
Elements of a SystemC Design Platform

GEORGE ECONOMAKOS
Department of Electrical and Computer Engineering

National Technical University of Athens
Zographou Campus, GR-15773 Athens

GREECE

Abstact: - Modern digital design, having to cope with the increasing device and application complexities, is
based on high-level textual system specifications. While languages like VHDL and Verilog HDL have been effec-
tively put to use for hardware design, system level hardware/software codesign requires more abstract and more
powerful specification languages, like SystemC. However, for SystemC to be effective, it must be integrated in the
existing design flow, taking advantage of previous work, avoiding past mistakes and generating the least possible
new, offering clear and distinct advantages, implementing the latest research results and helping designers over-
come the learning curve. This paper discusses issues of a pure SystemC design platform, states its applicability
and its new perspective in system level design and offers tool interoperability solutions. Through such platforms,
SystemC can leverage digital design industry from high level hardware design to system level hardware/software
codesign.

Key-Words: - SystemC, System Level Design, Behavioral Synthesis, High-level Synthesis, IP-based Design,
Design Reuse.

1. Introduction
Over the last ten tears the electronics industry has ex-
ploded. Chip fabrication technology continues to ma-
ture, with minimum feature size approaching 0.1 � m.
With decreases in feature size come added complex-
ities in the design. For example, with the 0.18 � m
process of Texas Instruments [1], the equivalent of 20
high-performance microprocessors could exist on the
same substrate, with a transistor density of 125 million
transistors. This explosion has opened the way for new
design techniques and methodologies, like high level
and system level design, hardware/software codesign
or IP-based SoC design, which raise the level of design
abstraction and so, reduce the design space.

While design space reduction supports efficient de-
sign space exploration and thus, reduced time to mar-
ket, design specification techniques have also changed
in order to cope with the increasing design complex-
ity. Schematics have been restricted to small or boards
level designs and Hardware Description Languages
(HDLs) have been introduced. During the last years
and after extensive standardization efforts, by various
institutions and individuals, two languages have pre-
vailed, VHDL [3] and Verilog HDL [2]. Today they
are widely spread in both research and industry for

simulation, RTL design entry and synthesis, gate level
design exchange and tool interoperability and formal
verification.

Both VHDL and Verilog are now everyday prac-
tice in industrial hardware designs, reaching up to
traditional high level synthesis [5, 13]. For system
level hardware design or hardware/software codesign,
things are not so easy. Usually, system level de-
signs start with a functional model of the system,
written in a procedural language like C/C++, from
which algorithmic correctness is verified through sim-
ulation. This model is manually partitioned into
hardware and software components. Software com-
ponents are transformed through refinement into fi-
nal implementations. During refinement, elements of
the initial system model like code fragments or test-
benches, may be reused, and thus time to market is re-
duced. On the contrary, hardware components must
be translated manually from functional C/C++ into
RTL VHDL/Verilog for the design to be refined. This
translation may introduce difficult to track errors while
functional testbenches are useless.

As a solution to this problem, C/C++ mod-
eling and synthesis techniques have been exam-
ined thoroughly during the last couple of years



[6]. Two consortiums have been created, the
SystemC (www.systemc.org) consortium and
the SpecC (www.specc.org) consortium, propos-
ing corresponding System Level Design Languages
(SLDLs), each one offering different advantages to
end users and tool vendors. Commercial tools
have appeared, like the Synopsys CoCentric Sys-
temC Compiler (www.synopsys.com) for behav-
ioral synthesis, CoWare N2C (www.coware.com)
for system level design, C Level Design Cy-
cleC (www.cleveldesign.com) design method-
ology, CynApps CynLib (www.cynapps.com) de-
sign methodology and Frontier Design A � RT Builder
(www.frontier.com) for behavioral synthesis, to
name just a few. New research ideas have also been
reported [4, 7, 10, 12, 17].

This paper attempts a clear view over previous
work, and proposes a configuration for a complete
C/C++ based design platform, using the SystemC
SLDL. It is concerned with two main problems, be-
havioral synthesis, with which functional models can
be refined into RTL models, and IP libraries, for code
reusability. Specifically, it presents a behavioral Sys-
temC preprocessor, which translates behavioral into
RTL SystemC, supporting user interaction (the click-
and-go application style has been criticized by hard-
ware designers), and an RTL VHDL/Verilog to Sys-
temC translator, which enables reuse of well tested
HDL IP cores. Along with commercial tools for RTL
synthesis and simulation, this configuration is a com-
plete top-down design platform, which can gradually
introduce C/C++ level design in industrial projects,
avoiding a new HDL war.

2. SystemC Overview
SystemC was officially introduced almost a couple of
years ago [15], as a C++ class library offering hard-
ware semantics to C/C++ programs, (mainly) through
concurrent and re-entrant processes and hierarchical
modules. Its initial release was targeting RTL mod-
els, allowing higher level constructs as well, just like
VHDL or Verilog. Later [14], the RTL semantics of
the language were clarified and today, SystemC can
challenge both HDLs in RTL modeling. The initial
release of SystemC included:

� Container classes for hierarchical modules,
ports and signals.

� Concurrent and re-entrant processes, contained
inside modules.

� A rich set of hardware specific data types.

� A cycle-based simulation kernel, implementing
delayed signal assignments and linked with user
defined functionality through traditional soft-
ware development environments.

Since this initial release, the Open SystemC Initia-
tive (OSCI) has chosen to distribute SystemC as a pub-
lic domain, open source product for both research and
commercial use. This, combined with the fact that, be-
ing a C++ class library, SystemC was easily integrated
with common and well known software development
environments, has been a great promotion for the lan-
guage. SystemC has been widely adopted by both in-
dustry and research communities.

Additionally, SystemC has been extended mainly
focusing on higher levels of abstraction [16] (sys-
tem level design and hardware/software codesign).
The resent (beta) version 2.0 of the language defines
new abstract features for process communication and
synchronization, inspired from similar constructs of
SpecC. Specifically, SystemC 2.0 is a layered ap-
proach consisting of the following:

� A general purpose modeling foundation, the
SystemC simulation kernel.

� Container classes for events, low level synchro-
nization primitives supporting dynamic process
sensitivity (as well as static).

� Container classes for channels, interfaces and
ports as a general purpose process communica-
tion mechanism.

� Container classes for signals and delayed as-
signment operators.

� A generalized time model (real-valued, integer-
valued, untimed).

� A dynamic thread library (can be used to write
a SystemC RTOS).

3. SystemC Based Codesign Methodology
With the introduction of SystemC 1.0 a couple of years
ago, the language was adopted for hardware design,
in areas where VHDL and Verilog are still leading.
With the introduction of version 2.0, SystemC was
equipped with system level semantics, beyond tradi-
tional HDLs and towards higher abstraction levels.
This dual personality of the new SLDL supports a new
hardware/software codesign methodology, shown in
brief in figure 1.



Behavioral SystemC

Software Description

C/C++

Compiler

Refinement

C/C++ Preprocessor

Constraints met?

Yes

No

SystemC RTL

Synthesizer

VHDL/Verilog

RTL IP

Library

RTL Translator

VHDL/Verilog−>SystemC

Behavioral

Behavioral SystemC
Hardware Description

Figure 1. SystemC codesign platform - block diagram

It is common practice today that designs start with a
system level model. This is usually written in C/C++,
since such a specification is executable and can be
used to verify the overall functionality through sim-
ulation and custom testbenches. This step can be well
hosted under a SystemC environment.

Next, as shown in figure 1, software and hardware
components are separated. Each one follows a differ-
ent design route. However, at each moment, regardless
of the progress each design group has made, SystemC
allows cosimulation and covalidation, with the origi-
nal testbenches, generated during system level func-
tional simulation. This is a strong advantage of the
proposed methodology and has been found to decrease
design time substantially.

The hardware part of the system must first pass
through high level synthesis. During the previous
years, researchers have made considerable propos-
als both for general purpose techniques [5, 9, 11]
as well as for C/C++ level [4, 7, 10, 12, 17] high
level synthesis techniques. Our approach integrates
previous proposals while addressing a problem often
reported by users of automated high level synthesis
tools, limited user interaction. Our high level synthe-
sis step incorporates a SystemC preprocessor, which
accepts behavioral SystemC and instructed by appro-
priate #pragma directives, produces RTL SystemC,
after applying the requested optimizations. The trans-
lation iterates with different user supplied directives
until all design constraints are met. The resulting RTL

is combined with RTL (or gate level) IP cores to form
a complete RTL hardware description, passed to an
RTL synthesizer for further optimization. Before that
however, another problem calls for solution. Most IP
cores today are written in either VHDL or Verilog so,
another translator must be written. Previous work [4]
has shown the feasibility and the advantages of such a
task. In fact, the similarities between SystemC, VHDL
and Verilog RTL semantics [14] simplify this transla-
tion step.

On the other hand, the software part of the system
passes through iterative refinement steps, as tradition-
ally done with everyday software projects. Using the
SystemC dynamic thread library, a Real Time Operat-
ing System (RTOS) core can be written in SystemC, to
model are reuse embedded applications.

4. Behavioral Synthesis Preprocessor
Behavioral synthesis or high level synthesis has been
an active research field for almost 20 years. A lot of
different approaches with interesting and efficient re-
sults have been presented all these years [5, 11]. To-
day, even though it is not considered a completely
solved problem, because a lot of NP-complete (or NP-
hard) subproblems are involved, it is mature enough to
offer industrial level tools and become part of practical
design chains.

However, one of the problems designers find diffi-
cult to overcome with automated design environments,
is the low level of interaction and control over the au-



tomated process. This is particularly true for behav-
ioral synthesis. Hardware designers are not familiar
with a press-and-go user interface, which accepts a be-
havior (much like a software algorithm) and produces
an architecture.

The presented design platform offers solution to
this problem by proposing an iterative preprocessing
design technique. The advantages of this approach are
the following:

� The designer can selectively apply the re-
quired optimizations by using the corresponding
#pragma directives.

� The designer can iteratively apply different opti-
mizations, either substituting or supplementing
one another until the required constraints are all
met.

� The step wise refinement of the design allows
better understanding of the result of each indi-
vidual optimization.

� Expressing both the initial as well as the re-
fined models in the same language (SystemC)
allows fast refinement validation through simu-
lation and minimizes errors introduced by man-
ual model translations.

� Knowing the semantics of the RTL subset of
SystemC the designer can understand the im-
plementation that will result from each RTL de-
scription.

5. RTL Library Translator
During the last years, the diversity of solutions of-
fered by the EDA industry has somehow decelerate
tool acceptance. The many different design entry
methods, specifically the different design specifica-
tion languages, the incompatible library formats and
the different methodology approaches are just a few
of them. A typical example is the “HDL Wars” of the
last decade, with VHDL and Verilog (as well as their
synthesizable subsets) rivaling for general acceptance.
Now that the two HDLs have “seized fire” and taken
their places, C/C++ SLDLs seem to prepare for battle
against both each other as well as HDLs.

A way to prevent this “war” is to define clear se-
mantics for each language and each application do-
main. Whenever the application domains of two or
more languages overlap, equivalent semantics should
be defined, that is semantics with the same implemen-
tation but different syntax.

This was the inspiration for the approach of the pre-
sented design platform, when dealing with RTL IP
core integration. On one hand, a number of HDL
based IP management tools and libraries exist and
a lot of knowledge resides in them for any new ap-
proach to ignore them. On the other hand, writing IP
cores in SystemC offers the advantage of cosimulation
with the initial testbenches (generated during system
level functional validation), at lower abstraction levels
(RTL), minimizing errors and delays in the design cy-
cle. So, VHDL and Verilog translators have been used
to bring existing HDL cores into the SystemC world.

The key issue in the translation was the correspond-
ing RTL semantics of each language. Using equivalent
semantics [14] helped generate equivalent models. As
an example, consider VHDL. The issues that had to
be resolved and their solutions were mainly the fol-
lowing:

� Hierarchy: The VHDL entity hierarchy was
directly translated into a SystemC SC_MODULE
hierarchy.

� Processes: All VHDL processes were directly
translated into SystemC SC_METHODs.

� Data types: Corresponding data type have
been used for replacements, for exam-
ple sc_bv for bit_vector, sc_lv for
std_logic_vector, etc.

� Signals and ports: VHDL signals were trans-
lated into SystemC sc_signals and ports into
sc_ports, with the same flow direction.

� Combinational logic: Replacement of equiva-
lent operators was performed.

� Sequential logic: Register and latch inference
statements were found in both VHDL and Sys-
temC and replacement took place. For example,
the following code fragments are equivalent and
they both infer a register:

– VHDL

entity ff is
port (clk: in bit;

q1: in bit;
q2: out bit);

end ff;

architecture infer of ff is
begin

process(clk)



begin
if rising_edge(clk) then
q2<=q1;

end if;
end process;

end infer;

– SystemC

SC_MODULE(ff) {
sc_in<bool> clk;
sc_in<bool> q1;
sc_out<bool> q2;

void infer();

SC_CTOR(ff) {
SC_METHOD(infer);
sensitive_pos << clk;

}
};

void ff::infer()
{
q2.write(q1.read());

}

A similar approach was taken for Verilog HDL.

6. Implementation Details
The proposed platform consists of language trans-
lators. Since such programs are utilized in many
different application domains, there exist a num-
ber of tools which support development. One of
the most efficient is the SUIF compiler system [8]
(suif.stanford.edu).

SUIF is a research compiler. I is design to facilitate
experimentation and development of new compiler al-
gorithms, ranging from high level transformations to
conventional data flow optimizations. The core sys-
tem includes a parallelizer that can automatically find
parallel loops in Fortran and C programs and gener-
ate parallelized C code. It provides all features nec-
essary for parallelization like data dependence anal-
ysis, reduction recognition, symbolic analysis, uni-
modal transformations and data flow optimizations.
While the system is not as robust as commercial com-
pilers, it is capable of compiling standard benchmark
suites.

In the proposed design platform SUIF has been
used to build:

� A SystemC front-end, on top of the normal C
front-end supplied by SUIF, for the behavioral
synthesis preprocessor.

� VHDL and Verilog front-ends for the IP trans-
lators.

� An RTL SystemC back-end, on top of the nor-
mal C back-end supplied by SUIF, for both the
behavioral preprocessor and the IP translators.

� Specific behavioral transformations (specific
scheduling and register allocation algorithms)
as separate SUIF passes.

7. Experimental Results

A number of small scale designs have been performed
with the proposed platform. They consist of hardware
components only and the results of behavioral syn-
thesis are comparable with the ones found using the
Synopsys Behavioral Compiler [13]. Simulation time
(pre and post synthesis) is comparable with commer-
cial HDL simulators. A number of projects are under
development (for Ethernet and 3G mobile communi-
cations) for which specification, system validation and
RTL generation required less than a week to complete.

8. Conclusion

In this paper, an integrated system level design plat-
form, based on the SystemC specification language,
has been presented. It has been found that SystemC,
equipped with precise and strict RTL semantics, is of-
fering an efficient design methodology. It can support
and automated industrial hardware/software codesign
projects. The question however is not how well Sys-
temC is performing, but if it can be adopted by design-
ers. Towards this end some problems are still open.
First of all, there is a need for a single SLDL, no mat-
ter what its name will be, and there is no need for more
“Language Wars”. Next, the new design language
must be supported by tools that take advantage of pre-
vious work and that can work together with the exist-
ing design flows. Also, since SystemC is addressing
higher abstraction levels, a corresponding design plat-
form must promote user interaction, which can end up
as advanced user awareness of the automated design
process. Finally, designers must have enough time to
feel comfortable with the new methodology and climb
the learning curve of the new design paradigm. Un-
der these circumstances, SLDLs can leverage indus-
trial design automation into the next millennium.



References:
[1] R. J. Baker, H. W. Li, and D. E. Boyce. CMOS: Cir-

cuit Design, Layout, and Simulation. IEEE Press,
1998.

[2] J. Bhasker. A Verilog HDL Primer, Second Edition.
Star Galaxy Publishing, 1999.

[3] J. Bhasker. A VHDL Primer, Third Edition. Prentice
Hall, 1999.

[4] G. Bollano, P. Garino, M. Turolla, and M. Valentini.
SystemC’s impact on the development of ip libraries.
In IP Europe Conference. CMP, 2000.

[5] G. De Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill, 1994.

[6] G. De Micheli. Hardware synthesis from c/c++ mod-
els. In Design Automation and Test in Europe Con-
ference and Exhibition, pages 382–383. ACM/IEEE,
1999.

[7] G. Economakos, P. Oikonomakos, I. Panagopoulos,
I. Poulakis, and G. Papakonstantinou. Behavioral
synthesis with SystemC. In Design Automation and
Test in Europe Conference and Exhibition, pages 21–
25. ACM/IEEE, 2001.

[8] R. S. French, M. S. Lam, J. R. Levitt, and K. Oluko-
tun. A general method for compiling event-driven
simulations. In 32nd Design Automation Conference,
pages 151–156. ACM/IEEE, 1995.

[9] D. Gajski, N. Dutt, A. Wu, and S. Lin. High-Level
Synthesis. Kluwer Academic Publishers, 1992.

[10] A. Ghosh, J. Kunkel, and S. Liao. Hardware synthe-
sis from c/c++. In Design Automation and Test in
Europe Conference and Exhibition, pages 387–389.
ACM/IEEE, 1999.

[11] Y.-L. Lin. Recent development in high level syn-
thesis. ACM Transactions on Design Automation of
Electronic Systems, 2(1):2–21, 1997.

[12] L. Semeria and G. De Micheli. Resolution, opti-
mization, and encoding of pointer variables for the
behavioral synthesis from c. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 20(2):213–233, 2001.

[13] Synopsys. Behavioral Compiler User Guide Version
1999.10, 1999.

[14] Synopsys. Describing Synthesizable RTL in SystemC,
2001.

[15] Synopsys, CoWare, Frontier Design and others. Sys-
temC Version 1.0 User’s Guide, 2000.

[16] Synopsys, CoWare, Frontier Design and others.
Functional Specification for SystemC 2.0, 2001.

[17] K. Wakabayashi. C-based synthesis experiences with
a behavior synthesizer, “Cyber”. In Design Automa-
tion and Test in Europe Conference and Exhibition,
pages 390–393. ACM/IEEE, 1999.


