
Methods and Tools for Support of Graphs and Visual Processing

VICTOR KASYANOV
Laboratory for Program Construction and Optimization

A.P. Ershov Institute of Informatics Systems
630090, Novosibirsk, Lavrentiev pr. 6

RUSSIA

Abstract: The main thesis of this paper is that intricate nature of software systems can, and in our opinion should, be
represented by graph models. Graphs are used in computer science almost everywhere, since graph is a very natural way of
explaining complex situations on an intuitive level.
In the paper, methods and systems for visual processing of graphs and graph models are presented. Our book series intended
to be a general guide on graph algorithms is outlined. A dictionary of graph theory in computer science and its electronic
version are described.

Key-Words: Hierarchical graphs, graph algorithms, graph models, visual processing, dictionary of graph theory.

1 Introduction
Graph is the most common "abstract" structure encountered
in computer science and computer education. Any system
that consists of discrete states (or sites) and connections
between them can be modeled by a graph. Graphs are used
in computer science almost everywhere, e.g. as data and
control flow diagrams, entity relationship diagrams, Petri
nets, visualization of software and hardware architectures,
evaluation diagrams of nondeterministic processes, SADT
diagrams and many more.

The main thesis underlying this paper is that intricate
nature of software systems can, and in our opinion should,
be represented by graph models. Their wide applicability is
due to the fact that graphs are a very natural way of
explaining complex situations on an intuitive level.

We are entirely convinced the future is 'visual', and the
graph models are the best formalism for visual
representation of information of complex and intricate
nature. Visualization of a conceptual structure is a key
component of support tools for complex applications in
science and engineering. Moreover, the information that is
interesting us in computer science is of structural and
relational rather than quantitative nature.

Many modern software systems, in particular for
graphics workstations, include graph drawing and visual
processing functions. A bibliography on graph drawing [1]
cites more than 300 papers written before 1993, and from
1993 the problem is the subject of the annual conference
with over 100 participants.

In the paper, we present our projects on the development
of methods and tools to support graphs and visual
processing. We begin with consideration of methods and
tools for visual processing of graphs and graph models.
Then we outline our series of books intended to be a general
guide on graph algorithms. Finally, we summarize our
results on construction of a dictionary of graph theory in
computer science and its electronic version.

The work is partially supported by the Russian
Foundation for Basic Research under grant RFBR 00-07-
90296 and by the Ministry on Higher Education of Russia
under state program “Universities of Russia”

2 Methods and systems for visual processing
Graph models can be used in practice only along with
support tools that provide visualization, editing and
processing of graphs and graph models. For this reason
many graph visualization systems, graph editors and
libraries of graph algorithms have been developed in recent
years. Examples of these tools include VCG [14], daVinci
[3], Graphlet [5], GraVis [11], GLT&GET [12] and LEDA
[13].

In some application areas, organization of information is
too complex to be modeled by a classical graph. To
represent a hierarchical kind of diagramming objects, more
powerful graph formalisms have been introduced, e.g.
higraphs [4], compound digraphs [15] and clustered graphs
[2]. One of the recent nonsclassical graph formalisms is
hierarchical graphs and graph models [7].

2.1 Hierarchical graphs and graph models
A hierarchical graph H=(G,T) consists of an underlying
graph G and an inclusion tree T. The underlying graph G
can be any undirected graph, digraph or hypergraph. The
inclusion tree T represents a recursive partitioning of G
into fragments.

In Fig. 1 we can see an example of a hierarchical graph
H=(G,T) with only two nontrivial fragments C and G as
well as an example of a hierarchical graph drawing D on the
plane where every nontrivial fragment of G is represented
as a rectangle.

H is a simple hierarchical graph if all fragments of H are
induced subgraphs of G. H is a connected hierarchical graph
if each fragment of H is connected graph. It should be noted

that any clustered graph H can be considered as a simple
hierarchical graph H=(G, T), such that G is an undirected
graph and the leaves of T are exactly the trivial subgraphs of
G.

Fig. 1

A drawing D of a hierarchical graph H is a

representation of H in the plane such that the following
properties hold (See Fig. 1). Each vertex of G is represented
either by a point or by a simple closed region. The region is
defined by its boundary - a simple closed curve in the plane.
Each fragment of G is drawn as a simple closed region
which include all vertices and subfragments of the
fragment. Each edge of G is represented by a simple curve
between the drawing of its endpoints.

D is a structural drawing of H if all edges of any
fragment of H are located inside the region of the fragment.
In Fig.1 we can see an example of nonsructural drawing of
hierarchical graph.

A hierarchical graph is a planar one if it has such a
structural drawing that there are no crossing between
distinct edges and the boundaries of distinct fragments.

The following properties hold [7, 8].
Theorem 1. There are nonplanar hierarchical graphs

with planar underlying graphs.
Theorem 2. There are nonplanar hierarchical graphs

having nonstructural planar drawing.
Theorem 3. A simple connected hierarchical graph

H=(G,T) is a planar graph if and only if there is such a
planar drawing D of G that for any vertex p of T all vertices
and edges of G-G(p) are in the outer face of the drawing of
G(p).

A hierarchical graph model is defined as a set of
labelled hierarchical graphs together with an equivalence
relation between them. The equivalence relation can be
specified in different ways, e.g. it can be defined via
invariants (i.e. properties being inherent in equivalent

labelled graphs) or by means of so-called equivalent
transformations that preserve the invariants.

2.2 The HIGRES and VEGRAS systems
Hierarchical graphs and graph models can be used in many
areas where strong structuring and visualization of
information is needed [7, 8, 10]. Several general-purpose
graph visualization systems provide recursive folding of
subgraphs allowing to create clusters. However, this feature
is commonly used only to hide a part of information and not
always applicable to visualization of hierarchical graphs.
Usual graph editors either do not have any support to
attributed graphs or have a rather weak support. Though the
GML file format used by Graphlet [5] can store arbitrary
number of labels associated with each graph element, it is
impossible to edit and visualize these labels in Graphlet's
graph editor. Most editors allow only one text label for each
vertex and optionally for each edge.

We present the HIGRES and VEGRAS systems that
support visualizing, editing and processing of hierarchical
graphs and graph models. The systems are implemented in
C++ and work under Microsoft Windows 95/98/NT.

The HIGRES system is a visualization tool and an editor
for attributed hierarchical graphs and a platform for
execution and animation of graph algorithms.

A hierarchical graph supported by the HIGRES system
consists of labelled vertices, fragments and edges, which are
considered as objects. Vertices and edges form an
underlying graph. Every fragment is represented by a
rectangle and can be closed or open. When a fragment is
open, its content is visible; when it is closed, it is drawn as
an empty rectangle with labels inside. A separate window
can be opened for each fragment.

Fig. 2

In Fig. 2 we can see a VLSI model represented by a
hierarchical graph. The model consists of three modules

folded into fragments. These fragments are displayed in
separate windows with different scales. One fragment
(Module II) is open. Its content is also displayed inside the
VLSI window. Two other fragments are closed and shown
in this window as covered rectangles. Type of an object
defines the most part of its visual attributes. This means
that semantically relative objects have similar visual
representation.

Type of an object defines the most part of its visual
attributes. This means that semantically relative objects
have similar visual representation. The HIGRES system
uses a flexible technique to visualize object labels. The
user specifies a text template for each object type. This
template is used to create the label text of objects of the
given type by inserting labels' values of an object. The user
can create new object types and labels.

Fig. 3.

Other visualization features are the following:

• various shapes and styles for vertices,
• both polyline and smooth curved edges,
• various styles for edge lines and arrows,
• color selection for all graph components,

possibility to scale graph image to arbitrary
size,

• edge text movable along the edge line, external
vertex text movable around the vertex,

• font selection for label text,
• two graphical output formats,
• a number of options that control graph

visualization.
The system uses two basic modes: view and edit. In the

view mode it is possible only to open/close fragments and
fragment windows, but the scrolling operations are
extended with mouse scrolling.

In the edit mode the left mouse button is used to select
objects and the right mouse button displays the pop-up
menu, in which the user can choose the operation he/she
wants to perform (See Fig. 3).

It is also possible to create new objects by selecting
commands in this menu. The left mouse button can be also

used to move vertices, fragments, label texts and edge
bends, and resize vertices and fragments. All edit operations
are gathered in a single edit mode. In our opinion, it is a
more useful approach (especially for inexperienced users)
than division into several modes. However, for adherents of
the latter case we provide two additional modes. Their
usage is optional but in some cases they may be useful: the
"creation" mode for object creation and "labels" mode for
label editing.

HIGRES has a user interface with
• almost unlimited number of undo levels,
• optimized screen update,
• automatic elimination of object overlapping,
• automatic vertex size adjusting,
• grid with several parameters,
• a number of options that configure user

interface,
• online help available for each menu,
• dialog box and editor mode.

The system HIGRES supports construction and
execution of a wide range of algorithms for visual
processing of hierarchical graph models. In particular, it
provides a run-time, repeated and backward animation of
graph algorithms.

As examples in the paper we consider tree algorithms
implemented in the framework of the HIGRES system.
They can be used to visualize the work of a given finite
automaton, Petri net and program scheme.

The work of a graph algorithm is illustrated in Fig.4
where a program scheme interpreted by an external module
is presented. Here asterisk shows which operator has
control. Current values of variables are listed in the top left
corner of the fragment rectangle. This screenshot was made
after the completion of the process and rewinding several
samples back.

Fig. 4

The HIGRES system provides a special C++ API that
can be used to create external modules. This API includes
functions for graph modification and functions that provide
interaction with the system. It is unnecessary for a
programmer who uses this API to know the details of the
internal representation of graphs. Hence, the creation of new
modules is a rather simple work.

The system HIGRES is available at Web [16].
VEGRAS is a universal and simple-to-use editor of

attributed graphs, including hierarchical, oriented to support
of construction of qualitative graph illustrations (See Fig.
5). VEGRAS also supports exchange of the graph
illustrations with other Windows applications, including the
HIGRES system.

Fig. 5

3 A guide on graph algorithms
As a rule a specific problem can be solved on the base of
known efficient graph processing algorithms and methods,
but to find (and understand) the needed algorithms among a
great number of scientific papers can be an unsolvable
problem for an end-user. We believe that a general guide on
graph algorithms would be useful for programmers and
decided to prepare a series of books intended to be not only
a reference manual of graph algorithms but also an
introduction to the part of the graph theory and its
applications to computer science and programming. We
thought that it is reasonable to group graph algorithms into
certain classes which deal with the same type of graphs.

In contrast to Donald Knuth who used the assembly
language of the so-called MIX computer in his fundamental
books "The art of computer programming", we decided to
use in our book series a high-level and language-
independent representation of graph algorithms. In our
view, such an approach is preferential, as it allows us to
describe algorithms in a form that admits direct analysis of
their correctness and complexity, as well as a simple

translation of algorithms to high-level programming
languages without disturbing correctness and complexity.
Besides, this approach to the algorithm presentation allows
the readers to understand an algorithm at the informative
level, to evaluate its applicability to a specific problem, and
to make all its modifications needed for correct application
of the algorithm.

At present, the series consists of three books: "Graph
theory: algorithms for processing trees" (1994), "Graph
theory: algorithms for processing acyclic graphs" (1998)
and "Reducible graphs and graph models in programming"
(1999).

The first book contains a high-level and language-
independent description of the methods and algorithms on
trees, the most important type of graphs in computer
science. The book includes algorithms for traversals and
generation of trees, finding spanning trees, computing of
structural trees, isomorphism of trees, unification and
transformations of trees, using trees for search and retrieval
of information, trees as data structures, using trees in syntax
analysis.

The book consists of three parts. In the first part, we
present the main notions, properties of trees, and some basic
algorithms on trees, such as depth-first and breadth-first
traversals of trees, the algorithms of coding and generation
of trees, etc. The second part deals with applications of trees
to problems connected with structuring of programs,
unification problem, term rewriting systems, syntax
analysis, etc. The third part is devoted to the problems of
data storage and retrieval.

This book has been translated into English [9].
The second book is devoted to the directed acyclic

graphs (or DAGs) which simulate posets and, like trees,
form an important class of graphs that is widely used in
computer science and programming. In this book, some
basic techniques and algorithms connected to different
applications of DAGs to computer science are considered.
Then, the elements of the theory of posets, lattices and
semilattices are given. Finally, algorithms for the semantic
analysis and the object code generation are presented.

The book "Reducible graphs and graph models in
programming" consists of two parts.

The first part is dedicated to the class of algorithms for
reducible (or regularizaible) graphs that expand DAGs and
are the most common graph models of the structured
programs. This class of graphs plays a very important role
in software systems, e.g. many compiler optimizations are
simpler, more efficient or applicable when the control flow
graph is reducible.

In the second part of the book, some graph models
widely used in computer science (such as program
schemata, Petri nets, intermediate program representations,
etc) are considered. Here, the main attention is given to such
subjects as program optimization, automatic parallelization,
visual processing, simulation of the parallel and distributed
systems, structural complexity of programs, etc.

4 Dictionary on graph theory in computer
science and programming
The problem of terminology is one of the main problems in
application of graph methods to programming and computer
science. The dictionary [6] recently published is the first
attempt to solve this problem. The most common terms on
graph theory and its applications to computer science and
programming are collected in it. The articles of the
dictionary are supplied with illustrations, cross-references
and references to the available literature. The English
equivalents of the terms allow the reader to use the
dictionary while translating from Russian into English and
back.

Fig. 6

The preliminary version of the dictionary was published
in 1995-96 in the Novosibirsk State University. The Web-
dictionary based on this version is named GRAPP (See. Fig.
6) and is available at Web [16].

5 Conclusion
The use of visualization methodology based on graphs
seems to be a very interesting approach to teaching and
learning computer science. In the paper some recent results
of the author and his collaborators on methods and tools
for graph support in computer science have been
considered.

The author is grateful to all colleagues from the A. P.
Ershov Institute of Informatics Systems and the
Novosibirsk State University who took part in the projects
considered in the paper, first of all, to Prof. V.A.
Evsigneev, and also to I.A. Lisitsyn, T.S. Merdischeva,
E.S. Merdischeva and V.E. Kazantzev.

References:
[1] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis.

Algorithms for drawing graphs: an annotated
bibliography, Computational Geometry: Theory and
Applications, Vol. 4, No 5, 1994, pp. 235-282.

[2] Q. W. Feng, R.F. Cohen, P. Eades, Planarity for
clustered graphs, Lecture Notes in Computer Science.,
Springer Verlag, Vol.979, 1995, pp. 213 - 226.

[3] M. Frцhlich, M. Werner. Demonstration of the
interactive graph visualization system daVinci, Lecture
Notes in Computer Science, Springer Verlag, Vol. 894,
1994, pp.266-269.

[4] D. Harel, On visual formalism, Commun. ACM, Vol.31,
No 5, 1988, pp.514 - 530.

[5] M. Himsolt. The Graphlet system (system
demonstration), Lecture Notes in Computer Science,
Springer Verlag, Vol.1190, 1996, pp. 233-240.

[6] V.A. Evstigneev, V.N. Kasyanov. Explanatory
Dictionary on Graph Theory in Computer Science and
Programming, Nauka Publ., Novosibirsk, 1999, 288 p.
(In Russian).

[7] V.N. Kasyanov. Hierarchical graphs and visual
processing, In: Intern. Congress of Mathematicians
(ICM98). Abstracts of Short Communications and
Poster Sessions, Berlin, 1998, P. 292.

[8] V. N. Kasyanov. Graph applications in programming,
Programmirovanie, No.3, 2001, pp. 51-70. (In Russian)

[9] V.N. Kasyanov, V.A. Evstigneev. Graph theory for
programmers. Algorithms for processing trees, Kluwer
Academic Publishers, 2000, 432 p.

[10] V.N. Kasyanov, I.A. Lisitsyn. Hierarchical graph
models and visual processing, In Proceedings of
Conference on Software: Theory and Practice. 16th
IFIP World Computer Congress 2000, Beijing, 2000,
pp. 179-182.

[11] H. Lauer, M. Ettrich, K. Soukup. GraVis - System
Demonstration, Lecture Notes in Computer Science,
Springer Verlag, Vol.1353, 1997, pp.344-349.

[12] B. Madden, P. Madden, S. Powers, M. Himsolt.
Portable Graph Layout and Editing, Lecture Notes in
Computer Science, Springer Verlag, Vol. 1027, 1995,
pp.385-395.

[13] K. Mehlhorn, S. Nгher, LEDA: a platform for
combinatorial and geometric computing, Comm. ACM,
Vol. 38, 1995, pp.96-102.

[14] G. Sander, Graph layout through the VCG tool,
Lecture Notes in Computer Science, Springer Verlag,
Vol. 894, 1994, pp. 194-205.

[15] K. Sugiyama, K. Misue, Visualization of structured
digraphs, IEEE Trans. on Systems, Man and
Cybernatics, Vol. 21, No 4, 1991, pp. 876-892.

[16] The GRAPP system is available at Web from <http: //
pco.iis.nsk.su/grapp>.

[17] The HIGRES system is available at Web from <http: //
pco.iis.nsk.su/higres>.

