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Abstract: Accuraterecovery of geometricstructurefrom animage sequencestrongly dependsupon two
contrastingrequirementsnumericalconditioning,needinglarge imagedisparities,and easeof matching,
which needssmallones.Thiswork discussea solutionfor anactively controlledobserer (a cameraonthe
end-efectorof arobotarm)usingfeaturetrackingof imagefeaturesalongthe camerarajectory Restricting
the scendo objectswith straightline edgesallows easyassessmerf the reconstructioraccurag.
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1 Introduction

Any approachto recovering scenestructurefrom
image sequencesnust face the problem of fea-
ture matching. Indeed,the reconstructiorresults
strongly dependupon the balanceof two con-
trasting requirements:good conditioning, requir
ing large imagedisparitiesbetweencorresponding
featuresandease/reliabilityof matchingfor which
smalldisparitiesarebetter

In passie vision, the interview displacements
eitherfixed (stereohead),or uncontrolled(passie
navigation). This is not the casewhenthe obserer
can be actively controlled, as e.g. for a camera
mountedontheend-efectorof arobotarm. A strat-
egy for thelattercasecanbe sketchedasfollows:

s grabanumberof imagesof the scenewith the
cameramoving alonga predefinedrajectory;

e extract image featuresand track them along
thetrajectoryby interframematching;

s estimatethe viewing geometryandthe scene
structureas soon as the accumulatedmage
disparityis deemedsuficient.

In this way, the reconstructionaccurag from
large displacementss reconciledwith the easeof
matchingfor smallones.Notethatthe“predefined”
trajectorycanin fact be modified on-line (e.g. by
tuning the size of the displacementjccordingto
theresultsof processingMoreover, the currentes-
timateof theviewing geometrycanbeusedo refine
matchingby featuretransfer1, 15].

Featuretracking, and the use of the estimated
viewing geometryfor matchrefinement,have al-
readybeensuggestedn the cited works. The em-
phasisof this paperis ratheron the effective usabil-

ity of suchresultsin anactualapplicationwith par
ticular regardto the accuracy of thereconstruction.
Tothisextent,werestrictourselesto scenesrom a
“blocks world”, consistingof objectscharacterised
by planarfaceswith straight-lineedges.With this
restriction, a natural choice for image featuresis
that of facevertices. Suchfeaturesare easily and
accuratelyidentifiableon theimageplane,andthe
accurag of the resultingreconstructiorcanbe as-
sesse@gainsta CAD modelof thescene.

2 Notation and preliminaries
Homogeneousoordinatesreusedfor both3D and
2D objects,sothe 3D point of coordinategz, y, z)
is X = [zyz1]" anda 2D point (u,v) is x =
[uv1]T. A 2D line is representetby a vectorl =
[l11213] T suchthatpointx belonggto1iff 1Tx = 0.
Singleimageacquisitionis describedby a stan-
dardpin-hole. If x = [z, 2, 23] " is theimageof
theworld point X = [X1, X2, X3, X4] T, then

x=PX with P=A[R|t] (1)

wherethe factoringof the projection matrix P into
arototranslatiorR, t andanintrinsic matrix

fu 8w
A= 0 f v Vo (2)
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only holdsfor Euclideanworld/imageplaneframes.

Theabove doesnottake into accountens distor-
tion, whichis seldomnggligible, but canusuallybe
fitted by a simpleradialmodel:

x —x0q = (1 +k1p” +..)(xa — x0a)  (3)



wherex, arethesocalleddistortedcoordinategi.e.
thoseactuallymeasuren theimage),andxy; =
[ug,v4,1]" the distortion center(which needsnot
coincidewith the principal point [ug, v, 1] 7). Dis-
tortion correctioncanbeincorporatedn thefeature
extractionphasgSec.3.1).
The relation betweencorrespondingpoints x’

andx” in two views of the samesceneis defined
by the epipolarconstraint

x"Fx' =0 4)

wherethe fundamental matrix F canbe estimated
from seven point matchesbetweenthe two views
(robust computationaltechniquesfor more point
matchesare discussedn [14] and[11]). Eg. (4)
simplifiesthesearcHor correspondences thetwo
views: asx” lies on the epipolarlinel” = Fx/, a
bidimensionakearchreducego one-dimensional.

In the caseof threeviews of the samescene,
an analogougole is playedby the trifocal tensor
T, which allows transferof correspondingbjects
(points, lines or combinationsof both) amongthe
views. For example,if pointsx’ andx” areknown,
x"" canbe estimatedrom thetrilinearities[10]

inlz' (iE”jEjpr)(ivmkEkqs)ﬂpq — Ors (5)

Estimating T needsat least six point correspon-
dences(or nine line correspondences)ver three
views [1]. With more points available, robust al-
gorithmssimilar to thosedevisedfor F canbeused.

FromF or T, a setof canonicalprojectionma-
tricesfor the two or threecamerapositionscanbe
computed. However, the amountof scenestruc-
ture that can be inferredfrom T or F dependson
the available independeninformation aboutscene
constraintor camergparametersafull metric(Eu-
clidean)reconstructiomeedsa calibrated camera
(i.e. aknown A). Althoughusefulinformation(e.g.
point-planerelationshipsganbeobtainedrom pro-
jective reconstructioronly, we shallassumen the
sequethatcamergarameterareavailable,asmet-
ric reconstructions usuallythe ultimategoal.

In all casespncethe cameramatricesare avail-
able, the scenestructureis computedby standard
triangulation, possibly taking into accountimage
plane noise. For the two view case,we usethe
epipolarcorrectionmethoddescribedn [9, 13].

3 Featureextraction and matching

As the ervironment consideredhereis a “blocks
world” (objects bounded by planar polygonal

faces),segments (imagesof objectedgesyandver-
tices (imagesof objectcorners)areanaturalchoice
for image features. The feature extraction phase
consiststhen of contourline extraction followed
by segmentationof the contoursinto rectilinear
strokes,andcomputatiorof verticesasintersections
of thelinesthroughnearbysegments.

3.1 Contour extraction

Contourlines are extractedfrom the imageby ap-
plying a second-ordedifferential operatorto the
Gaussiarsmoothedmageandlinking theresulting
zerocrossingpoints[7, 2]. This algorithmyields
contourlines aslists of image pointsto sub-piel
precision,which arethencorrectedfor lensdistor
tion using Eq. (3). Eachcontourpoint carriesin-
formationaboutthe behaiour of the luminancein
its neighborhoodnamelytheluminanceatthepoint
andanestimateof its total variationacrosghe con-
tour line. Thesegquantitiesareusedto getestimates
of the“far” luminanceonthetwo sidesof the con-
tour line (i.e. the valuesof luminancejust outside
the region of rapid variationwhich determineghe
visual contour), neededto better characterisehe
contourfor the subsequentnatchingphase.

3.2 Segmentsand vertices

The distortion-correctg contour lines are say-
mentedinto rectilinearstrolkes by a standardalgo-
rithm ([12], chap.12) breakingeachcontourpoint
list C into sublistsC; suchthatthe maximumdis-
tanceof eachpoint from the line throughthe first
andlastpointsin C; doesnot exceedsomethresh-
old. For bestaccurayg, the segmentis then rep-

resentecby the leastsquaredine 1 = [lp[; 12]T
over the contour points belongingto C;, with its
endpointse; = [z1y11]T andey = [z2y21]T

computedas projectionson 1 of the first and last
pointsof C;. Photometriattributesof the seggment,
namelythe “far” luminancevaluesLi and Ly, on
eitherof its sides,are computedasaveragesof the
correspondindeatureverthepointsin C;. A seg-
mentS (seeFig. 1) is thereforedescribedy a set
of 9 parametergeightof whichindependent):

S = {xla Y1,T2,Y2, lOa lla l?a LR’ LL}

A vertex (or, more precisely a face vertex) can
belooselydefinedastheimageof aphysicalcorner
of a polygonal object face. Many “corner detec-
tors” have beenproposedn theliterature(e.g.[8]).
In our framework, however, a morenaturalandre-
liable definition of vertex is asintersectionof the



lines on which nearbysegmentslie. Sucha defini-
tion hasthe adwvantage®f yielding a goodlocalisa-
tion accurag andof supplementingn anaturalway
thevertex characterisatiowith geometricandpho-
tometricparameterérom the definingsegments.
Therefore,given a pair of sgmentsSy, S2, the
resultingintersectionv = [v; va 1]T is acceptedas
a vertex positionif its imageplanedistancedrom
thenearesendpointof §; andS» arebelon agiven
threshold andif thefarluminanceof 57 andS; on
their sidesbelongingto the corvex anglea: formed
by thetwo segmentssay L., and L .o, arecompat-
ible (i.e. nottoo different). A vertex V is therefore
characterisetdy 6 parameter$5 independent):

V ={v1,vs,,¢,s,L}

wherec, s arethedirectioncosinesof the bisecting
line of anglea and L the meanluminanceover o
(averageof L. andL.).

Note that, whentwo or morefacesincidentin a
sameobjectcornerare simultaneouslyisible, the
verticesrom eachfaceform aclusterof nearbyer
tices,notexactly coincidentdueto noise(seeFig. 1,
wheredistancediave beenexaggeratedor the sale
of clarity). Suchnearly coincidentverticesdo not
contributeusefulgeometridnformation. Therefore,
while every vertex is tracked individually alongthe
sequenceor whatconcernggeometry/structures-
timationthe verticesin eachgroupareaveragedo-
getherandconsideredhsasinglepoint.

Figurel: Sggmentsandvertices.

3.3 Maitching

Matchingrequiresthe definition of a suitablefunc-
tion uy(V4, V) measuringhe similarity of pairs
of candidatecorrespondingrerticesV4, V. This
similarity is definedasthe product

BV = UVdlve Hva BV (6)

wherethefactors
(Va, V) = %
Pvd\Va,VB) = d2+(via—v1B)?+(vaa —v2B)?
pve(Va,Ve) = 3(1+cacp+ sasp)
pva(Va,Ve) = 1-— %l
pvr(Va,Ve) = 1- %[

weigh the imagedistanceof the verticesandtheir
differencesn orientation angularamplitudeandlu-
minance.Thevalueof uy is alwaysbetweerD and
1, with the maximumvalueattainedonly if thetwo
verticesareidenticalandin the sameposition.

Notethatuy asdefinedabove is apurelyheuris-
tic, henceratherarbitrary measure;its form has
beenchosenso asto avoid the introductionof too
mary arbitrary parameterqjust a distancerange
dp). With respectto the latter issue, however, it
may benotedthatwe aretrying to matchvery simi-
lar featureswhich allows to safelyaddsome albeit
arbitrary threshold-like parameterso improve effi-
cieng/ (e.g.whenpy is undersomethresholdvalue,
the otherfactorsneednot be evaluated).

4  Tracking/geometry estimation

As saidbefore the computatiorof eitherthefunda-
mentalmatrix or the trifocal tensoris reliable only
if the two or threeviews usedare well displaced
and rotated. However, the correspondingmages
arethenvery differentandthe identificationof cor
respondencegery difficult. To overcomethis diffi-
culty we proposehefollowing approach.
Thewhole sequencef imagesakenwhile mov-
ing the camera,is processed.Under the hypoth-
esisthat the displacemenbetweentwo successie
framesis small, the verticesin thefirst image(im-
agel,) canbetrackedalongthesequencey match-
ing themover eachpair of subsequenframes,ac-
cording to the above defineduy. To this extent,
eachvertex V; in thefirst framel’ of apairis asso-
ciatedto theuniqueV}" in thenext frameI”, which
maximisesuV(Vi’,IG”) asdefinedin Eq. (6), pro-
vided that this maximumuy is above a specified
threshold(otherwiseV; remainsunmatched).
Trackingcontinueseitherup to theendof the se-
guenceor until the numberof matcheds aboutto
dropundera suitablethreshold greatethansix (11
in our tests). If I3 is the last processedmage,an
intermediatémagels is choserandthethree-viev
geometry(i.e. T) is estimatedby a LeastMedian
SquareqLMedS) algorithm, analogougo the one



describedn [14] for robust estimationof F. This
estimatds usedfor matchrefinementsfollows.

For eachvertex V;! in I, the corresponding
epipolarline 1, in I, is computedusing the fun-
damentalmatrix Fio extractedfrom T. For each
vertex V]? nearl, in I, asimilarity valueus to the
chosenvertex from 17 is computedasin Eq.(6), but
usingits orthogonabistancerom 1, in thedistance
factor uy 4 insteadof the Euclideandistancefrom
V;'. Thetrifocal tensorT is thenusedto transfer
the above pair of verticesto I via Eq. (5). Again,
a similarity value us3 is computedfor eachver
tex V2 in I, usingthis time its distancefrom the
transferregoint. Thethreeverticesin thethreeim-
ageswith the bestoverall similarity factor 123 =
WU1oue0g areretainedasa triple matchif the corre-
spondingoestu93 is above a predefinedhreshold,
otherwisethe correspondingertec on the first im-
ageis left unmatchedperhapsiit is hiddenby a
nearbyobjectin someframefollowing thefirst).

UnlessI; is the last frame of the sequencédi.e.
the disparity betweenl; and I3 is deemedsuf-
ficient for an accuratereconstruction),this pro-
cedureis iterated, so obtaining a set of key im-
agesZ = (I;..Iy) suchthat an estimateof T
hasbeencomputedon eachtriple I, Iy, I+1 and
usedto refinethe matchesover the triple. At last,
a global fundamentalmatrix F is estimatedfrom
all the matchesavailable betweenl; and Iy us-
ing Kanatanis method [11]; this F is used for
scengeconstructioy backprojectionafterapply-
ing Sturm’s epipolarcorrection[9, 13].

5 Experimental results

The proceduresdescribedin Sec.4 were imple-
mentedas a setof C programs,and testedoffline
on a numberof imagesequencesWe testedboth
the accurag of the reconstructionpy comparing
the latter with a CAD modelof the scene,andits
sensitvity to thecalibrationparameters.

The cameravasa Sory XC55 Progressie CCD
camera,equippedwith a 6 mm lens and with the
shutteradjustedo a speedf 1/100s. Imageswere
acquiredvia a Matrox Meteorboardmountedon a
standardPentiumPC, yielding non-interlacedm-
agesof 640x 480 8-bit pixels. A full calibrationof
the cameraintrinsic parametergA and the distor
tion coeficients) was performedusingthe method
describedn [4]. Tablel summarisethecamerga-
rametewvalues.

The “world” was made up of white-painted
woodenblocksof variousshapesplacedat knowvn
positionsover asheebf darkpaper Two sequences

kq Ug vg
3.06e-7| 348.0| 207.7
fu fo s Up V0
826.2 | 828.1| 0.5 | 332.8| 223.0

Tablel: Camerecalibrationparameters.

were taken, one with the cameramoved manu-
ally (HAND sequence)the otherwith the camera
mountedon the end-efector of an industrialrobot
programmedo follow asmoothtrajectory(ROBOT
sequence).Several testswere performedon these
sequencesin eachtest, a pair of initial and final
views I, Iy werechoserfor the purposeof 3D re-
construction,andthe algorithm selectedothertwo
intermediateviews soyielding a setZ of four key
frames. In the following we reportthe resultsof
threetests,onefor theHAND sequencandtwo for
the ROBOT one.

Table Il summarizesthe results for the three
tests. In eachrow, “initial matches”and “refined
matches’refer to the numberof matchedvertices
betweenrthefirst andlastimageof the correspond-
ing triple, respectiely beforeand after the refine-
mentdescribedin Section4. The “total” column
countsthe actualnumberof matchedracevertices,
while “distinct” is the numberof verticesusefulfor
geometryestimation(note that the numberof dis-
tinct refinedmatchess only relevant for the final
iterate).

Fig. 2 shavsthefirst andlastkey framesandthe
correspondingseggmentsand vertices,for the sec-
ondROBOT tests(otherimagesomittedfor reasons
of space).

Fig. 3 shavs matchedverticesbetweenthe first
and last images of one of the ROBOT subse-
guencesit is worth noting that it would be rather
difficult to getreliablematchesaasthoseshavn us-
ing thefirst andlastimagesalone.

Four orthographicviews of the reconstruction
from the sametestareshawvn in Fig. 4. Therecon-
structedobjectedgesshowvn in the figure werede-
terminedfrom the links betweenverticessupplied
by the generatingsegments,asalreadypointedout
in Sec. 3.2. In orderto estimatethe accurag of
thealgorithm,thereconstructedcenevasmatched
againsta CAD modelof the sameusinganadhoc
softwarethatalsoestimatesherotation,translation
and scalingwhich minimizesthe r.m.s. distances
betweermmodelandreconstructedertices.Thelat-
tervalueis shavn in thecolumnlabelled“position”
of Tablell, while thelastcolumn(“length”) reports
ther.m.s. differencebetweerthe lengthsof model



initial matches| refinedmatches| rec.error[mm]
sequence key images total | distinct | total | distinct| position | length
HAND (220-400) | 220 265 310| 19 18 41
220 310 400| 19 16 39 26 1.2 1.0
ROBOT (10-340) 10 90 170| 17 14 27
10 170 340] 21 18 27 21 1.9 0.9
ROBOT (170-495)| 170 255 340| 25 20 40
170 340 495| 21 18 38 23 1.2 0.9

Tablell: Resultsfor threetestsequencegseetext for explanation).

Figure2: Initial andfinal key framesof the second
ROBOT test,andcorrespondingegmentsandver
tices.

Figure 3: Matchedverticesbetweenthe first and
lastimagesof thesecondROBOT test.

andreconstructedbjectedges.

For what concernghe sensitvity to calibration,
we consideredhe effectonther.m.s.positionerror
of changingeitherthe camerafocal length, or the
optic center(ug, vg). For reasonf spacewe re-
port heresomeresultsonly for one of the ROBOT
tests.Fig. 5(top) shaws the positionerrorasafunc-
tion of focal length, while keepingthe optic cen-
ter fixed to its calibratedposition; note that here
we have assumecaqualfocal lengthsf, = f, and
zero skew, which is justified by the valuesin Ta-
blel. Fig. 5(bottom)shaws the effect of changing
the optic center Thesefigures,while attestingthe
goodnes®f the calibration,shav thatsmall errors
(of theorderof 5-10%)in thecalibrationparameters
donotyield dramaticchangesn thereconstruction.

6 Concluding remarks

Reconstructinghe view geometryand the scene
structurefrom a seriesof uncalibratedor partially

calibratedviews is a problemthathasrecevedcon-
siderableattentionin the lastyears.Yet, thefunda-
mentaltaskof featurematching,essentiato recon-
struction, still posessomeproblems. In this work

we have discusseda solutionfor a restrictedcase,
namely that of an active obserer in an environ-

mentconsistingof objectsmostly characterisedby

straightedgeswith particularemphasison the ac-
curagy of the obtained3D reconstructionWe have

found that trackingimageverticesas definedhere
allows a ratheraccurateestimationof the relative

positionsof the correspondingpbjectcorners. In

view of a full quantitatve reconstructionhowever,

morework is neededor what concernghe deter

minationof scendaopology i.e. linking cornersinto

edgesedgednto facesfacesnto solids.
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Figure4: Fourorthographioviews of the Euclidean
reconstructiorfrom the secondROBOT test. a,b,c:
alongthe axesof the camerareferencerame (rel-

ative to thefirst image);d: alongan intermediate
direction. Theboundingbox (relative to the camera
axes)of thereconstructegbointsis alsoshavn.
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Figure5: Positionerror[mm]. top: asa functionof
focallengthin pixels; bottom:asafunctionof optic
centerposition. The arrov indicatesthe calibrated
position, while the nearbyvertical stroke denotes
the positionof the minimumerror.



