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Abstract: - The Call Center world is in continuous expansion, and Computer Telephony Integration technologies 
(CTI) can introduce significant improvements. Call Centers are generally used to accept inbound calls and 
provide services with human or automatic agents. An additional application field is emerging and attracting 
business attention: outbound systems. Using the same infrastructure, a Call Center can be used to place calls and 
reach customers, for example, for telemarketing activities. CTI allows to automate and optimize many tasks, but 
performance and productivity mainly depend on the dialling algorithm: in this paper predictive solutions will be 
considered, also proposing a new approach. Its implementation features will be studied, outlining some typical 
performance testing problems. Particular concern will be also placed on small centers where a Markov queue 
model generally can’t obtain acceptable results. 
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1   Introduction to Outbound dialling 
systems optimization 
The Call Center world seems to be the richest context 
for Computer Telephony Integration (CTI) based 
solutions. Call Centers are by now used as service 
centers, in which technology allows to manage 
incoming phone calls and assign them to skilled 
human agents or automated Interactive Voice 
Response (IVR) devices. However another new 
interesting application field is outbound dialling, that 
is, when the system places outgoing calls and assigns 
only answered ones to agents (telemarketing, 
customer care, fund rising, etc...). In outbound 
applications, CTI technology [1] allows to automate 
call placing activities (launching or dialling engine), 
recognize if a human customer is answering and then 
transfer calls to the phoneset of a target agent (human 
operator). In this context human agents are valuable 
system resources and their productivity depends on 
the total amount of time spent on conversation or 
data processing (working time) and on their 
availability (that is, when they are logged-in and set 
ready). Calls that receive a human answer will be 
followed by a conversation with the agent (live calls 
or contacts). From the system point of view this can 
be thought of as a hit result that will impact on 
system performances. There are many different 
algorithms and approaches to implement these jobs, 
but all of them have the same target: the optimization 
of call center performances, that is, maximizing agent 
productivity while introducing minimum nuisance to 
customers. Different solutions have been studied: 

preview dialling, power dialling, progressive dialling 
and predictive dialling [2,3]. All but the first are 
based on the concept that placed calls have an 
intrinsic death rate (busy destination, no answer, fax, 
answer machine, etc...) and as a consequence only 
live calls must participate to agent assignment tasks. 
This is the basic reason why these algorithms 
introduce an overdialling rate, that is they place more 
calls than available agents.  When a customer 
answers, if the system has a free agent it executes 
matching, otherwise it can't manage the contact: 
these calls are called Nuisance Calls. Predictive 
dialling systems are characterized by the possibility 
to manage overdialling on a statistical basis, keeping 
nuisance level under control. Different algorithms 
can fulfill to these requirements. 
Most predictive dialling solutions [3,4] have a 
decision strategy based on a Markov queuing model 
that computes in advance a launching pace and then 
places calls at this rate. The main job is thus 
performed off-line, computing statistical indices to 
describe customers behavior, according to a queue 
model [5,6]. This approach generally leads to 
suboptimal performances, especially in low sized 
systems (i.e. those containing only a few agents).  
In this paper an innovative approach is proposed, 
based on statistical analysis accomplished at run-time 
over significant intervals, rather than on stochastic 
intensity parameters evaluated off-line and that 
describe the whole system. A feedback has also been 
added in order to improve algorithm convergence and 
control output parameters. Algorithm robustness and 
accuracy is also studied by means of a comparative 



 

analysis with a solution based on a Markov model, 
with particular concern on systems with a medium-
small number of available agents. 
A characterization of statistical algorithms is 
necessary because the proposed solution is based on 
system performance measures and on the consequent 
tuning of the dialling engine to desired preset targets. 
Adopted models are actually based on statistical 
descriptions (s.d.) of random variables (r.v.)  
representing quantities (state sojourning times) 
involved in the system. Also stochastic processes 
(s.p.) are used to describe events and their intensity 
(calls placed, calls answered, etc…). It is supposed 
that measure sequences are available to the launching 
engine, obtained in a non intrusive fashion and that 
such s.d. are computed with a sufficient accuracy [2]. 
  
2 Statistical definition of measure 
parameters 
From a functional point of view, a predictive dialling 
system can be schematized as in Figure 1, where the 
dialling engine can be described by a statistical 
launching intensity λ; p(t) is the probability that 
communication is set (Hit Rate), modeling customer 
behavior; Φ  is the function describing dynamic 
system behavior during assignment of contacts to 
agents and their statistical state evolution, producing 
actual live contacts or unmanageable calls. NCR(t) 
and Pr(t) describe system performances in terms of 
nuisance calls and agent productivity and will be now 
defined. Optimization and algorithm choices thus 
concentrate on the launching engine, and can be built 
on different mathematical models (off-line Markov 
one, greedy on-line, etc...). 
The main entities that should be measured are listed 
below and are involved both in Markov model 
algorithms and in the proposed one. 

 
Fig. 1: Block diagram of an outbound 
dialling system with a predictive engine. 

 
Hit Rate (p(t)): represents the ratio of calls 
terminated in a phone contact with respect to the total 
amount of placed ones. In the statistical model it 
defines the probability of a human answer: this 
implies that 1)(0 ≤≤ tp . Its evolution should be 
measured in order to use it in further estimation 
activities. This quantity is also strictly time 
dependent so it should be computed by putting 
together values obtained by measurement sequences 

on a moving time window. This window should be 
defined so that obtained instantaneous values of p(t) 
can be considered meaningful. A value of about 30 
seconds has experimentally provided good results 
and exhibits the further property of being much 
shorter than application time duration: outbound 
activities, called campaigns, generally have a mean 
duration of about 3-4 hours or more. At the same 
time this interval has the same magnitude order as the 
time needed by a call to reach a contact and thus 
evaluate its hit result.  
Nuisance Call Rate (NCR(t)): is the ratio of live 
contact calls with no agents available on the total 
amount of placed ones, from the beginning of a 
campaign up to time t. It's supposed that these calls 
are immediately hung up  by the system, as actually 
happens in most existing solutions. NCR(t) is a 
cumulative quantity and system performances can be 
deduced by its final value NCR(tF) where tF is the 
time of campaign end, possibly compared with a 
preset target value NCR0. Its measurement is also 
necessary because its instantaneous values are used 
in feedback and self adaptation phases, as will be 
shown in Section 3 below. Moreover, a time 
evolution analysis during the campaign can be useful 
to evaluate algorithm convergence and stability. 
Agent productivity (Pr(t)): it is the main optimization 
target of predictive dialling systems, defined as the 
ratio between active working time of all agents  and 
their available time at time t. It can be described as 
follows:  
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where nc(t) is the number of managed live calls until 
time t, ta(i) is the i-th contact duration and  tw(i) is the 
measured waiting time for the agent to get the (i+1)-
th contact assigned by the system. Pr(t) is a 
cumulative quantity, so as time flows its oscillations 
are smoother (see Figure 4). Its instantaneous value is 
used for estimation and feedback, but in order to 
evaluate algorithm effectiveness it must be evaluated 
in its final value for t=tF. In this case, too, its time 
evolution shows algorithm stability and convergence 
indices. 
Launching rate (λ(t)): it is an intensity parameter 
describing the number of system dialled calls per 
time unit; its statistical value can be the result of 
different predictive engine algorithms. For instance 
in the Markov queuing model, where dialling pace 
(∆t) is a evaluated a priori, it assumes a constant 
value λ(t)=λ=1/∆t. However, as stated earlier, only 
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answered calls are assigned to agents, so assignment 
times (arrivals in the model) are non deterministic: 
call death rate makes the process stochastic, altering 
its statistical description. It thus become a Poisson 
s.p. with arrival rate λ’(t), where 
λ’(t)=λ(t)�⋅p(t)=p(t)/∆t, that is, call death rate causes 
the equivalent rate to reduce. 

 
 

 
 
Observing Figure 1, a predictive dialling system can 
be described by input-output equations reported in 
(1). The optimization problem can then be rewritten 
as in (2), where performances must be measured 
through all campaign duration because of the 
cumulative definition but performance optimization 
problem must focus only on their final values; λ is 
the free parameter, whose meaning depends on 
adopted model. 
 
 
 
 
Block Φ: represents calls and system evolution; in 
order to describe it, other statistical quantities play an 
important role. A finite state machine (FSM) model 
has been chosen to describe the evolution of calls and 
agents [2]. Some r.v. will then be used to describe 
state sojourning times, with the hypothesis that their 
complete statistical description, i.e.  the probability 
density function (PDF) )(af

it
, is known. Agents and 

calls states will randomly change from i to j: this is 
described by probabilities pij so that 1ijj

p =∑  and 

the adopted model has the features of a Markov 
sequence. Predicted Hit Rate is iji

p p
∈Ε

= ∏  where 
E is the set containing states leading to a live contact. 
 
3 Metrological parameters of the 
Algorithmic solution 
A Markov queue model approach can be used 
adopting an M/G/c/c model (as usually indicated in 
literature) and Erlang Beta equation can be easily 
used to size launching pace. Even if it's widely 
supported by the literature [5,6], the approach does 
not seem to lead to the desired results in predictive 
dialling applications in centers with few agents (up to 
10). 
Markov solutions seem to have big limitations due to 
their low flexibility: the launching pace λ is 
predimensioned depending on the rate λ’ which 
should describe homogeneous stochastic processes, 
but system events can hardly satisfy this feature. 

Another limitation comes from the assumption of 
fixed size queue while agents availability (servers in 
the model) is strongly varying. In other words, the 
Chapman-Kolmogorov law of large numbers often 
can't overcome statistical parameter dynamics (p(t) 
and λ’(t) may change widely with time from the 
mean values used by the model), leading to 
suboptimal performances, especially in medium-
small sized call centers. Figure 2 displays the high 
sensitivity of performances when statistical 
parameters move away from predicted working 
points [1]. In this example an estimated Hit Rate 
p=0.5 is used to compute launching rate λ in order to 
get a target NCR0. If at time t some conditions lead to 
a real value of p(t)=0.7, Erlang Beta formula leads to 
estimate NCR ≈ 2 NCR0 which is generally not 
acceptable. 

 
 

  
Fig. 2 (a,b): Diagram of performance indices 
variations on Hit Rate relative variations 
with respect to its value used in pace 
presizing (p=0.5). 

 
In this context a different approach seems to be more 
appropriate: the use of run-time working conditions 
in place of predefined statistically computed 
quantities. An on-line greedy algorithm [7] has been 
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    Pr(t)      = Φ2(λ,t) 
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studied: it evaluates system state and produces 
predictions in a limited and reduced time window 
(Twin); then it takes launching choices leading to a 
local optimum in relation to the same time interval. 
The choice then moves from a time pace presizing 
task to a run-time choice of the exact number of calls 
to place in order to optimize performance quantities 
in the short period. Since global performances are 
obtained by aggregating values collected during 
system evolution, a local optimum reflects on a 
global one. 
For the purposes of a numerical computation, the 
time axis must be split into time slices (TC) shorter 
than the analysis interval and predicted time 
quantities. Estimation time interval (Twin) has been 
assumed to be the statistical time needed by a call to 
reach a contact. Statistical resource matching, and 
thus launching choice, takes place within this time 
window and is evaluated each TC  seconds.  
In the FSM model, random variables are used instead 
of s.p. to describe agents and calls sojourning times 
in their states; they can also take advantage of an 
additional knowledge, that is they are staying in that 
state since a known amount of time. This allows 
more accurate computation of the number of 
statistically available agents (nag(t)) and the number 
of calls that could require them (ncl(t)) within the 
time window (t,t+Twin). At time t the system will 
place as many calls as needed to balance these 
expected values. In addition to evolution times, it is 
also important to take into account call death rate, 
described by p(t) (with a slower dynamics) whose 
actual description at time Ct n T= ⋅  is known. The 
main idea is that at time t the system should place 
nl(t) calls, where:  
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Using C winT T�  allows to adjust choices made in 
the previous step, adapting them to the new system 
state and new s.d. of each r.v., thus improving 
prediction quality. 
Such a system can then be described as in Figure 3, 
ignoring the feedback block dnf ( z )− . S represents 
the prediction and launching algorithm: it computes 
values nag(t) and ncl(t) based on available PDFs , 
implements equation (3) and places nl(t) calls. Block 
Φ represents real calls evolution (answer, busy 
signal, fax answer, lines congestion, etc…) and 
system management tasks (agent assignment or hang-
up) leading to conversations or nuisance calls, that 
are contributing to the evolution of performance 
indices. A complete statistical description of Φ 
depends on interdependent random variables, leading 

to a very complex and generally unaffordable 
mathematical treatment. Moreover a joint statistical 
description for these r.v. is not available, neither is 
the a posteriori PDF describing output conditional 
probability with respect to input r.v. (and vice versa): 
estimate and decision theory can't then be applied. As 
a consequence estimation is based on a partial 
statistical description of Φ, so to improve algorithm 
controllability, a feedback has been introduced.  
 
 
 
 
 
 
 
 

Fig. 3: Schematization of run-time system 
with a feedback control block.  

 
This allows evaluating the effects of past step choices 
and then tuning launching decisions according to 
results. The main idea is to provide a self-learning 
behavior to function Φ represented in Figure 3, using 
measured values at the input and output of that block. 
A greedy algorithm can then take advantage of a 
tuning feature, correcting limitations due to limited 
knowledge of statistical description of block Φ. 
Feedback time delay must be comparable with the 
time needed to evaluate any consequence of the 
choice made, that is with time window Twin. So the 
number of delay steps nd in the discrete 
representation of Figure 3 is the number of clock 
intervals composing this time window, that is, 
nd=Twin/TC.  Feedback is redirected to the input as a 
Hit Rate correction factor, to be coherent with the 
assumed model. So p’(t) is composed of a measured 
component and a correction component based on run-
time measured performance parameters and their 
deviation from preset values. Experimentally, using a 
controlled feedback model also allows the algorithm 
to converge faster.  
Another interesting point is the possibility to use a 
much more accurate system evolution time s.d., 
balancing the loss of accuracy due to the fact that the 
observation interval is finite (Twin) and s.d. are 
discretized.  It is therefore possible to know at each 
time t, for each call and agent, since how many 
seconds 

0ist it is staying in the current state; these s.d. 

are more accurate, so it's useful to take into account 
their conditional PDF. They are easily obtained by 
their corresponding unconditional PDF (on which the 
Markov model is based). PDF  )|(
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Conditional PDF are narrower, and their power 
spectrum is concentrated in a narrow prediction 
interval, leading to more useful expectations values.  
Statistical descriptions mentioned earlier are 
obviously computed from previously measured 
sequences: they are generally called "historical" 
statistics. It is however possible to use a run-time 
sampled counterpart, computing the corresponding 
PDF, that is, having an actual statistical description 
of agents and calls at run-time. It is also useful to 
adopt a weighted balance of these two conditional 
expectation samples that may be strongly different. 
This is another positive contribution of on-line 
greedy algorithms. 
Numerical representation of these r.v., which are 
continuous in the model, may lead to theoretically 
unpredictable quantization errors [8]. In [2] a method 
has been proposed, allowing vector computation and 
update algorithm complexity to be a linear function 
of N, where N depends on the required sampling 
resolution. This may be useful in real-time 
environments such as telephony.  
The proposed algorithm also introduced a 
quantization problem due to algorithm model rather 
than to its numerical computation. Launching 
equation (3) is purely theoretical because ln ∈� , so 
it must be rewritten as  
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where ρ is the round function. A study of algorithm 
sensitivity may be useful because the bigger it is, the 
faster the system reacts to changed working 
conditions. Equation 5 has a small sensitivity on its 
parameters: starting from a working point (nag ,ncl ,p), 
with other conditions unchanged between t and t+TC, 
launching decision will change when 

1l C ln ( t T ) n ( t )+ − =  and substituting into 
equation (5) it’s possible to deduce that it will occur  
when, in absolute value, the percent changes of p(t), 
nag or ncl satisfy the conditions reported in (6). 
Sensitivity against p(t) may reach values near 20% in 
low sized centers, but will move down rapidly 
toward 1% as the number of available agents 
increases. So this algorithm has a low sensitivity to 
variations with time of p(t), which however has a 
slow dynamic if compared to other parameters. 

Moreover feedback action reported on p(t) (see 
Figure 3) leads to a higher algorithm convergence 
speed [2], keeping it near 20 minutes. 
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The two other equations in (6) evidence their linear 
dependence on p, and since they are integer values, 
they are surely greater than p, so their effect is 
immediate.  
 
4 Experimental results 
Experimental measurements of the proposed on-line 
algorithm performances emphasize some interesting 
features. Figure 4 shows how the algorithm is 
intrinsically convergent, even when the feedback 
stabilization effect is not present. Tests show a good 
algorithm adaptivity to working condition changes, 
taking performances back to desired values (see 
Figure 5). 
 

 
 

 
 
Fig. 4 (a,b): Performance indices evolution 
with no feedback block in a real situation. 
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They have also indicated that performances improve 
as system size grows (as stated in previous sections) 
but at the same time they do not significantly degrade 
when system size reduces. The values of NCR 
obtained in more than 50 tests, in different working 
conditions and with a very strict preset target NCR0 
(1%), never exceeded 2%. Productivity level was 
always over 60% (36 min/h) for small centers and 
reached 80% (48 min/h) in medium sized centers (20 
agents). An example is reported in Figure 5 where 
it’s visible how indices need about 1 hour to reach 
statistically significant values: this means that all 
agents are then continuously working. At this time 
Pr(t) comes to a steady value which is maintained 
until the end without relevant variations. NCR(t) 
shows some oscillations due to the change of 
working conditions that lead to a too high 
overdialling rate; the immediate feedback effect is 
also visible: nuisance level is then kept under control.  
 

 
 

 
 
Fig. 5 (a,b): Real test diagram of measured 
performances in a 5 agents system with a 
predicted Hit Rate equal to 60%. 

 
This doesn’t affect agent productivity, and 
experimental results confirm how in the long distance 
also NCR(t) is convergent. These parameters are 
cumulative and they are less sensitive to variations of 
their instantaneous values as time flows, so 
oscillations get smoother. This behavior outlines that 
in order to get good performances, campaign 
duration can’t be too short and at the same time that 
these results can be considered as lower limits. All 

results have been obtained in 3 hours campaigns, 
whose duration is comparable with real ones. As a 
consequence campaign duration seems to be long 
enough to reach meaningful steady values. 
Comparing performance measures with Markov 
theory based algorithms with a predefined pace, the 
most interesting results concern small centers, with at 
most 10 active agents. Some of these results are 
outlined in Figure 6. The x-coordinate represents the 
stimulation pattern, that is, conditions leading to 
equivalent Hit Rate variations from predicted value 
(38%) up to 50%. 
For NCR results it’s quite evident that off-line pace 
precomputing is too strict and rigid, leading to sub-
optimal results if compared with desired targets. The 
on-line solution instead is always near the planned 
limit, trying to get the best from available resources. 
Productivity measurements outline how an off-line 
algorithm can't go over 40%, while the proposed one 
never falls under 60%. It also keeps performances 
quite constant when working conditions move away 
from predicted ones. 
 

 
 

 
 

Fig. 6 (a,b): Diagrams of performances of run-
time e off-line algorithms in a small center (5 
agents). 
 

The off-line algorithm has been sized fixing a NCR0 
value of 1%, that is with a maximum busy server 
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probability of NCR0 / p. This step confirms the main 
theoretical limitation of this algorithm: Hit Rate may 
change strongly during campaigns (even if slowly) 
from expected values, changing the equivalent 
arrivals rate in the adopted Markov model.  
Test results confirmed queue model limitations, 
outlined in previous sections, mainly predictable in 
small centers. A time analysis of the evolution of 
output metrics for the on-line solution evidenced its 
convergence and stability, in addition to its intrinsic 
flexibility and adaptivity which improve global 
performances. 
 
5 Conclusions 
This paper focuses on predictive dialling algorithm 
solutions in outbound dialling systems. Some 
possible models have been introduced, describing 
typical quantities in the telephony world and in 
particular in predictive dialling applications. Some 
numerical problems have also been outlined 
suggesting possible workarounds. Particular attention 
has been given to the choice of significant algorithm 
models for the kernel problem of predictive dialling 
systems: the launching engine. The commonly used 
Markov model has been analyzed, discussing 
theoretical limitations in its real world application.  
It was also discussed how Chapman-Kolmogorov 
limit theorems become less significant in small 
centers, mainly when characteristic parameters 
change strongly and when homogeneity and 
stationary features of stochastic processes in the 
model are hardly applicable. This consideration can't 
be always set aside, and in some situations can't be 
balanced by the law of large numbers. 
The proposed algorithm belongs to the on-line greedy 
category and is mainly based on a launching choice, 
that depending on system state iterates on it and 
looks for a statistical local optimum. Some 
corrections have been suggested to overcome 
intrinsic limitations of this model. Moreover, some 
ideas have been proposed for this algorithm model, 
outlining its flexibility. A new point of view has been 
approached leading to a different model that gives 
new possibilities and tools to improve algorithm 
tuning. 
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