of Scalable File System 
In designing and developing file system for huge file, 
we focused in on the specific problems with the 
traditional file systems that we felt we needed to 
address. In this section we consider the several 
problems of the specific scalability addressed in the 
design of SANtopia and why the mechanisms used in 
other file systems are not sufficient.  
 
 
3.1   To Support Large File System 
We needed a file system that could manage even 
petabytes of storage, but all of the file systems we 
know of are limited to either a few gigabytes or a few 
terabytes in size.  Traditional file systems are limited 
to only 8 gigabytes in size. These limitations stem 
from the use of data structures that don't scale, for 
example the bitmap in EFS, and from the use of 32 bit 
block pointers throughout the on-disk structures of the 
file system. The 32 bit block pointers can address at 
most 4 billion blocks, so even with an 8 KB block size 
the file system is limited to a theoretical maximum of 
32 terabytes in size 
 
 
3.2   To Support Large File System 
None of the file systems we looked at support full a 
64-bits files.  Traditional file system did not support 
sparse files at all. Most others use the block mapping 
scheme created for FFS. We decided early on that we 
would manage space in files with variable length 
extents (which we will describe later), and the FFS 
style scheme does not work with variable length 
extents. Entries in the FFS block map point to 
individual blocks in the file, and up to three levels of 
indirect blocks can be used to track blocks throughout 
the file. This scheme requires that all entries in the 
map point to extents of the same size. This is because 
it does not store the offset of each entry in the map 
with the entry, and thus forces each entry to be in a 
fixed location in the tree so that it can be found. Also, a 
64-bits file address space cannot be supported at all 
without adding more levels of indirection to the FFS 
block map. 
 
 

3.3   To Support Large Directories 
Another area, which has not been addressed by other 
Unix file systems or Linux, is support for directories 
with more than a few thousand entries. While some, 
for example VxFS[11], at least speed up searching for 
entries within a directory block via hashing, most file 
systems use directory structures, which require a 
linear scan of the directory blocks in searching for a 
particular file. The lookup and update performance of 
these unindexed formats degrades linearly with the 
size of the directory. Others use in-memory hashing 
schemes layered over simple on-disk structures. These 
in memory schemes work well to a point, but in very 
large directories they require a large amount of 
memory. This problem has been addressed in some 
non-Unix file systems, like NTFS, by using B trees to 
index the entries in the directory. 
 
 
3.4   To Support Large Number of File 
While traditional file systems can theoretically support 
very large numbers of files in a file system, in practice 
they do not. The reason is that the number of inodes 
allocated in these file systems is fixed at the time the 
file system is created. Choosing a very large number 
of inodes up front wastes the space allocated to those 
inodes when they are not actually used. The real 
number of files that will reside in a file system is rarely 
known at the time the file system is created. Being 
forced to choose makes the management of large file 
systems more difficult than it should be. VxFS solve 
this problem by allowing the number of inodes in the 
file system to be increased dynamically.  In summary, 
there are several problems with traditional file systems 
that we wanted to address in the design of SANtopia. 
While these problems may not have been important in 
the past, we believe the rules of file system design 
have changed. 
 
 
3.5   To Support Fast Recovery 
A file system with a crash recovery procedure that is 
dependent on the file system size cannot be practically 
used on large systems, because the data on the system 
is unavailable for an unacceptably long period after a 
crash. EFS and file systems based on the BSD Fast 
File System falter in this area due to their dependence 
on a file system scavenger program to restore the file 
system to a consistent state after a crash. Running fsck 
over an 8 gigabyte file system with a few hundred 
thousand inodes today takes a few minutes. This is 
already too slow to satisfy modern availability 



requirements, and the time it takes to recover in this 
way only gets worse when applied to larger file 
systems with more files. Most recently designed file 
systems apply database recovery techniques to their 
metadata recovery procedure to avoid this pitfall. 
 
 

4   Architecture of SANtopia 
Figure 1 shows the architecture of SANtopia, which 
supports the global file sharing in SAN environments. 
SANtopia consists of the four parts: the global file 
manager, the system manager, the global buffer and 
lock manager, and the logical volume manager. 
 
 

 
 

Figure 1. Architecture of SANtopia 
 
    The users require the operation of the SANtopia file 
system using VNODE operation and system call in 
VFS (Virtual File System). The global file manager of 
SANtopia processes metadata structures and its 
operation is for functions having a large volume of file 
sharing. Each operation is defined as a transaction that 
is a unit of file operation and recovery.  

The system manager provides performance 
monitoring, on-line backup, and the system 
configuration of SANtopia. Using the system 
manager tools, the system manager is able to attach 
or detach some nodes, and add or delete the shared 
disks for a logical volume.  

The global lock and buffer manager fulfills the 
function of the global buffer sharing to minimize the 
disk I/O. Especially, to reduce communication 
overhead between the local server and global server 
for buffer coherency, we integrated the lock 
manager, which controls file access, and the buffer 
manager, which provides file sharing, in SANtopia.  

The logical volume manager enables the file 
manager to coalesce a large logical volume (storage 
pool) into a heterogeneous collection of shared 
storages. This manager has the several functions in 
LVM, 1) addition of a physical disk into logical 
volume, 2) software RAID, 3) mapping the logical 
address into the physical address, 4) transfer of the 
data page form the disk into the buffer. 

 
 

5 Development of Scalable File System 
The SANtopia file system has been designed with 
many improvements over the traditional file systems, 
such as the Unix or Linux file systems.  There are a 
number of SAN file systems available today, with two 
prevailing architectures. One approach is to use a 
distributed lock manager and essentially treat the SAN 
node as a tight cluster, similar to a VAX cluster. GFS 
is a popular choice from that category, due to the fact 
that it is freely available on Linux. However, the 
cluster approach tends to be proprietary and 
homogeneous.  
    The alterative is a split data-metadata architecture. 
This architecture uses a single server per logical file 
system as the coordinator of all metadata traffic. File 
system metadata contains information such as the files 
name, allocation information, security and ownership 
specifications, and other information about the file. 
This information is typically very small and easily 
communicated over a LAN between peers. Using a 
LAN allows the benefit of presenting the storage as a 
network volume, so that most heterogeneous 
operability issues are eliminated. 
 
 
5.1   Layout of SANtopia for Large File System  
In the traditional file system, it divides the allocation 
area into inodes, directories, inode bit maps, and data 
blocks. The number of inode bit map entries for each 
inode is allocated one entry per 4KB data blocks in the 
Linux file system. This causes serious problems since 
the inode table will be full, in spite of the fact that the 
file system has free space, when a huge number of 
huge small files exist in file system. 



For supporting large file systems, SANtopia uses 
64-bit address space. In figure 2, the layout of the 
SANtopia file system consists of a boot area, super 
block, allocation area, and bitmap area. The boot 
area stores the booting images for the operating 
system. The super block stores the information on 
the file system such as the total size of the file 
system, block size, bitmap size, and several 
traditional super block data.  

 

 Figure. 2 file system layout for a 64-bit address  
 
Therefore, there is no division in the allocation 

area among inodes, directories, and data blocks. 
Since information on the allocation area manages 
the bitmap table using two bits, we assigned the 
value of bit map as follows: 00 is a free allocation 
blocks (extent), 01 is an inode, 10 is a directory 
entry, and 11 is a data extent. Using this method, 
there is no limitation in the number of inode table 
entries. 
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Figure 3. Multi-Level inode structure for large file 
 
 
5.2   Multi-Level inode Structure for Large Files  
SANtopia provides a 64-bits address space for each 
file. The support for 64 bits files means that there are 
potentially a very large number of blocks to be 
indexed for every file. In order to keep the number of 
entries in the file allocation map small, SANtopia uses 
an extent map rather than a block map for each file. 
    In the SANtopia file system, we designed a new 
inode scheme, called MLI (Multi-Level Inode) for 
huge sized file. The level of MLI is dynamically up 
when file size was increased and there is no a free 
pointer in mid-level. Figure 3 shows our MLI 
structure. 
 
 
5.3   Directory management for large directories 
and large numbers of file  
One serious problem encountered when we adapted 
traditional file systems to the SAN environment was 
that they did not perform well with large directories. 
Most traditional file systems such as the Unix file 
system (UFS) and Linux file system (Ext2) were 
designed for small sized file systems. So they have a 
limitation in the number of files possible in the 



directory. Also, they store files in the directory as an 
unsorted linear list of directory entries. This is 
satisfactory for small directories, but it greatly 
increases the directory operations time for larger ones. 
On average, we must search through half of the 
directory to find any random entry presents in the 
directory. In the traditional directory structure, large 
directories can take up megabytes of disk space, so 
this is costly not only in terms of the CUP time but also 
I/O time. Two alternatives are proposed for large 
directory. One approach is using a B-tree for entries in 
the directory, such as in the xFS file system. The other 
approach is Extensible Hashing [12], such as GFS.   

The SANtopia file system is adapted to Extensible 
Hashing due to its directory structure. Extensible 
Hashing provides a way of storing a directory entry 
so that any one entry can be found very quickly. 
However, since the basic Extensible Hashing 
method is not designed for large directory, we 
modified its traditional data structure for an 
extent-based large directory and refer to it as an 
Extent-based Multi-Level Extensible Hashing 
(EBMLEH).   
Figure 4 shows our EBMLEH structure.  
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Figure 4. Extent-Based Multi-Level EH 
 

The EBMLEH uses a multi-bit hash of each 
filename. A subset of the bits is used as a unique 
index in a hash table. Each pointer of the leaf hash 

table points to a leaf extent block that contains the 
directory entries. The EBMLEH has multi-level 
hashing structures that contain a root node and 
indirect nodes that are sets of hash values and block 
pointers in the hashing tables. Each node has an 
indicator that represents the bit size of the hash value 
to be compared in the hash table. 

The small size directory only uses root hash nodes, 
the pointer of which points directly to the directory 
entries block. However, in a large directory, the 
capacity of the root node will reach its limitation 
when the number of directory entries keeps 
increasing. The EBMLEH uses indirect hash nodes 
in that case. In Figure 4, for example, if the capacity 
of the root node is 4 and indicator of the hash bits is 
2 in the root node, the number of directory entries 
has already exceeded its limitation, so that the root 
node has 4 indirect hash nodes. The root node points 
to the indirect hash node and each indirect hash 
nodes point to a real block that stores directory 
entries. Two steps are needed to find any particular 
directory entry in figure 4. The number of directory 
entries that can be pointed to in the directory blocks 
is increased rapidly when the root node splits into 
indirect hash nodes in EBMLEH. 

 
 
5.4    Metadata Journaling for Fast Recovery  
Metadata journaling provides the fast restart of file 
system in the event of a system crash. Using database 
journaling techniques, SANtopia can restore a file 
system to a consistent state in a matter of seconds or 
minutes, versus hours or days with non-journaled file 
systems such as HPFS, ext2, and traditional UNIX file 
systems. In the event of system failure, these file 
systems rely on restart-time utilities (that is, fsck), 
which examine all of the file system's meta-data (such 
as directories and disk addressing structures) to detect 
and repair structural integrity problems. This is serious 
problem in SAN file system, because it is a 
time-consuming and error-prone process, which, in the 
worst case, can lose or misplace data. 

 So, the journaling of SANtopia provides a 
log-based, byte-level file system that was developed 
for transaction-oriented, high performance systems. 
Scalable and robust, its advantage over 
non-journaled file systems is its quick restart 
capability. SANtopia uses techniques originally 
developed for databases to log information about 
operations performed on the file system meta-data 
as atomic transactions. In the event of a system 
failure, a file system is restored to a consistent state 



by replaying the log and applying log records for the 
appropriate transactions. The recovery time 
associated with this log-based approach is much 
faster since the replay utility need only examine the 
log records produced by recent file system activity 
rather than examine all file system metadata. 

 
 

6   Conclusion 
In this paper, we present the architectural and design 
features of SANtopia, which allows multiple machines 
to access and share disk and tape devices on a Fibre 
Channel or SCSI storage network in a Linux system. It 
will perform well as a local file system, as a traditional 
network file system running over IP environments, 
and as a high performance cluster file system running 
over storage area networks. SANtopia provides a key 
cluster enabling technology for Linux, helping to 
bring the availability, scalability, and load balancing 
benefits of clustering to Linux. 

The mechanisms in SANtopia for satisfying the 
requirements of huge file systems also make it a 
high performance general-purpose file system. The 
use of dynamic multi-level inode structure and 
extent-based extensible hashing throughout the file 
system efficiently manages very large files and large 
directories in the file system. Using metadata 
journaling, SANtopia eliminates many of the 
metadata update performance problems in the 
traditional file systems. 
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