
Fast Decoding Of Alternant Codes Using A Divison-Free Analog
Of An Accelerated Berlekamp-Massey Algorithm

MARC A. ARMAND WEE SIEW YEN
Department of Electrical & Computer Engineering

National University of Singapore, 10 Kent Ridge Crescent,
SINGAPORE 119260.

Abstract: – We present division-free analogs of the accelerated Berlekamp-Massey (BM) algorithms of R. Blahut
based on an algorithm by G. Norton. Due to their similar structures, the computational complexity of Blahut’s
algorithms and ours are essentially the same. However, the division-free operation of our algorithms make them
attractive, particularly for hardware implementations. We further show how our algorithms may be used for fast
decoding of alternant codes. In particular, we show that our algorithms simultaneously compute both an error
locator and error evaluator polynomial. Although this is achievable with the accelerated BM algorithms as well,
explicit details have not been given. Finally, due to the frequent occurence of minimal polynomials in other
areas besides coding theory, such as cryptography and systems theory, we expect our algorithms to have many
useful applications in related areas.

Key-Words: – Minimal Realization, Alternant Codes, Key Equation, Algebraic Decoding.

1 Introduction

Alternant codes represent a large class of codes com-
prising important subclasses of codes, including BCH,
Reed-Solomon and Goppa codes. It is well-known
that in decoding alternant codes based on the con-
ventional key equation over a formal power series
ring, the error locator polynomial σ has the form∏

(1 − αjiX) where the ji are the error locations
in a received word. This means that the roots of σ,
once found, have to be inverted to obtain the error
locations. In the case of non-binary codes, having
found σ, the so-called error evaluator polynomial ω
is then computed to enable the error magnitudes to
be found. Forney’s procedure [3] which is commonly
used to compute the error magnitudes may be viewed
as a means of simultaneously computing and evalu-
ating the error evaluator polynomial at the respective
error locations. An algebraic decoding procedure for
alternant codes based on the conventional key equa-
tion can be summarized as follows. For a received
word, (i) compute the syndrome sequence, (ii) com-
pute σ, (iii) invert the roots of σ to obtain the error

locations, (iv) compute ω, and (v) compute the error
magnitudes.

We focus on an analogous key equation over a Lau-
rent series ring where the corresponding error loca-
tor polynomial has the form

∏
(X − αji). Conse-

quently, step (iii) is no longer necessary. Moreover, a
division-free analog of the Berlekamp-Massey (BM)
algorithm, namely, Algorithm MR of [5], is available
for solving this alternative key equation. To signifi-
cantly accelerate the decoding process, we focus on
accelerating Algorithm MR. As with the BM algo-
rithm, the computational load in any given iteration
of Algorithm MR is proportional to the degree of the
polynomial being updated in that iteration, and this
degree increases with the number of iterations. Using
a divide-and-conquer approach as in [2, Sections 11.6
& 11.7], we obtain accelerated versions of Algorithm
MR which exploit the computational simplicity of the
early iterations. It turns out that our accelerated algo-
rithms compute the error locator and error evaluator
polynomials simultaneous, thus fusing steps (ii) and
(iv) above.

We begin by reviewing Algorithm MR. We then show
how a doubling strategy may be used to accelerate
the algorithm. Subsequently, by repeated application
of the doubling strategy, we arrive at a fast recursive
version of Algorithm MR. Finally, we show how our
accelerated algorithms can be incorporated into an al-
gebraic decoding strategy for alternant codes.

2 Algorithm MR

Let R be a domain. By s|L, L ≥ 1, we denote the
R-sequence s0, s−1, . . . , s−L+1 with generating poly-
nomial Γ(s|L) =

∑0
i=−L+1 siX

i. Let the degree of
f ∈ R[X] be denoted by δf . By fi we denote the i-
th coefficient of f ∈ R[X−1, X], the ring of Laurent
polynomials over R that contains R[X] as a subring.

The pair (f, g) ∈ R[X] × XR[X] is said to be a re-
alization of s|L if it satisfies the congruence relation

fΓ(s|L) ≡ g mod X−L+δf

and f �= 0 and 1 ≤ δg ≤ δf . Moreover, (f, g) is said
to be a minimal realization of s|L if δf = min{δf ′ :
(f ′, g′) realizes s|L} [5], i.e. f is a minimal poly-
nomial of s|L. The following algorithm computes a
minimal realization of a finite sequence. We write
µ (i) for (µ(i), β(i)) ∈ R[X]×XR[X] for short. Ad-
dition and polynomial multiplication of minimal real-
izations will be by component.

Algorithm 1 ([5, Algorithm MR])
α0 := −1; µ(α0) := (0, −X); µ(0) := (1, 0);
∆(α0) := 1; d0 := −1;

for i:=0 to L-1 do
∆(i) :=

∑δµ(i)

j=0 µ
(i)
j s−i+δµ(i)−j;

if ∆(i) �= 0 then
di := −di; swap(µ(i), µ(αi)); swap(∆(i),∆(αi));
µ(i+1) := ∆(αi)µ(i) − ∆(i)Xdiµ(αi);

di+1 := di − 1;

return µ(L).

The quantity ∆(i) =
∑δµ(i)

j=0 µ
(i)
j s−i+δµ(i)−j is re-

ferred to as the discrepancy of µ(i), which is the
obstruction to µ(i) also realizing s|i + 1. It is read-
ily seen to be the (−i + δµ(i))-th coefficient of the
product µ(i)Γ(s|L).

The first step to accelerating Algorithm 1 is to recast
it as follows.

Algorithm 2
Step 0: Set α0 := −1, µ(α0) := (0, −X), µ(0) :=
(1, 0), ∆(α0) := 1, d0 := −1 and i := 0. Then go to
Step 1.

Step 1: Set ∆(i) :=
∑δµ(i)

j=0 µ
(i)
j si+δµ(i)−j . If ∆(i) �= 0

then set zi := 0 if di < 0 and set zi := 1 otherwise
and go to Step 2; else, set zi := 1 and go to Step 2.

Step 2: Set[
µ(i+1)

µ(αi+1)

]
:=

[
∆(αi)Xdi(zi−1) ∆(i)Xdizi

1 − zi zi

] [
µ(i)

µ(αi)

]

∆(αi+1) := (1 − zi)∆(i) + zi∆(αi)

di+1 := (2zi − 1)di − 1.

Then go to Step 3.

Step 3: If i < L − 1 then set i := i + 1 and go to
Step 1; otherwise, exit.

Clearly, the main computations of Algorithm 2 re-
volve around the equations

∆(i) =
δµ(i)∑
j=0

µ
(i)
j si+δµ(i)−j

[
µ(i+1)

µ(αi+1)

]
=

[
∆(αi)Xdi(zi−1) ∆(i)Xdizi

1 − zi zi

] [
µ(i)

µ(αi)

]
.

(1)

Define the matrix Λ(i) by

Λ(i) =
[

∆(αi)Xdi(zi−1) ∆(i)Xdizi

1 − zi zi

]

and the matrix M(i) by

M (i) =
i∏

j=0

Λ(j)

so that M(i) = Λ(i)M (i−1) and M (−1) = I, the iden-
tity matrix.

Then (1) may be rewritten as

[
µ(i+1)

µ(αi+1)

]
=


 i∏

j=0

Λ(j)


[

µ(0)

µ(α0)

]
=M (i)

[
µ(0)

µ(α0)

]

where µ(0) = (1, 0) and µ(α0) = (0, −X).

Thus, [
µ(i+1)

µ(αi+1)

]
=

[
(M (i)

11 , −XM
(i)
12)

(M (i)
21 , −XM

(i)
22)

]

where Ajk denotes the element of matrix A at row j,
column k.

Clearly, updating M(i) is equivalent to updating
µ(i+1) and µ(αi+1), although this incurs a penalty of
having approximately twice as many multiplications
since M(i) has four elements. We proceed to show
how this penalty will eventually be overcome.

3 A doubling strategy

In this section, we assume that L is divisible by 2.
For i > i′ ≥ −1, define the matrix

M (i,i′) =
i∏

j=i′+1

Λ(j).

Therefore,

M (i) = M (i,−1) = M (i,i′)M (i′). (2)

Further define the matrix S(i) by

S(i) = M (i)

[
Γ(s|L)

0

]
= M (i,i′)S(i′).

Thus, S(i) = Λ(i)S(i−1) and S(−1) = [Γ(s|L) 0]T .
Next, we expand the product M

(i−1)
11 Γ(s|L) as fol-

lows.

M
(i−1)
11 Γ(s|L)

= [M (i−1,i′)M (i′)]11Γ(s|L)

=
[
M

(i−1,i′)
11 M

(i′)
11 + M

(i−1,i′)
12 M

(i′)
21

]
Γ(s|L)

= M
(i−1,i′)
11 S

(i′)
1 + M

(i−1,i′)
12 S

(i′)
2

where S(i′) = [S(i′)
1 S

(i′)
2]T .

The discrepancy ∆(i) of µ(i) which we recall to
be the (−i + δµ(i))-th coefficient of the product
µ(i)Γ(s|L) = M

(i−1)
11 Γ(s|L) can therefore be ex-

pressed as

∆(i) =
δM

(i−1,i′)
11∑
j=0

M
(i−1,i′)
11,j S

(i′)

1,−i+δM
(i−1,i′)
11 +δM

(i′)
11 −j

+

δM
(i−1,i′)
12∑
j=0

M
(i−1,i′)
12,j S

(i′)

2,−i+δM
(i−1,i′)
11 +δM

(i′)
11 −j

.(3)

Since L is assumed to be even, we can split Algo-
rithm 2 into two halves by computing M((L−2)/2)

and then modifying the original sequence s|L to
compute M(L−1,(L−2)/2). Then, taking the product
M (L−1,(L−2)/2)M ((L−2)/2) yields M(L−1).

Specifically, for the first half, i.e. for 0 ≤ i < L/2,
from (2) and (3), the discrepancy ∆(i) may be com-
puted using the equation

∆(i) =
δM

(i−1)
11∑

j=0

M
(i−1)
11,j S

(−1)

1,−i+δM
(i−1)
11 −j

+

δM
(i−1)
12∑

j=0

M
(i−1)
12,j S

(−1)

2,−i+δM
(i−1)
11 −j

=
δM

(i−1)
11∑

j=0

M
(i−1)
11,j S

(−1)

1,−i+δM
(i−1)
11 −j

(4)

since S
(−1)
2 = 0. At the end of the first half, we then

modify S(−1) as S((L−2)/2) = M ((L−2)/2)S(−1) and
store a copy of M((L−2)/2) as well as δM

((L−2)/2)
11 .

Let δ = δM
((L−2)/2)
11 .

For the second half, i.e. for L/2 ≤ i < L, from (3),
∆(i) may be computed using the equation

∆(i) =
δM

(i−1)
11∑

j=0

M
(i−1)
11,j S

((L−2)/2)

1,−i+δM
(i−1)
11 +δ−j

+

δM
(i−1)
12∑

j=0

M
(i−1)
12,j S

((L−2)/2)

2,−i+δM
(i−1)
11 +δ−j

(5)

with M ((L−2)/2) re-initialized as M((L−2)/2) = I. In
this way, M(i−1)

11 and M
(i−1)
12 in (5) are the first row

elements of M(i−1,(L−2)/2)M ((L−2)/2) (prior to the
re-initialization), as required.

This completes the justification of the following al-
gorithm. Note that indices of the various quantities
involved have been suppressed since only their cur-
rent values are needed. In particular, we write ∆(α)

and µ(α) as ∆′ and µ in order to differentiate them
from ∆ = ∆(i) and µ = µ(i) respectively.

Algorithm 3 (cf. [2, Figure 11.7])
Step 0a: Set S = [Γ(s|L) 0]T , M := I, d := −1,
∆′ := 1 and i := 0. Then go to Step 0b.

Step 0b: If i = L/2 then set δ := δM11, S := M ·S,
M ′ := M , M := I, d := −1. Go to Step 1.

Step 1: If i < L/2 then compute ∆ as in (4); other-
wise, compute ∆ as in (5). If ∆ �= 0 then set z := 0
if d < 0 and set z := 1 otherwise and go to Step 2;
else, set z := 1 and go to Step 2.

Step 2: Set

M :=
[

∆′Xd(z−1) ∆Xdz

1 − z z

]
· M

∆′ := (1 − z)∆ + z∆′

d := (2z − 1)d − 1.

Then go to Step 3.

Step 3: If i < L − 1 then set i := i + 1 and go
to Step 0b; otherwise, set M := M · M′, µ :=
(M11, −XM12) and exit.

As with the algorithm in [2, Figure 11.7], it is impor-
tant that fast convolutional techniques (see e.g. [2,
Sections 11.1 & 11.3] for details) be used to carry out
the polynomial multiplications pertaining to the ma-
trix products M ·S and M ·M′ in Step 0b and Step 3
respectively. If not, there will be no net computational
savings.

4 A recursive version

Algorithm 3 splits a problem of length L into two
halves. If L/2 is even, then we can further split the
two halves. If L is a power of 2, this splitting can
continue until we are left with problems of length 1,
each requiring only a single iteration of Algorithm
MR. This idea leads to Algorithm 4 below which is a
recursive version of Algorithm MR and is even more
computationally efficient than Algorithm 3. Its for-
mulation is similar to that described in [2, Section
11.7] for the recursive BM algorithm and so we state
our recursive algorithm without further elaboration.
For simplicity, we assume that L is a power of 2.
The various methods for modifying the recursive BM
algorithm to accomodate the case when L is not a
power of 2, as suggested in [2, Section 11.7], equally
apply to Algorithm 4 and is not repeated here.

Algorithm 4 (cf. [2, Figure 11.8])
Step 0: Set S = [Γ(s|L) 0]T , ∆′ := 1, δ := 0 and
i := 0.

Step 1: Call procedure RecursiveMR.

Step 2. Set µ := (M ′
11, −XM ′

12) and exit.

Procedure RecursiveMR:–
Step 0: Store a copy of S and M and go to Step 1.

Step 1: If L = 1 then go to Step 2a; otherwise, go to
Step 3a.

Step 2a: Set ∆ := S1,−i+δ. If ∆ �= 0 then set z := 0
and go to Step 2b; otherwise, set z := 1 and go to
Step 2b.

Step 2b: Set

M ′ :=
[

∆′X1−z ∆
1 − z z

]

∆′ := (1 − z)∆ + z∆′

δ := δ + 1 − z

and i := i + 1 and go to Step 4.

Step 3a: Call RecursiveMR. When control returns
to Step 3a, go to Step 3b.

Step 3b: Set S := M ′ · S and M := M ′. Then call
RecursiveMR. When control returns to Step 3b, go
to Step 3c.

Step 3c: Set M ′ := M ′ ·M , L := 2L and go to Step
4.

Step 4: Retrieve a copy of S and M and exit.

As before, in order for computational savings to be
achieved, the availability of fast convolutional tech-
niques is necessary for efficiently executing the poly-
nomial multiplications pertaining to the matrix prod-
uctsM ′·S andM ′·M in Steps 3b and 3c, respectively,
of RecursiveMR.

In the next section, we show how our accelerated al-
gorithms may be used for fast algebraic decoding of
alternant codes.

5 Fast decoding of alternant codes

We begin by briefly recalling the definition of alter-
nant codes over finite fields. For details, see e.g. [4,
Chapter 12]. For a more general definition of alter-
nant codes over commutative rings with identity, see
[7, Section 3.1].

Let α1, . . . , αn be distinct elements of F = GF (qm)
and let h1, . . . , hn be non-zero elements of F . An
alternant code over GF (q) of length n and minimum
distance at least d ≥ 2 is defined by the matrix

H =




h1 h2 h3 . . . hn

h1α1 h2α2 h3α3 . . . hnαn
...

...
...

h1α
d−2
1 h2α

d−2
2 h3α

d−2
3 . . . hnαd−2

n




known as the parity-check matrix.

Suppose a transmitted codeword c is received as
r = c + e. The syndrome sequence s|2t is given
by r ·HT = e ·HT where t is the error-correctability
of the code satisfying t = �(d − 1)/2� (note: �x�
denotes the largest integer less than or equal to x).
We shall assume that the numbers of errors in the er-
ror vector e does not exceed t. Let the support of e
be denoted by Supp(e). Define the error locator and
error evaluator polynomials by

σ =
∏

j∈Supp(e)

(X − αj)

and

ω =
∑

j∈Supp(e)

ejhj

∏
i∈Supp(e), i�=j

(X − αi)

respectively. From [7, Lemma 3.13], σ and ω satisfy
the congruence relation

Γ(s|2t) ≡ Xω/σ mod X−2t.

That is to say, (σ, Xω) realizes s|2t. It can be fur-
ther shown that it is the unique minimal realization
of s|2t.
Thus, in using Algorithms 3 or 4 to compute the min-
imal realization (M(L−1)

11 , −XM
(L−1)
12) of s|2t, we

have that σ = M
(L−1)
11 and ω = −M

(L−1)
12 . Rather

than performing a literal evaluation of −M
(L−1)
12 to

obtain ω, it would be easier to compute the quotient
M

(L−1)
12 (αj)/(hjM

(L−1) ′
11 (αj)) and add the result to

the j-th coefficient rj of r to get cj , the j-th coeffi-
cient of the nearest codeword. Here, M(L−1) ′

11 is the
formal derivative of M

(L−1)
11 .

We thus have the following decoding procedure.

Algorithm 5
Input: The received vector r = (r1, . . . , rn).
Output: The nearest codeword c = (c1, . . . , cn).

Step 1: Compute the syndrome sequence s|2t =
r · HT . If si = 0 for −2t + 1 ≤ i ≤ 0, then stop;
otherwise go to Step 2.

Step 2: Compute the matrix M(L−1) using Algorithm
3 or 4 with s|2t as input.
Step 3: Evaluate M

(L−1)
11 (αj) for 1 ≤ j ≤ n. If

M
(L−1)
11 (αj) = 0, then j ∈ Supp(e).

Step 4: Set (g1, . . . , gn) = (0, . . . , 0). For j ∈
Supp(e), set gj = M

(L−1)
12 (αj)/(hjM

(L−1) ′
11 (αj)).

Step 5: Return c = r + g.

Note that in contrast to decoding based on the con-
ventional key equation in F [[X]], the roots of our
error locator polynomial, rather than their inverses,
correspond directly to the error locations.

6 Conclusion

We have presented division-free analogues of the ac-
celerated BM algorithms of [2]. Due to their sim-
ilar structures, the computational complexity of our
algorithms and those of [2] are essentially the same.
However, the division-free operation of our algorithms
make them attractive, particularly for hardware im-
plementations. When used in a decoding application,
Blahut stated that his accelerated BM algorithms can
compute an error evaluator polynomial as well but did
not give details on how to do it. We have clarified
this point for our algorithms, showing that our error
evaluator polynomial ω is simply −M

(L−1)
12 . Finally,

minimal polynomials frequently occur in other areas
besides coding theory, such as cryptography and sys-
tems theory. Thus, it is reasonable to assert that our
algorithms could have many important applications in
related areas.

References:

[1] Berlekamp, E., Algebraic coding theory, New
York: McGraw-Hill, 1968.

[2] Blahut, R.E., Fast algorithms for digital signal
processing. Reading, MA: Addison-Wesley, 1983.

[3] Forney, G.D. Jr., On decoding BCH codes, IEEE
Trans. Inform. Theory, Vol. 11, (1965), pp. 549–
557.

[4] MacWilliams, F.J., Sloane, N.J.A., The theory
of error-correcting codes. North Holland, Ams-
terdam, 1977.

[5] Norton, G.H., On the minimal realizations of a fi-
nite sequence, J. Symbolic Computation, Vol. 20,
1995, pp. 93–115.

[6] Norton, G.H., Some decoding applications of
minimal realization, (C. Boyd Ed.) Cryptography
and Coding, LNCS, Springer, Vol. 1025, 1995,
pp. 53–62.

[7] Norton, G.H., Salagean-Mandache A., On the
key equation over a commutative ring, Designs,
Codes and Cryptography, Vol. 20, No. 2, 2000,
pp. 125–141.

