
Croatian Power Utility distribution level's UML model

LINDA VIĐAK, SVEN GOTOVAC
Department of Electronics
University of Split, FESB

R. Boskovica b.b., 21 000 Split
CROATIA

Abstract: - Large distributed system consists of large number of spatially dislocated elements. To develop efficient and
optimal management of such a system it is necessary to collect information about system, i.e. to develop information
system. This paper presents the development of UML model of information system for power distribution system of
Croatian power utility, as an example of large distributed system.

Key-Words: - UML, information system, database, distributed systems, distribution level

1 Introduction
According to the definition, large distributed systems are
systems that comprise large number of spatially
dislocated, interacting elements. Mainly, those are
different production systems like automated factories,
water supply systems, waste water systems, electrical
energy production, transmission and distribution
systems, or traffic light supervision and control systems.
 Efficient management (control, maintenance and
development) of those large distributed systems consists
of information collection about system on time, as well
as information processing. That what creates a need for
appropriate information system development [1].
 Every distributed system is typical, so it is impossible
to develop a unique information system for all of them,
and in this paper, in the cooperation with Croatian Power
Utility, we developed information system model for
Croatian Power Utility distribution level.
 Numerous methods can be used to design and
manufacture modern information systems but no matter
which method is chosen it is necessary to define a model
of such a system. Model of the whole system, as well as
the model of its parts, defines system information
collection and processing, and activities that follows as a
result of data processing [2] [3]. Today, there is a large
number of approaches to system modeling, but in the
moment one of the most popular and the most used is the
Unified Modeling Language (UML) [4] [5] [6] [7] [8].

2 Croatian Power Utility distribution
level organization
Complete Croatian Power Utility system is a very
complex distributed system which function is to take
care of electrical energy production, transport and
distribution in Croatia. To achieve maximum system
efficiency, to re-establish a balance between electrical

energy production and consumption and in the same
time to provide reliable and stable system work with
minimal costs, Remote Control, Guidance and
Supervision system (RCGS) is developed. At the
distribution level it is organized at three levels. The first
and the highest one is dispatching center. Its main
purpose is to accomplish all dispatching functions, to
control 35kV network and to make network states
analyses for its own part of distribution network. Under
the management of one dispatching center there are
several control centers, that are concerned with underling
10kV and 0.4kV network. Their function is real time
supervision, control and collected data analysis. Finally,
on the lowest level there are remote stations and local
guidance systems in the transformer stations. Their role
is to collect, process and transmit the locally measured
data, as well as plant control according to the directions
of superior control center.
 For example, in the dispatching center
"Elektrodalmacija - Split" control area there is only one
plant at the 110/35kV voltage level, about 40 35/10 kV
plants and about 2000 10/0.4 kV plants. To integrate all
of those components in the RCGS system would be
technically very complex task, and the price would be
unacceptable high. However, as the importance of all
plants and their relationships is not the same for the
system functionality, it is possible to include only more
important ones to the RCGS system, to achieve
satisfactory technical and functional level.
 But, to realize even more efficient system the
additional distribution level control and guidance
improvements could be based on the plant state
information. For example, information about plant's past
sates, could be used to estimate its present states. That is
especially important for ones out of RCGS system. To
make this possible it is necessary to develop appropriate
information system.

Collected data are also used for the maintenance and
development purposes. That is another important
function of developed information system.

2.1 Distribution level's information system
The main role (purpose) of any information system is to
collect, store, process, and deliver necessary information
important for an organization. The whole information
system should comprise all business aspects of the
organization: economical, technical and organizational.
But in our work, for Croatian Power Utility, we took into
account only the technical aspect of information system.
Even with this restriction the development process
wasn't easy at all. The system itself contains a large
number of differently equipped plants, spatial system
distribution enforces distributed data insertion, storage
and usage, while measurements data collection is done
by different performers. Moreover, information system
is build for longer period of time, so it should be
upgraded constantly and simple to maintain. Because of
that, it is necessary to do qualitative analysis of the
system development process and to use modern
development tools in the information system
development.
 As the information system basis is the database to
cover technical aspect of distribution level's information
system two different databases are required. The first
one contains information about electro distribution
network elements' technical data, like information about
plants, feeders, transformers, switches and
disconnectors. The second one contains information
about measurements that could be done in the plants.
The first one already exists and it is Technical
information system (TIS), and it is a bases for the other.
 Development process of the second one, called
MEASUREMENTS, is the main subject of this work. This
information system (database) should comprise different
kind of data like ones about electrical measurements and
meteorological data.

3 The Unified Modeling Language
introduction
The Unified Modeling Language (UML) is a general-
purpose visual modeling language used to specify,
visualize, construct, and document the artifacts of a
software system. It is used to understand, design,
browse, configure, maintain, and control information
about such a system.
 Like other languages it has its own syntax (graphical
notation, set of diagram rules) and semantic, but it is not
a programming language. There is a number of tools that
can provide code generators from UML into a variety of
programming languages (C, C++, Java), as well as a

construct reverse-engineered models from existing
programs. Moreover, UML is not intended to be a
complete development method. It is just a tool that
supports all, or at least most, of the existing development
processes.
 The fact that UML is not a development method but a
development process becomes one of its benefits,
because different organizations, different kind of
projects, and different problem areas require different
development processes, while the modeling language for
development process could be unique. As UML supports
the most of today’s development processes, and in the
same time helps to solve the greatest modern problems
of software development (large scale of distribution,
concurrent work, and team development of system) it
becomes a basis for the most development processes.
 Various concepts and constructs in UML at the top
level are divided into three areas: structural
classification, dynamic behavior, and model
management. Structural classification describes the
things in the system and their relationships to the other
things, and it includes: static view (class diagram), use
case view (use case diagram), and implementation view
(deployment and component diagrams). Dynamic
behavior describes the behavior of a system over time,
and it includes state machine view (state chart diagram),
activity view (activity diagram), and interaction view
(sequence and collaboration diagram). Model
management describes the organization of the models
themselves into hierarchical units called package.

4 The application MEASUREMENTS' UML
model
In the application MEASUREMENTS it's required to collect
and record different measurement data needed for plant's
states estimation, their control and development. The
main part of the application is a database, that should
comprise two different kind of data: electrical and
meteorological. Electrical measurement data comprise
all electrical values that could be measured in the plant,
like current, voltage, active and reactive power, active
and reactive energy and resistance. Those values are
measured at different plant bays (feeder, transformer,
coupler, house transformer, …) at the 35/10kV and
10/0.4kV plants. Resistance measurements are related
with plant's earth electrode resistance value or dead short
current circuit of low-level voltage circuit resistance at
the specific fields in the plant. Finally, the
meteorological data represent daily temperatures and
other general meteorological conditions information like
overcast, wind strength and rainfall. They are very
important to analyze and estimate the consumption
according to the weather conditions.

Measurements could be performed in three different
ways, so the application should provide different
interfaces for data insertion. The simplest case is a single
measurement by hand held measurements (voltmeter,
ampere meter, wattmeter, etc.) where only one
measurement value is measured, and the application
would need an interface for that kind of measurements.
A bit complex insertion interface is required for
measurements with data logger, an instrument that can
measure several values for longer period of time. Those
data should be processed by special software and stored
in database. Finally the most complex results are
achieved from RCGS system, which stores the results
into Paradox database. As we choose Oracle database
management system (DBMS) for our database an
interface for establishing connection between Oracle and
Paradox was needed.
 In the application MEASUREMENTS' development we
used multitier architecture and application is realized
with tools from Java Enterprise package.
 With multitier architecture the system is divided at
three levels: presentation, business and data level.
Presentation level cares only about user oriented
application interface, at user side. Data level is
concerned with database, and it is represented by
DBMS, while the main part of business level is to
establish the connection between data and presentation
level.
 As we can see with multitier architecture client takes
care only about presentation level, so it is called "thin
client", while business level and database contact are
spread over different components and can be developed
on one ore even more servers.
 'Thin' client applications are much easier to maintain,
on the client there is only small chunk of code, while
larger part of software logic is at server side, so all
necessary updates, changes have to be done only on
server side.
The problem with multitier application is its complexity.
They require careful development process, they
communicate with different services and server
components.

4.1 Use case diagram
The first step in creation of UML model of the software
system MEASUREMENTS is definition of the use case
model, i.e. definition of use cases and users. From the
point of future software system there are three groups of
users. The first group enters data, the second uses those
data, and the third one provides undisturbed work for the
first and the second one. Every one of these users have
an adequate use case, so the user INSERTER is connected
to use case INSERT DATA, that defines data insertion.
User READER is associated to adequate use case SEARCH
AND PRINT, that defines different kinds of existing data

searching. The third user is ADMINISTRATOR, who is
responsible for maintaining the existing, functional state
of database, so it is associated with use case MAINTAIN.
 However, use case model is not so simple. Neither
user INSERTER, nor use case INSERT DATA doesn’t
express clearly all the types of users, who will insert
data, or all different ways of data insertion, respectively.
So, it is necessary to define three different users
KEYBOARD INSERTER, DL INSERTER and SDV INSERTER.
First of them represents a user who inserts data collected
through a single measurement, so it is necessary to
define an adequate use case INSERT FROM KEYBOARD.
The second one, DL INSERTER represents user who
inserts data collected through data logger measurement.
As those measurements required additional treatment in
Excel, for insertion is defined use case INSERT FROM
EXCEL. The last user in this group is SDV INSERTER, i.e.
Remote Control System that stores data in Paradox
database, so it is necessary to define use case that
automatically transfer data from Paradox, and it is
named INSERT FROM PARADOX. As we can see the user
INSERTER is the generalization of users KEYBOARD
INSERTER, SDV INSERTER, DL INSERTER, and use case
INSERT DATA is the generalization of use cases INSERT
FROM KEYBOARD, INSERT FROM EXCEL, and INSERT FROM
PARADOX (fig. 1).

inserter

reader

administrator

SEARCH
AND

PRINT

keyboard
inserter

SDV
inserter

DL
inserter

INSERT
DATA

INSERT
 FROM

KEYBOARD

MAINTAIN

KEEP
DATA

INTEGRITY

INSERT
FROM

PARADOX

INSERT
FROM
EXCEL

REALIZE
DATA

SECURITY

MENAGE
USERSBACKUP

Fig. 1 – Use case diagram of application

MEASUREMENTS

There is one more generalization in this part as we can
see on fig. 1. Use case ‘MAINTAIN’ includes series of use
cases that explain the administrator role:

 BACKUP – creates data backup copies;
 KEEP DATA INTEGRITY – takes care of data

integrity;

 MENAGE USERS – adds new users, assigns and
deletes privileges of existing users;

 REALIZE DATA SECURITY – realizes adequate
data security level.

4.2 Class diagram
In general, according to multitier architecture all
application classes can be divided into three groups. First
group includes boundary classes, which represent
graphical user interface (GUI) or presentation level of
multitier architecture. Group of GUI classes in this
application is collected into package called GUI CLASSES.
Then there is a package of control classes called
CONTROL CLASSES that represents business level.
Finally, the third one is data level and it describes
database tables through entity classes, so all classes from
that level are collected into package called ENTITY
CLASSES (fig. 2).

GUI
CLASSES

application ‘ ’MJERENJA

ENTITY
CLASSES

CONTROL
CLASSES

Presentation
level

Business
level

Data
level

Fig. 2 – Package diagram

All classes in GUI CLASSES package could be divided
into two main groups, one concerned with insertion of
data, and the other with presentation. Class INSERT is a
generalization of group of classes that describes different
actions and interfaces required during the insertion of
data. So, class WEB INSERTION describes new data
insertion, WEB UPDATE describes existing data update,
and WEB DELITION describes existing data deleting (fig.
3).

<<Subsystem>> ‘GUI’

INSERT

WEB
UPDATE

WEB
INSERT

WEB
DELETE

PRINT

WEB
TABLES

WEB
DIAGRAMS

Fig. 3 – GUI package

Class PRINT is a generalization of two classes WEB
DIAGRAMS and WEB TABLES that defines different ways

of data presentation (fig. 3).
 Control class package contains two sub-packages.
ENTERPRISE JAVA package that defines application
program interfaces (API-s) enabling running of Java web
applications and Oracle runtime package represents
Oracle database management system (DBMS). These
two packages are interconnected through JDBC interface
(Java DataBase Connectivity), that defines
communication between Java application, and Oracle
DBMS-a (fig. 4).

<< >>Uses
ORACLE
RUNTIME

<<subsystem>> ‘ ’CONTROL CLASS

ENTERPRISE
JAVA PAKET

Fig. 4 – Control class package

<<subsystem>> ‘ ’ENTITY

MJERENJATIS

Fig. 5 – Entity package

As final product is relation database, entity package
holds entity-relationship diagrams. As we can see on fig.
5, package ENTITY comprises two sub packages. One
describes entity-relationship (ER) diagram of
MEASUREMENTS' database, while the other does the same
for database TIS. It is a database of Technical
Information System that comprises information about all
plants owned by HEP.
 When all packages and associated classes are defined,
it is necessary to define their interconnections. As we
can see in fig. 6, Java Script (script language for
dynamic web pages) and classes from ENTERPRISE JAVA
package are used by web classes to establish connection
with Oracle database management system (DBMS). The
connection between ORACLE RUNTIME package and
ENTERPRISE JAVA package is established through JDBC
(Java Database Connectivity) driver. Depending on
requirements Oracle DBMS then access to the adequate
database.

-ORA
GRAPH

WEB
INTERFACE

-ORA
REPORT

ORA-
FORMS

<< >uses>
ORACLE
RUNTIME

ENTERPRISE
JAVA PACKAGE

MJERENJATIS

JAVA
SCRIPT

<<
>

us
es

>

Fig. 6 – Interconnections between packages

4.3 Sequence diagram
Once when use case model and class diagram are
finished we could start with realization of other ULM
diagrams. First one is sequence diagram that shows time
sequence of messages between objects. As we can see on
fig. 7 this diagram shows three important objects to
access the data (web client, web server, database server),
each one corresponding to one level of multitier
architecture. User initiates the interaction and messages
are exchanged between them.

Fig. 7 – Sequence diagram

4.4 Activity diagram
When sequence diagram is defined, the next step is
activity diagram. This diagram shows workflow of
business activities. Because of that it is divided
according to the activities that take place in database, i.e.
insertion or presentation of data from database.

choose
insertion

logging

insert
electrical

save database
changes

choose
 activity

[deletion] [update]

[insert]

[meteorological] [resistance]

[electrical]

insert
meteorological

insert
resistance

find
record

do updatedelete
record

[ok]

[not ok]

{any}

find
record

Fig. 8 – Activity diagram for insertion, updating, and

deleting data

So, on fig. 8 we can see activity diagram for insertion,
updating and deleting data from database, while a similar
diagram for data reading is shown on fig. 9.

logging

choose
view

[tables] [diagrams]

set tables
query

results
presentation

[ok]

[not ok]

{any}

set
query
diagrams

Fig. 9 – Activity diagram for data reading

4.5 Component and deployment diagram
These two diagrams are concerned about physical
structure of system. So on fig. 10 is shown component
diagram that describes software components of system,
their interfaces, and dependencies. This diagram shows
which user, through which interface accesses the
database, and in addition it shows flow and direction of
data and commands.

inserter

WEB
CLIENT

<< >>
TIS

database

WEB
SERVER

ORACLE
RUNTIME

<< >>
MJERENJA
database

reader
administrator

Fig. 10 – Component diagram

Deployment diagram shows arrangement of run-time
components instances on node (a run-time resource, such
as computer, device or memory) instances and their
interconnections. In this example of distribution network
the nature of problem suggests distributed approach.
Optimal solution should be if every plant has its own
database server with local data, and that data could be
exchanged between plants. Such an approach is shown
on fig. 11.

TS Klis 35/10: server TS Brizine 35/10: serverTS Kastela 35/10: server

TS Kastel Stari 10/0.4: server TS Klis Kosa 10/0.4: serverTS Konjsko 1 10/0.4: server

Internet/intranet

Elektrodalmacija Split: server

Fig. 11 – Deployment diagram of distributed approach

But, although this solution would be optimal, the first
step in solving of the problem is a centralized approach
shown on fig. 12.

TS Klis 35/10: client TS Brizine 35/10: clientTS Kastela 35/10: client

TS Kastel Stari 10/0.4: client TS Klis Kosa 10/0.4: clientTS Konjsko 1 10/0.4: client

Elektrodalmacija Split: server

Fig. 12– Deployment diagram of centralized approach

5 Conclusion
Distribution system of Croatian Power Utility, like other
large distributed systems, consists of a large number of
spatially dislocated elements. To develop efficient and
optimal management of such a system it is necessary to
collect information about system, i.e. to develop
information system.

In this case it was necessary to develop two different
database systems. First one contains information about
plants and their technical descriptions, and the second
one that comprises data measured in the plants. The first
one already exists and it is widely in use. Design of the
second one is elaborated in this paper, and it is based on
the UML model.
 There is a number of benefits for use of UML model.
The main one is the fact that several developers can
work each on separate chunks of code, which are then
deployed as specific components to comprise a complete
application. In addition, it is industry wide accepted and
defines seamless mapping from analysis to design and
implementation. Once when a product is finished it is
easy to maintain and upgrade system, or add new
components.

References:
[1] X1. Sven Gotovac, Julije Ožegović, Lada Pravdica,

Linda Viđak, Remote control and supervision system
research, SoftCOM ’98, 1998

[2] X2. Bruce Boes, Development Information Systems,
A New Paradigm in Software Development,
http://www.upspringsoftware.com/whitepapers/disco
ver/dis.html

[3] X4. Bruce Boes, Development information systems
begin a software revolution, http://www.serverworld
magazine.com/hpchronicle/2000/10/revolution.shtml,
2000
[4] X5. Lawrence Pfleeger, Software Engineering:
Theory and Practice, 2/e, PrenticeHall, 2001
[5] X6. Ivar Jacobson, Grady Booch, James Rumbaugh,

The Unified Software Development Process,
Addison-Wesely, 1999.

[6] X7. James Rumbaugh, Ivar Jacobson, Grady Booch
The Unified Modeling Language Reference Manual,
Addison-Wesely, 1999.

[7] X8. UML Tutorial –part 1,
http://www.sparxsystems.com.au/UML_Tutorial.htm
[8] X9. “UML in CS320”,
http://www.csci.csusb.edu/rootproj/cs320/uml/cs320wu
ml.html
[9] X10. M. Tamer Ozsu, Patrick Valduriez, Principles

of distributed database systems, Prentice Hall, 1999

