

Performance testing of a predictive dialling algorithm for
Computer Telephony Integration systems

LUIGINO BENETAZZO*, MARCO CORTESE**, RICCARDO COSTACURTA**

(*) Department of Electronic and Computer Science - University of Padova
Via Gradenigo 6/a, ITALY

(**) Deimos Italia s.r.l. - Padova Via Pellizzo 14/E, ITALY

Abstract: - The Call Center world is in continuous expansion, and Computer Telephony Integration technologies
(CTI) can introduce significant improvements. Call Centers are generally used to accept inbound calls and
provide services with human or automatic agents. An additional application field is emerging and attracting
business attention: outbound systems. Using the same infrastructure, a Call Center can be used to place calls and
reach customers, for example, for telemarketing activities. CTI allows to automate and optimize many tasks, but
performance and productivity mainly depend on the dialling algorithm: in this paper predictive solutions will be
considered, also proposing a new approach. Its implementation features will be studied, outlining some typical
performance testing problems. Particular concern will be also placed on small centers where a Markov queue
model generally can’t obtain acceptable results.

Key-Words: - Call Center, Predictive dialling, Outbound Systems, Computer Telephony Integration.

1 Introduction to Outbound dialling
systems optimization
The Call Center world seems to be the richest context
for Computer Telephony Integration (CTI) based
solutions. Call Centers are by now used as service
centers, in which technology allows to manage
incoming phone calls and assign them to skilled
human agents or automated Interactive Voice
Response (IVR) devices. However another new
interesting application field is outbound dialling, that
is, when the system places outgoing calls and assigns
only answered ones to agents (telemarketing,
customer care, fund rising, etc...). In outbound
applications, CTI technology [1] allows to automate
call placing activities (launching or dialling engine),
recognize if a human customer is answering and then
transfer calls to the phoneset of a target agent (human
operator). In this context human agents are valuable
system resources and their productivity depends on
the total amount of time spent on conversation or
data processing (working time) and on their
availability (that is, when they are logged-in and set
ready). Calls that receive a human answer will be
followed by a conversation with the agent (live calls
or contacts). From the system point of view this can
be thought of as a hit result that will impact on
system performances. There are many different
algorithms and approaches to implement these jobs,
but all of them have the same target: the optimization
of call center performances, that is, maximizing agent
productivity while introducing minimum nuisance to
customers. Different solutions have been studied:

preview dialling, power dialling, progressive dialling
and predictive dialling [2,3]. All but the first are
based on the concept that placed calls have an
intrinsic death rate (busy destination, no answer, fax,
answer machine, etc...) and as a consequence only
live calls must participate to agent assignment tasks.
This is the basic reason why these algorithms
introduce an overdialling rate, that is they place more
calls than available agents. When a customer
answers, if the system has a free agent it executes
matching, otherwise it can't manage the contact:
these calls are called Nuisance Calls. Predictive
dialling systems are characterized by the possibility
to manage overdialling on a statistical basis, keeping
nuisance level under control. Different algorithms
can fulfill to these requirements.
Most predictive dialling solutions [3,4] have a
decision strategy based on a Markov queuing model
that computes in advance a launching pace and then
places calls at this rate. The main job is thus
performed off-line, computing statistical indices to
describe customers behavior, according to a queue
model [5,6]. This approach generally leads to
suboptimal performances, especially in low sized
systems (i.e. those containing only a few agents).
In this paper an innovative approach is proposed,
based on statistical analysis accomplished at run-time
over significant intervals, rather than on stochastic
intensity parameters evaluated off-line and that
describe the whole system. A feedback has also been
added in order to improve algorithm convergence and
control output parameters. Algorithm robustness and
accuracy is also studied by means of a comparative

analysis with a solution based on a Markov model,
with particular concern on systems with a medium-
small number of available agents.
A characterization of statistical algorithms is
necessary because the proposed solution is based on
system performance measures and on the consequent
tuning of the dialling engine to desired preset targets.
Adopted models are actually based on statistical
descriptions (s.d.) of random variables (r.v.)
representing quantities (state sojourning times)
involved in the system. Also stochastic processes
(s.p.) are used to describe events and their intensity
(calls placed, calls answered, etc…). It is supposed
that measure sequences are available to the launching
engine, obtained in a non intrusive fashion and that
such s.d. are computed with a sufficient accuracy [2].

2 Statistical definition of measure
parameters
From a functional point of view, a predictive dialling
system can be schematized as in Figure 1, where the
dialling engine can be described by a statistical
launching intensity λ; p(t) is the probability that
communication is set (Hit Rate), modeling customer
behavior; Φ is the function describing dynamic
system behavior during assignment of contacts to
agents and their statistical state evolution, producing
actual live contacts or unmanageable calls. NCR(t)
and Pr(t) describe system performances in terms of
nuisance calls and agent productivity and will be now
defined. Optimization and algorithm choices thus
concentrate on the launching engine, and can be built
on different mathematical models (off-line Markov
one, greedy on-line, etc...).
The main entities that should be measured are listed
below and are involved both in Markov model
algorithms and in the proposed one.

Fig. 1: Block diagram of an outbound
dialling system with a predictive engine.

Hit Rate (p(t)): represents the ratio of calls
terminated in a phone contact with respect to the total
amount of placed ones. In the statistical model it
defines the probability of a human answer: this
implies that 1)(0 ≤≤ tp . Its evolution should be
measured in order to use it in further estimation
activities. This quantity is also strictly time
dependent so it should be computed by putting
together values obtained by measurement sequences

on a moving time window. This window should be
defined so that obtained instantaneous values of p(t)
can be considered meaningful. A value of about 30
seconds has experimentally provided good results
and exhibits the further property of being much
shorter than application time duration: outbound
activities, called campaigns, generally have a mean
duration of about 3-4 hours or more. At the same
time this interval has the same magnitude order as the
time needed by a call to reach a contact and thus
evaluate its hit result.
Nuisance Call Rate (NCR(t)): is the ratio of live
contact calls with no agents available on the total
amount of placed ones, from the beginning of a
campaign up to time t. It's supposed that these calls
are immediately hung up by the system, as actually
happens in most existing solutions. NCR(t) is a
cumulative quantity and system performances can be
deduced by its final value NCR(tF) where tF is the
time of campaign end, possibly compared with a
preset target value NCR0. Its measurement is also
necessary because its instantaneous values are used
in feedback and self adaptation phases, as will be
shown in Section 3 below. Moreover, a time
evolution analysis during the campaign can be useful
to evaluate algorithm convergence and stability.
Agent productivity (Pr(t)): it is the main optimization
target of predictive dialling systems, defined as the
ratio between active working time of all agents and
their available time at time t. It can be described as
follows:

c

c

n (t)

a
i=1
n (t)

w
i=1

t (i)
Pr(t)=

t (i)

∑

∑

where nc(t) is the number of managed live calls until
time t, ta(i) is the i-th contact duration and tw(i) is the
measured waiting time for the agent to get the (i+1)-
th contact assigned by the system. Pr(t) is a
cumulative quantity, so as time flows its oscillations
are smoother (see Figure 4). Its instantaneous value is
used for estimation and feedback, but in order to
evaluate algorithm effectiveness it must be evaluated
in its final value for t=tF. In this case, too, its time
evolution shows algorithm stability and convergence
indices.
Launching rate (λ(t)): it is an intensity parameter
describing the number of system dialled calls per
time unit; its statistical value can be the result of
different predictive engine algorithms. For instance
in the Markov queuing model, where dialling pace
(∆t) is a evaluated a priori, it assumes a constant
value λ(t)=λ=1/∆t. However, as stated earlier, only

 NCR(t)

 Pr(t)

Predictive
Engine

λ(t)

Call
Death Rate
 p(t)

Resource
assignments and

conversations
Φ(t)

answered calls are assigned to agents, so assignment
times (arrivals in the model) are non deterministic:
call death rate makes the process stochastic, altering
its statistical description. It thus become a Poisson
s.p. with arrival rate λ’(t), where
λ’(t)=λ(t)�⋅p(t)=p(t)/∆t, that is, call death rate causes
the equivalent rate to reduce.

Observing Figure 1, a predictive dialling system can
be described by input-output equations reported in
(1). The optimization problem can then be rewritten
as in (2), where performances must be measured
through all campaign duration because of the
cumulative definition but performance optimization
problem must focus only on their final values; λ is
the free parameter, whose meaning depends on
adopted model.

Block Φ: represents calls and system evolution; in
order to describe it, other statistical quantities play an
important role. A finite state machine (FSM) model
has been chosen to describe the evolution of calls and
agents [2]. Some r.v. will then be used to describe
state sojourning times, with the hypothesis that their
complete statistical description, i.e. the probability
density function (PDF))(af

it
, is known. Agents and

calls states will randomly change from i to j: this is
described by probabilities pij so that 1ijj

p =∑ and

the adopted model has the features of a Markov
sequence. Predicted Hit Rate is iji

p p
∈Ε

= ∏ where
E is the set containing states leading to a live contact.

3 Metrological parameters of the
Algorithmic solution
A Markov queue model approach can be used
adopting an M/G/c/c model (as usually indicated in
literature) and Erlang Beta equation can be easily
used to size launching pace. Even if it's widely
supported by the literature [5,6], the approach does
not seem to lead to the desired results in predictive
dialling applications in centers with few agents (up to
10).
Markov solutions seem to have big limitations due to
their low flexibility: the launching pace λ is
predimensioned depending on the rate λ’ which
should describe homogeneous stochastic processes,
but system events can hardly satisfy this feature.

Another limitation comes from the assumption of
fixed size queue while agents availability (servers in
the model) is strongly varying. In other words, the
Chapman-Kolmogorov law of large numbers often
can't overcome statistical parameter dynamics (p(t)
and λ’(t) may change widely with time from the
mean values used by the model), leading to
suboptimal performances, especially in medium-
small sized call centers. Figure 2 displays the high
sensitivity of performances when statistical
parameters move away from predicted working
points [1]. In this example an estimated Hit Rate
p=0.5 is used to compute launching rate λ in order to
get a target NCR0. If at time t some conditions lead to
a real value of p(t)=0.7, Erlang Beta formula leads to
estimate NCR ≈ 2 NCR0 which is generally not
acceptable.

Fig. 2 (a,b): Diagram of performance indices
variations on Hit Rate relative variations
with respect to its value used in pace
presizing (p=0.5).

In this context a different approach seems to be more
appropriate: the use of run-time working conditions
in place of predefined statistically computed
quantities. An on-line greedy algorithm [7] has been

 NCR(t) = Φ1(λ,t) (1)
 Pr(t) = Φ2(λ,t)

 minλ = NCR(tF) (2)
 maxλ = Pr(tF)

(b)

(a)

studied: it evaluates system state and produces
predictions in a limited and reduced time window
(Twin); then it takes launching choices leading to a
local optimum in relation to the same time interval.
The choice then moves from a time pace presizing
task to a run-time choice of the exact number of calls
to place in order to optimize performance quantities
in the short period. Since global performances are
obtained by aggregating values collected during
system evolution, a local optimum reflects on a
global one.
For the purposes of a numerical computation, the
time axis must be split into time slices (TC) shorter
than the analysis interval and predicted time
quantities. Estimation time interval (Twin) has been
assumed to be the statistical time needed by a call to
reach a contact. Statistical resource matching, and
thus launching choice, takes place within this time
window and is evaluated each TC seconds.
In the FSM model, random variables are used instead
of s.p. to describe agents and calls sojourning times
in their states; they can also take advantage of an
additional knowledge, that is they are staying in that
state since a known amount of time. This allows
more accurate computation of the number of
statistically available agents (nag(t)) and the number
of calls that could require them (ncl(t)) within the
time window (t,t+Twin). At time t the system will
place as many calls as needed to balance these
expected values. In addition to evolution times, it is
also important to take into account call death rate,
described by p(t) (with a slower dynamics) whose
actual description at time Ct n T= ⋅ is known. The
main idea is that at time t the system should place
nl(t) calls, where:

() ()
()

()
ag cl

l

n t n t
n t

p t
−

=

Using C winT T� allows to adjust choices made in
the previous step, adapting them to the new system
state and new s.d. of each r.v., thus improving
prediction quality.
Such a system can then be described as in Figure 3,
ignoring the feedback block dnf (z)− . S represents
the prediction and launching algorithm: it computes
values nag(t) and ncl(t) based on available PDFs ,
implements equation (3) and places nl(t) calls. Block
Φ represents real calls evolution (answer, busy
signal, fax answer, lines congestion, etc…) and
system management tasks (agent assignment or hang-
up) leading to conversations or nuisance calls, that
are contributing to the evolution of performance
indices. A complete statistical description of Φ
depends on interdependent random variables, leading

to a very complex and generally unaffordable
mathematical treatment. Moreover a joint statistical
description for these r.v. is not available, neither is
the a posteriori PDF describing output conditional
probability with respect to input r.v. (and vice versa):
estimate and decision theory can't then be applied. As
a consequence estimation is based on a partial
statistical description of Φ, so to improve algorithm
controllability, a feedback has been introduced.

Fig. 3: Schematization of run-time system
with a feedback control block.

This allows evaluating the effects of past step choices
and then tuning launching decisions according to
results. The main idea is to provide a self-learning
behavior to function Φ represented in Figure 3, using
measured values at the input and output of that block.
A greedy algorithm can then take advantage of a
tuning feature, correcting limitations due to limited
knowledge of statistical description of block Φ.
Feedback time delay must be comparable with the
time needed to evaluate any consequence of the
choice made, that is with time window Twin. So the
number of delay steps nd in the discrete
representation of Figure 3 is the number of clock
intervals composing this time window, that is,
nd=Twin/TC. Feedback is redirected to the input as a
Hit Rate correction factor, to be coherent with the
assumed model. So p’(t) is composed of a measured
component and a correction component based on run-
time measured performance parameters and their
deviation from preset values. Experimentally, using a
controlled feedback model also allows the algorithm
to converge faster.
Another interesting point is the possibility to use a
much more accurate system evolution time s.d.,
balancing the loss of accuracy due to the fact that the
observation interval is finite (Twin) and s.d. are
discretized. It is therefore possible to know at each
time t, for each call and agent, since how many
seconds

0ist it is staying in the current state; these s.d.

are more accurate, so it's useful to take into account
their conditional PDF. They are easily obtained by
their corresponding unconditional PDF (on which the
Markov model is based). PDF)|(

0iis st taaf > is

(3)

 p(t) p’(t)
S

 nag(t) ncl(t)

 nl (t)
Φ

 NCR(t)

 Pr(t)

dnf (z)−

+ -

obtained from)(af
ist

, thus conditional expectation

is:

i
si0

i i i0

sisi0

st

s s s

tt

t'f (t') dt'
E t | t t =

f (t') dt'

∞

∞

⋅
 >
  ⋅

∫

∫

Conditional PDF are narrower, and their power
spectrum is concentrated in a narrow prediction
interval, leading to more useful expectations values.
Statistical descriptions mentioned earlier are
obviously computed from previously measured
sequences: they are generally called "historical"
statistics. It is however possible to use a run-time
sampled counterpart, computing the corresponding
PDF, that is, having an actual statistical description
of agents and calls at run-time. It is also useful to
adopt a weighted balance of these two conditional
expectation samples that may be strongly different.
This is another positive contribution of on-line
greedy algorithms.
Numerical representation of these r.v., which are
continuous in the model, may lead to theoretically
unpredictable quantization errors [8]. In [2] a method
has been proposed, allowing vector computation and
update algorithm complexity to be a linear function
of N, where N depends on the required sampling
resolution. This may be useful in real-time
environments such as telephony.
The proposed algorithm also introduced a
quantization problem due to algorithm model rather
than to its numerical computation. Launching
equation (3) is purely theoretical because ln ∈� , so
it must be rewritten as

ag cl
l

n (t) - n (t)
n (t)=

p(t)
ρ
 
 
 

where ρ is the round function. A study of algorithm
sensitivity may be useful because the bigger it is, the
faster the system reacts to changed working
conditions. Equation 5 has a small sensitivity on its
parameters: starting from a working point (nag ,ncl ,p),
with other conditions unchanged between t and t+TC,
launching decision will change when

1l C ln (t T) n (t)+ − = and substituting into
equation (5) it’s possible to deduce that it will occur
when, in absolute value, the percent changes of p(t),
nag or ncl satisfy the conditions reported in (6).
Sensitivity against p(t) may reach values near 20% in
low sized centers, but will move down rapidly
toward 1% as the number of available agents
increases. So this algorithm has a low sensitivity to
variations with time of p(t), which however has a
slow dynamic if compared to other parameters.

Moreover feedback action reported on p(t) (see
Figure 3) leads to a higher algorithm convergence
speed [2], keeping it near 20 minutes.

C C

ag cl

ag ag C ag

ag ag ag

cl cl C cl

cl cl cl

p(t T) p(t) p(t T)p =
p p n - n

n n (t T) n (t) p=
n n n (t)

n n (t T) n (t) p=
n n n (t)

∆

∆

∆

 + − +=

 + − =

 + − =



The two other equations in (6) evidence their linear
dependence on p, and since they are integer values,
they are surely greater than p, so their effect is
immediate.

4 Experimental results
Experimental measurements of the proposed on-line
algorithm performances emphasize some interesting
features. Figure 4 shows how the algorithm is
intrinsically convergent, even when the feedback
stabilization effect is not present. Tests show a good
algorithm adaptivity to working condition changes,
taking performances back to desired values (see
Figure 5).

Fig. 4 (a,b): Performance indices evolution
with no feedback block in a real situation.

(4)

(5)

(6)

(a)

(b)

They have also indicated that performances improve
as system size grows (as stated in previous sections)
but at the same time they do not significantly degrade
when system size reduces. The values of NCR
obtained in more than 50 tests, in different working
conditions and with a very strict preset target NCR0
(1%), never exceeded 2%. Productivity level was
always over 60% (36 min/h) for small centers and
reached 80% (48 min/h) in medium sized centers (20
agents). An example is reported in Figure 5 where
it’s visible how indices need about 1 hour to reach
statistically significant values: this means that all
agents are then continuously working. At this time
Pr(t) comes to a steady value which is maintained
until the end without relevant variations. NCR(t)
shows some oscillations due to the change of
working conditions that lead to a too high
overdialling rate; the immediate feedback effect is
also visible: nuisance level is then kept under control.

Fig. 5 (a,b): Real test diagram of measured
performances in a 5 agents system with a
predicted Hit Rate equal to 60%.

This doesn’t affect agent productivity, and
experimental results confirm how in the long distance
also NCR(t) is convergent. These parameters are
cumulative and they are less sensitive to variations of
their instantaneous values as time flows, so
oscillations get smoother. This behavior outlines that
in order to get good performances, campaign
duration can’t be too short and at the same time that
these results can be considered as lower limits. All

results have been obtained in 3 hours campaigns,
whose duration is comparable with real ones. As a
consequence campaign duration seems to be long
enough to reach meaningful steady values.
Comparing performance measures with Markov
theory based algorithms with a predefined pace, the
most interesting results concern small centers, with at
most 10 active agents. Some of these results are
outlined in Figure 6. The x-coordinate represents the
stimulation pattern, that is, conditions leading to
equivalent Hit Rate variations from predicted value
(38%) up to 50%.
For NCR results it’s quite evident that off-line pace
precomputing is too strict and rigid, leading to sub-
optimal results if compared with desired targets. The
on-line solution instead is always near the planned
limit, trying to get the best from available resources.
Productivity measurements outline how an off-line
algorithm can't go over 40%, while the proposed one
never falls under 60%. It also keeps performances
quite constant when working conditions move away
from predicted ones.

Fig. 6 (a,b): Diagrams of performances of run-
time e off-line algorithms in a small center (5
agents).

The off-line algorithm has been sized fixing a NCR0
value of 1%, that is with a maximum busy server

(a)

(b)

(a)

(b)

probability of NCR0 / p. This step confirms the main
theoretical limitation of this algorithm: Hit Rate may
change strongly during campaigns (even if slowly)
from expected values, changing the equivalent
arrivals rate in the adopted Markov model.
Test results confirmed queue model limitations,
outlined in previous sections, mainly predictable in
small centers. A time analysis of the evolution of
output metrics for the on-line solution evidenced its
convergence and stability, in addition to its intrinsic
flexibility and adaptivity which improve global
performances.

5 Conclusions
This paper focuses on predictive dialling algorithm
solutions in outbound dialling systems. Some
possible models have been introduced, describing
typical quantities in the telephony world and in
particular in predictive dialling applications. Some
numerical problems have also been outlined
suggesting possible workarounds. Particular attention
has been given to the choice of significant algorithm
models for the kernel problem of predictive dialling
systems: the launching engine. The commonly used
Markov model has been analyzed, discussing
theoretical limitations in its real world application.
It was also discussed how Chapman-Kolmogorov
limit theorems become less significant in small
centers, mainly when characteristic parameters
change strongly and when homogeneity and
stationary features of stochastic processes in the
model are hardly applicable. This consideration can't
be always set aside, and in some situations can't be
balanced by the law of large numbers.
The proposed algorithm belongs to the on-line greedy
category and is mainly based on a launching choice,
that depending on system state iterates on it and
looks for a statistical local optimum. Some
corrections have been suggested to overcome
intrinsic limitations of this model. Moreover, some
ideas have been proposed for this algorithm model,
outlining its flexibility. A new point of view has been
approached leading to a different model that gives
new possibilities and tools to improve algorithm
tuning.

References:

[1] A. Evans, The future sound of CTI, Voice

International, Vol. 4, No. 5, June 1997, p. 26.
[2] M. Cortese, Sistemi I.V.R. e il Predictive Dialling,

Tesi dell'Università di Padova, 1998.
[3] A.Szlam and K. Thatcher, Predictive dialling

Fundamentals, Flatiron Publishing Inc, 1996.
[4] G. Moscaletti and G.P. Almirante, Call Center,

come progettarlo, come realizzarlo, come
gestirlo, edipi, 1997.

[5] R. Nelson, Probability, Stochastic processes, and
Queueing Theory, Springer-Verlag, 1995.

[6] J. Medhi, Stochastic Models in Queueing Theory,
Academic Press, 1991.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest,
Introduction to Algorithms, MIT Press, 1990.

[8] A.V. Oppenheim e R.W. Shafer, Discrete-Time
Signal Processing, Ed. Prentice Hall, 1989.

