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Università di Salerno
84081 Baronissi (SA), Italy

Abstract

We consider the problem of identifying an unknown
value X ∈ {a1, . . . , an} using only ”X ≤ C ?”
queries, when at most E of the comparisons may
receive erroneous answers.

We describe a strategy that solves this prob-
lem by using a number of comparisons that is
close to the optimal. In fact we show we need
less than log(n) + E log(log(n)) + log(log(n) +
E log(log(n)) + O(log(log(log(n))) + O(E log(E))
comparisons, while the bound for the problem is
log(n) + E log(log(n)) +O(E log(E)).

Keywords Searching, Error, Lie, Game, Strategy,
Error Correcting Codes.

1 Introduction

Let X be an unknown number which we wish to
identify by asking ”Yes-No” questions. Our goal
is to minimize the number of questions required in
the worst case, taking into account that some of the
answers received may be erroneous. This problem
comes in several versions based on the possible val-
ues of X and the nature of the ”Yes-No” questions.
We restrict the allowable questions to comparisons,
i.e. questions of the form ”is X ≤ C?” where C
is a specified integer element of the table we are
searching in.

Similar problems have been faced before in liter-
ature. The original problem was proposed by Rényi
in [1] and by Ulam [2] who asked “how many Yes-No
questions are needed to identify an unknown num-
ber beetween 1 and one milion if at most 1 of the
answers may be fault?”. [4] solves the continuous
version of the original problem. In [5] Pelc gives a
solution of Ulam’s problem for questions of the form
”Is X in T?” were T is a discrete set. Recently there
has been a growing interest in this problems and in
its many facets. The state of the art of the research
on Ulam problems and related aspects of fault tol-
erant binary search have been studied by Cicalese

in [7] and by Pelc in [8].
Generalizing Ulam’s problem, in this paper we

consider that at most E, with E ≥ 1, of the answers
may be incorrect.

2 The Optimal Solution in the
Continuous Case

In [4] the continuous version of this problem has
been optimally solved by Rivest and others. In that
case we search for a real number X in a half open
normalized interval (0,1]. The solution of the con-
tinuous problem will represent the lower bound for
the discrete case problem.

Given ε > 0 (for example ε = 1/n where n is an
integer) and a hidden X ∈ (0,1], in the continuous
version of Ulam’s problem we are required to min-
imize the number of comparisons needed to specify
a subset of (0,1] of size ≤ ε that contains the un-
known X.

Let A = (A0, A1, . . . , AE) be an (E+1)-tuple such
that X ∈ Ae iff exactly e of the previous answer are
incorrect. A state of the problem will be a pair
(q, A), where q is the number of comparisons re-
maining and A = (A0, A1, . . . , AE). Following an
idea of Berlekamp [3], Rivest et al. in [4] define the
weight of a state Aq when there are q questions left,
as:

w(q, Aq) =
E∑
e=0

(( qE−e))|Aeq|,

where ((nm)) denotes
m∑
i=0

(ni ).

Let C be an element of the table we are searching
in and (q− 1, Y ) the state resulting from a positive
answer to the comparison ”Is X ≤ C?”, let instead
(q − 1, N) be the state resulting from a negative
answer. In [4] is shown that if at each step of the
algorithm the C of the next comparison is chosen
so that w(q − 1, Y ) = w(q − 1, N), the number of
comparisons is minimal.



It would seem that by choosing ε = 1/n the
discrete case could be approached. In fact using
the same algorithm as in the continuous case, after
Q = log(n) + E log(log(n)) +O(E log(E)) compar-
isons the size of the subinterval of the half open
interval (0,1] containing X is less than ε = 1/n.

But even if we can reduce the subinterval contain-
ing X to less than ε = 1/n, the previous algorithm
cannot easily be applied when the search space is
discrete and of size n. In fact if {a1, . . . , an} are
the elements of the search table, we need to map
them in (0,1]. There are essentially two possible so-
lutions. The first is to map every ai ∈ {a1, . . . , an}
in a point of ( 0,1 ].
For example:

f :

 {a1, . . . , an} → (0, 1]
ai → f(ai) = i(1/n)

i = 1 . . . n
The second is to map every ai ∈ {a1, . . . , an} in

a separate subset of (0,1].
For example:

g :


{a1, . . . , an} → (0, 1]

ai → g(ai) = Si
3′ Si ⊂ (0, 1] and
Si
⋂
Sj = Ø

i, j ∈ {a1, . . . , an}.
We also need f−1 and g−1 because when the al-

gorithm in [4] chooses a C ∈ (0, 1] to ask the next
question, in the discrete case the comparison in-
volved should be ”Is X ≤ f−1C?” in the first case
or ”Is X ≤ g−1C?” in the second (in the discrete
case we need to ask a question ”is X ≤ C?” where
C is a specified integer element of the table we are
searching in).

Since the algorithm produces C ∈ (0, 1] often it
happens that f−1 is not defined in that point. It
is therefore necessary to define a new function f
defined in (0,1] and such that f(i/n) = f−1(i/n) =
ai i = 1, . . . , n and f(C) = ai if ai is, between the
n points of (0,1] chosen to represent the discrete
interval, the one closer to C ∈ (0, 1]. This means
that several C ∈ (0, 1] lead to the same ai, and
therefore ai may not always be the optimal choice.
Similar problems arise for g−1.

Furthermore, both using f or g, the problem of
the correspondence between the final subinterval of
(0,1] (whose size may be exactly 1/n), and one and
only one element of {a1, . . . , an} arises.

3 A Fault Tolerant Binary
Search Algorithm

Our goal is to define a search algorithm in a finite
discrete set {a1, . . . , an} that could work although
a finite number of comparisons, at most E, may re-
ceive erroneous answers. We start, in analogy with
[4], by defining a set A of subset of {a1, . . . , an} as:

A = (A0, A1, . . . , AE), where X ∈ Ae iff exactly e
of the previous answer were incorrect.

We define a state of the problem as a couple
(q, Aq) where q is the number of questions remain-
ing and Aq = (A0

q, A
1
q, . . . , A

E
q ) where X ∈ Ae iff

exactly e of the previous answer were incorrect.

Clearly we always have X ∈
E⋃
e=0

Aeq.

We define the weight of a state S = (q, Aq) as

w(q, Aq) =
E∑
e=0

((qE−e)|Aeq|, were ((nm)) =
m∑
i=0

(ni ) and

|A| is the number of elements of the set A.
The algorithm is based on a recursive proce-

dure. At any application of the main procedure,
the initial number of comparison is chosen as Q =
min{Q′|| log(w(Q′, A))| ≤ Q′}.

The basic idea of the algorithm is to choose the
number C so that |wC(q − 1, Y )− wC(q − 1, N)| is
minimum for C ∈ {a1, . . . , an} and so that wC(q−
1, Y ) < w(q, Aq) and wC(q− 1, N) < w(q, Aq). In
fact it is not always possible in this case to choose
C so that wC(q − 1, Y ) = wC(q − 1, N), as in [4].

This choice could cause an unbalancement on the
search tree of the algorithm and in case the answer
is still ambiguous, i.e. if we have more than one
X ∈ {a1, . . . , an} candidate to be the solution, we
will have to apply recursively the procedure on the
new set A that represents the new initial situation.

Table 1 shows the pseudocode of the algorithm.
Figure 1 and 2 shows the search tree produced by
the algorithm when n = 23 and E = 1 and when
n = 24 and E = 1.

4 Analysis of the Algorithm

We will first prove the correctness of the algorithm.
Then we will analyze its worst case behaviour with
respect to the number of comparisons.

Lemma 1 Sufficient condition for the problem to
be solved in a state S = (q, Aq) is that w(S) = 1.

Proof : w(S) = 1 implies ∃i 3′ |Aeq| = 0 for
e = 0 . . . E, e 6= i, and |Aiq| = 1. The solution
will be the element of Aiq. CVD.

We define a state S = (q, Aq) final if q = 0 or if
∃i 3′ |AiQ| = 0 for i = 0 . . . E, i 6= j and |Ajq| = 1.

We define the transition from a configura-
tion Aq = (A0

q, A
1
q, . . . , A

E
q ) to a configuration

Bq−1 = (B0
q−1, B

1
q−1, . . . , B

E
q−1) an improve-

ment if |Aiq| = |Biq−1|, for i = 0 . . . (j − 1), and
|Ajq| > |Bjq−1|.

Of course the number of possible improvements
before reaching a state S such that w(S) = 1 is
finite.



Lemma 2 For every state S = (q, Aq) not final,
exists a C such that the comparison ”Is X ≤ C?”
produces an improvement.

Proof : Let’s suppose |Aiq| = 0 for i = 0 . . . (j − 1).
If |Ajq| ≥ 2 let x, y ∈ Ajq and x < y. A comparison
”Is X ≤ x?” will lead to an improvement what-
ever the result is. Instead if |Ajq| = 1 and y ∈ Ajq,
there will be E ≤ k < j such that |Akq | ≥ 1 and
h ∈ Akq . Let x = min{y, h}, a comparison ”Is X
≤ x?” will lead an improvement whatever the re-
sult is. CVD.

Lemma 3
∃Q 3′ Q = min{Q′ | | log(w(Q′, A))| ≤ Q′}.

Proof : Of course w(Q,A) ≤ ((QE))n and
n∑
i=0

(ni ) =

2n. The algorithm stops if w(0, A0) = 1.
If we suppose that, after a comparison, the weight
of the previous state is divided exactly in two, a Q
that satisfies ((QE))n < 2Q satisfies also the thesis.
Such a Q exists because for Q > E the function 2Q

dominates the sum ((QE)).CVD.

Theorem 1 The algorithm is correct.

Proof : It follows from the lemmas 1, 2, 3 and the
consideration that any comparison in the algorithm
leads to an improvement. CVD.

We now analyze the worst case behaviour of the
algorithm with respect to the number of compar-
isons.

Theorem 2 Foreach state S = (q, Aq), wC(q −
1, Y )−wC(q−1, N) is a non decreasing function of
C.

Proof. Let’s suppose S = (q, Aq). If C is such that
|wC(q−1, Y )−wC(q−1, N)| is minimum, the search
table in the state (q, Aq) has been halved in two
spaces (q − 1, Y ) and (q − 1, N), resulting from the
result of a comparison ”Is X ≤ C?”. A comparison
with C < C would extend the search space result-
ing from a negative answer of the comparison and
would decrease the space resulting from a positive
one. So if wC(q − 1, Y ) is the weight of the state
subsequent to a positive result to the comparison
”is X ≤ C ?” and wC(q − 1, N) the state subse-
quent to a negative result, where C < C and C is
such that |wC(q−1, Y )−wC(q−1, N)| is minimum
respect to C, then wC(q−1, Y ) ≤ wC(q−1, Y ) and
wC(q−1, N) ≥ wC(q−1, N). Iterating this demon-
stration scheme for every C < C < C and applying
it for every C > C > C, we obtain the thesis. CVD.

Given n and E, xe define a numeric succession
Q(i):
Q(1) = log(n) + E log(log(n)) +O(E log(E)).
Q(i) = 0 if Q(i − 1) = 0 or if log(Q(i − 1) + 1) +
E log(log(Q(i− 1) + 1)) +O(E log(E)) < 1.
Q(i) = log(Q(i − 1) + 1) + E log(Q(i − 1) + 1) +
O(E log(E)) in the other cases.

Theorem 3 The number of comparisons in the al-

gorithm RIC.ERR. is less than
∞∑
i=1

Q(i).

Proof. At the first step of the algorithm, the is the
initial number of comparisons Q is chosen so that
| log(w(Q,A))| ≤ Q, where A is A0 = {1 . . . n} and
Ae = O, e = 1 . . . E. The value of Q will be the
same number of comparisons needed in the con-
tinuous case when ε = 1/n and at least E com-
parisons may receive erroneous answers. Moreover
the value of the weight w(Q,A) will be the same
as in the continuous case. In fact, for the Proce-
dure RIC.ERR. in Table 1 in the initial situation:

w(Q,A) =
E∑
e=0

((QE−e))|AeQ| = ((QE))n.

Q will be chosen so that | log(w(Q,A))| ≤ Q, that
is:
((QE))n ≤ 2Q ⇐⇒ ((QE))2−Q ≤ 1/n.
This is the condition under which Q was chosen in
[1], to get to ε = 1/n, with at most E comparison
errors. Hence, for any Q, if RIC.ERR. could ex-
actly halve at each step the weight w(Q,A), then
less than log(n)+E log(log(n))+O(E log(E)) com-
parisons would be needed to identify X ∈ {1 . . . n}.
In general the algorithm splits w(Q,A) in two parts
whose difference is |wC(q − 1, Y ) − wC(q − 1, N)|
(where C minimizes the difference |wy(q − 1, Y ) −
wy(q − 1, N)| between all y ∈ {a1, . . . , an}). To
bound the unbalancing after any step of the al-
gorithm, let’s suppose that C is the minimum of
the function |wC′(q− 1, Y )−wC′(q− 1, N)| ∀ C ′ ∈
{a1, . . . , an} and that wC(q−1, Y )−wC(q−1, N) ≤
0, while wC+1(q−1, Y )−wC+1(q−1, N) > 0. Since
the weight function considered is increasing with C,
the worst case for the algorithm is always better
than choosing C when wC+1(q − 1, Y )− wC+1(q −
1, N) = 0. (if we have wC(q−1, Y )−wC(q−1, N) ≥
0, we’ll consider C − 1 instead of C + 1).
The umbalancing is then bounded from above by
((qE)). In fact, suppose the state is (q, Aq) the query
”Is X ≤ C?”, receives a positive (negative) result
that leads to a state (q − 1, Aq−1), and ”Is X ≤
C+1?”, equally receiving a positive (negative) re-
sult with next state (q− 1, Aq−1) the difference be-
tween the weights of the two states will be:
|wC+1(q − 1, Aq−1) − wC(q − 1, Aq−1)| =

|
E∑
e=0

((q−1
E−e))(|Aeq−1| − |Aeq−1|)| < ((q−1

E ))



because at least two of the differences (|Aeq−1| −
|Aeq−1|) will be equal to 1 in module (and of opposite
sign), while the others will be 0. Since ((qE)) ≤ 2q,
for every state (q, Aq), the maximum weight unbal-
ancing in the search tree in one step is bounded from
above by 2q. Consider now how the weight changes
during the execution of the procedure ALG in Ta-
ble 1, going from a state (q, Aq) to the next state
(q − 1, Aq−1). At the beginning of the algorithm,
after choosing Q (that is Q(1)), we have:
w(Q,AQ) = ((QE))n
after the first comparison:
w(Q− 1, AQ−1) ≤ w(Q,AQ)/2 + 2Q−1,
and so on, until we get:

w(0, A0) ≤ w(Q,AQ)/2Q +
Q−1∑
i=0

2i/2i < 1 +Q.

So, after the first call of the procedure ALG, the
weight w(0, A0) is less than Q + 1. If we suppose
that the first call to RIC.ERR. has left a set A0 with
Ae0 = O for e = 1 . . . E andA0

0 = {a1 . . . aQ+1}. The
new call to ALG has now to solve a new search prob-
lem in a discrete set {a1 . . . aQ+1}, when as many
as E of the comparisons may receive erroneous an-
swers. Applying again the previous arguments, it
is possible to show that the number of comparisons
needed by ALG in this new situation will be exactly
Q(2) and that the weight w(0, A0) < Q(2). By it-
erative applications of the same arguments, we can
show that the number of questions needed is upper

bounded by the sum
∞∑
i=1

Q(i). CVD.

Therefore, if Questions(n,E) is the number of
comparisons needed by the algorithm RIC.ERR. to
identify an element of the discrete set {a1 . . . an},
when as many as E comparisons may have erro-
neous answers, we will have: Questions(n,E) <
∞∑
i=1

Q(i) ≤ log(n) + E log(log(n) + log(log(n) +

E log(log(n)) + O(E log(E))) + E log(log(log(n) +
E log(log(n))+O(E log(E))))+O(log(log(log(n)))).

5 Conclusions and Future
Work

We have considered the problem of identifying an
unknown value X ∈ {a1, . . . , an} using only ”X ≤
C?” queries, when at most E of the comparisons
may receive erroneous answers.

The strategy we have described solves this prob-
lem by using a number of comparisons that is:
Questions = log(n) + E log(log(n)) + log(log(n) +
E log(log(n)) +O(log(log(log(n))) +O(E log(E)).

We are currently experimenting the algorithm for
a number of errors E >> 1 and for large values of
n.
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Input: n Number of elements of the search table
E Maximum number of errors
A set of subset of 1 . . . n, at the beginning it will be A[0] = {1 . . . n}, A[I] = Ø I=1 . . . E

Output: ANSWER The hidden number

TYPE ARR = Array [0..E] of Set of {1 . . . n};

global variables S,D : ARR;
ANSWER,ANSW,QQ : INTEGER;

Procedure RIC.ERR.;
BEGIN ** RIC.ERR **

ALG(A);
OUTPUT(’The solution is ’,ANSWER);

END ** RIC.ERR **

Procedure ALG (O:ARR);
BEGIN ** ALG **

QQ := MIN {Q’ | | log(w(Q′, O))| ≤ Q’}
TROUGH(QQ,O); IF (ANSW = 0) THEN BEGIN

IF NOT SOLUTION(S) THEN ALG(S)
END

ELSE IF NOT SOLUTION(D) THEN ALG(D);
END; ** ALG **

Procedure THROUGH (Q:INTEGER; A:ARR);
BEGIN ** THROUGH **

Choose I
3′ |wI(Q− 1, YAQ−1)− wI(Q− 1, NAQ−1)| = min {|wx(Q− 1, YAQ−1)− wx(Q− 1, NAQ−1 |)}

with x ∈ {1 . . . n} and
wx(Q− 1, YAQ−1) < w(Q,A) and
wx(Q− 1, NAQ−1) < w(Q,A).};

S := YAQ−1 ;
D := NAQ−1 ;
ASK(’X is ≤ ’,I,’ ?’);
READLN(ANSW);
IF ANSW = 0 THEN BEGIN

IF Q-1 > 0 AND NOT(SOLUTION(S)) THEN THROUGH (Q-1,S);
END

ELSE IF Q-1 > 0 AND NOT(SOLUTION(D)) THEN THROUGH (Q-1,D);
END; ** THROUGH **

Function SOLUTION(A:ARR) : BOOLEAN;
BEGIN ** SOLUTION **

IF ∃| X ∈
E⋃
i=0

A[I] THEN BEGIN

ANSWER:=X;
SOLUTION:=TRUE
END

ELSE SOLUTION:=FALSE;
END ** SOLUTION **

Table 1: The Algorithm RIC.ERR.



Figure 1: The search tree for n = 23 and E = 1

Figure 2: The search tree for n = 24 and E = 1


