
Language and Compiler for FPGA

F.S. HIEW, K.H. KOAY
Faculty of Engineering and Technology

Multimedia University
Jalan Ayer Keroh Lama, 75450, Melaka

MALAYSIA

Abstract: - This paper presents a high-level, algorithmic, single-assignment programming language and its
optimizing compiler for reconfigurable systems. The compiler is capable of accepting our proposed instruction
sets and generating a set of synthesizable VHDL codes. Simulated annealing algorithm at the heart of this
compiler determines the design speed and resource needed on Field Programmable Gate Array (FPGA).
Language features are introduced and the structure of the compiler is discussed. In the paper, we particularly
study the effects of simulated annealing schemes on our compiler.

Key-Words: - High-level, single assignment, VHDL, FPGA, compiler and simulated annealing.

1 Introduction
Since the introduction of Field Programmable Gate
Array (FPGA), many companies rapidly come out
with their own architectures to suit different
applications. In order for designers to achieve the
shortest system design time, as well as to attain the
highest possible performance, FPGA companies
always provide designers with their most
comprehensive design tools for creating designs, such
as Xilinx ISE and Altera Quartus II.

Consequently, nowadays FPGA designers can
concentrate more on circuit design, instead of
worrying about how internal logic assignment and
place-and-route being done in FPGA. However,
designing circuit using hardware description
languages like VHDL and Verilog is often
over-looked. Although these languages are suitable
for chip design, they are time consuming tasks and
heavily relied on designers’ expert knowledge [1].

In this paper, a high-level, algorithmic, and
single-assignment programming language and its
compiler are proposed to reduce designers’ loads in
designing digital systems on FPGA. In our proposed
method, design entry is a simple, readable, and C-like
programming source code. The output is a set of
synthesizable VHDL codes. In our proposed system,
speed and area of the circuit are optimized in dataflow
graph by using simulated annealing (SA) algorithm.
In this paper, we particularly study the effects of
simulated annealing schemes on our compiler.
Experimental results show that simulated annealing is
capable of finding the best possible implementation in
an efficient manner and generating VHDL code for it.
Fig.1 illustrates the overview of the proposed system.

Compilation

Parse Tree

CDFG

Allocation

Transformation

Pr
op

os
ed

 C
om

pil
er

Proposed Language

System Entry

Transformation

VHDL

System Output

Lexical Analyzer

Semantic Analyzer
Tokens

Component
Selector

Optimizer
CDFG

CDFG

Fig.1. System overview

The main advantage of our proposed methodology

is that they provide high-speed circuit design and
verification capabilities to the circuit designers.
Hence, it increases the designers’ productivity and
shortens the time-to-market. This methodology is also
promoting component reusability while preserving its
flexibility by outputting synthesizable VHDL codes.
In other words, it can be easily extended to other
architectures like ASICs and other devices that accept
VHDL as the design input.

The rest of the paper is organized as follows:
Section 2 reviews the related research. Section 3
provides a brief overview of our proposed language.
Section 4 provides the details of flow-graph
transformations and Section 5 discusses the simulated
annealing used for component selection in our
compiler. The transformation from our proposed
source codes to VHDL codes is depicted in section 6
by using an example. Section 7 demonstrates the

experimental results. Concluding remarks are given
in Section 8.

2 Related work
Simulated annealing (SA) is a general-purpose
algorithm and applicable in combinational and
function optimizations. Optimization by simulated
annealing was introduced by Kirkpatrick, Gelatt and
Vecchi [2] and widely used for path reduction
purposes. The work in [3] applied SA to global wiring
path routing for both idealized and actual designs of
realistic size and complexity. Vecchi et al. reported
that SA could achieve superior performance than the
other sequential or greedy strategies those commonly
employed in automatic wiring programs. Besides, SA
was also utilized in rail network routing and the
results demonstrated that SA was much preferable
over genetic algorithm (GA) approach in which SA
produces much better plans and easier parameter
setting [4]. In our proposed compiler, SA is used for
efficient design space exploration. Components in
circuit must be selected correctly in such a way that
the component meets the imposed throughput
requirements.

3 The Proposed High-level Language
The proposed language is high-level and algorithmic,
which simplifies circuit designing leading to shorter
design time. All instructions are single-assignments
and no pointer is involved for better compiler analysis
and dataflow graph transformation [5]. Data types are
the same as used in VHDL and the proposed
language’s variable name, type, and bit-width are
user-specified. Operation assignment is similar to C
programming as shown in Fig.2. Besides, timing and
parallelism are excluded during system level design
for hiding the details and intricacies of low-level
hardware design.

Fig.2. Proposed high-level instruction set

4 Flow-graph Transformations
The flow-graph is obtained by parsing the instruction
codes. This is achieved by first translating the source
codes into a stream of tokens via lexical analyzer. This
stream of tokens is further subjected to semantic
analyzer which imposes a hierarchical structure on
them to verify the correctness of the syntax. If all
syntaxes are correct, a parse tree is formed. The parse
tree is then further compressed to obtain a syntax tree.
Finally, the syntax tree is transformed into a control
and data flow graph (CDFG) that depicts the total flow
of the control and data in the original description. Data
dependencies that are inherent in the flow graph can
be revealed through a full scan of the graph. Fig.3
gives a vivid description of the above methodology
through an example. CDFG generated during control
flow transformation just reveals its node operation and
dependencies between nodes. Timing and other
information will be added later on in the subsequent
processes.

Lexical Analyzer

(1) Proposed
 instruction code

(e.g.),
#define: a,b,c,d,e: integer:= 8;
c = a + b;
e = c - d;

(2) Tokens
(e.g., c, =, a, +, b, ;, e, ...)

(3) Parse Tree

Statement

=

-

Statement

identifier expression

identifier

identifier

identifier

e

c

b

d

a

expression

+

identifier

=

+

-

e

ba

c

d

(5) Control-data flow
 graph

e

dc

-

ba

+

(4) Syntax Tree

Semantic Analyzer

Transformation

Transformation

#define : a,b,c,d,e,f,g,h,i,j,k : std_logic_vector := 8;
#define : l,m,n,o,r,s,t,u,v : std_logic_vector := 8;
#define : p,q : std_logic_vector := 12;
#define : w,x,y : std_logic_vector := 24;

e = a + b; f = c + d; g = e + f; i = g - h;
j = k + l; n = j + n; o = i + m;
w = p*q; y = w + x;

Fig.3. Transformation of CDFG from instruction set.

5 Component Selection
In this section, each node is assigned a VHDL
component, which is chosen from a set of library,
shown in Table 1. Note that timing delay (ns) and area
(slice) in the table are generated by synthesizing the
VHDL codes, from Zimmermann’s arithmetic library

Bit Width

Variable Name

Operation

Type

[6], in Xilinx Integrated Software Environment (ISE)
series 5.2i.

Table 1. Components Library

Component Preferences Properties 4 bit 8 bit …… 64 bit
AddC Slow Area 6.00 12.00

AddC Slow Delay 19.66 23.49

AddC Med Area 6.00 12.00

AddC Med Delay 19.66 23.49

AddC Fast Area 6.00 12.00

AddC Fast Delay 19.66 23.49

AddCFast Slow Area 8.00 17.00

AddCFast Slow Delay 18.99 23.50

.

When these VHDL components are assigned, the

timing and resource information for a circuit can be
estimated more easily. The critical-path circuit delay
is

circuit delay
1

c

i
i

delay
=

= ∑ (1)

In other words, the circuit delay is the summation of
all delay times in the critical path. The total area is

circuit area
1

n

j
j

area
=

= ∑ (2)

Circuit area is the total area in CDFG. From the
example in Fig.4, we can see that the critical-path
circuit delay is 93.14ns (24.06ns + 23.49ns + 22.77ns
+ 22.82ns) which is determined by the total delay in
the critical path and the total area is the summation of
all nodes’ area in CDFG.

-

+

+

-

/

*

+

+1 + +

+

AddMod2Nm1 [Med]
[30.53,16.00]

MulSgn [Fast]
[41.93,216.00]

AddC [Slow]
[23.49,12.00]

AddCFast [Fast]
[20.86,17.00]

AddV [Fast]
[24.06,12.00]

SubC [Med]
[22.77,13.00]

DivArrSgn [Slow]
[32.23,8.00]

SubVZ [Med]
[22.82,13.00]

AddC [Med]
[23.49,12.00]

AddCFast [Fast]
[20.86,17.00]

AddV [Med]
[37.01,41.00]

Note: Component [preferences]
 [Delay,Area]

Fig.4. Nodes with VHDL component assigned

The VHDL component selection is based on four
optimization mode selections. They are:
o Speed (SD). The speed of the circuit is set to

maximum regardless of how large the area will be.

o Area (AR). The area of the circuit is set to
minimum regardless of how slow the speed will be.

o Speed with acceptable area (SAA). The speed of
the circuit is set to as high as possible with
acceptable increasing in area size.

o Area with acceptable speed (AAS). The area of the
circuit is set to as small as possible with acceptable
decreasing in speed.

If optimization mode is set for speed (SD), the VHDL
component with smallest delay (ns) will be chosen for
all nodes in a particular circuit. If optimization mode
is set for area (AR), the VHDL component with
smallest area (slices) is taken no matter how slow the
component will be. On the other hand, if optimization
mode is for speed with acceptable area (SAA) or area
with acceptable speed (AAS), optimization will be
done by using simulated annealing (SA) algorithm.

SA performs speed and area optimizations in
CDFG by randomly assigning various architecture of
the defined VHDL component to the CDFG’s nodes.
The number of nodes to be assigned with new VHDL
component at each iteration is based on the concept of
temperature reduction function in SA. The number of
nodes with new VHDL component assignment is high
at high temperature and then it is decreased according
to the temperature cooling schedule. When the
temperature reaches freezing point, the process will
stop. For example, the numbers of nodes changed in
12 iterations on CDFG in Fig.4 are 11, 10, 9, 8, 7, 6, 5,
4, 3, 2, 1, and 0. This concept is called as Component
Reduction Function in our work. The SAA
algorithm, in Fig.5, describes the modified SA
algorithm, in which component reduction function is
included to suit our needs. Fig.6 shows the
relationship between the Temperature Reduction
Function and Component Reduction Function.

In SAA mode, the delay of the critical path is
evaluated every iteration. SA will just accept new
component assignment if the iteration causes decrease
in critical path delay. An increase in delay is accepted
if the Metropolis criteria are fulfilled. In AAS mode,
new assignment will be accepted if there is a decrease
in total circuit area. On the other hand, an increase in
area will be accepted if the Metropolis criteria are
fulfilled.

6 VHDL Transformations
Assuming that the node with operator “+1” in Fig.4 is
generated from operation e = a + b and is assigned
with AddC (8-bits adder), this node is then
transformed into VHDL module with input ports,
output ports, clock, chip able, and reset signal. Note
that, input ports in the module are the node’s input

arcs (a and b) in CDFG. Whilst, the output port in the
module is the node’s output arc (e) in CDFG. Fig. 7
illustrates a part of VHDL (for operation e = a + b)
source code.

In order to perform the addition operation, the
AddC’s VHDL component from Zimmermann’s
arithmetic library will be instantiated into the module.
This process is repeated until every node is assigned
with a module. Lastly, a top-level module with the
same feature is created and all the modules formed
previously are instantiated into this top module to
form a complete VHDL module. Fig.8 depicts the
abstract view of the top module formed. Each operator
is instantiated with two registers at their input ports to
store their input signals.

dTemp = Number of temperature steps
dTrial = Number of trials at each temperature

ComponentSelection () {

Initial temperature and component
for i = 1…. dTemp do
 if SimulatedAnnealing () then
 Temperature := TemperatureReduction ();
 Component := ComponentReduction ();
 else
 break
 end if

 RouteLength := GetRouteLength ();
 AreaSize := GetTotalArea ();

 if RouteLength < BestRouteLength or
 AreaSize < BestAreaSize then
 store best route
 end if
 end for

}
SimulatedAnnealing () {

for j = 1….dTrial do
 randomly change Component number of nodes

 trialCost := GetRouteLength ();
 delta := current_cost - trial_cost

 if delta > 0 then
make the change permanent

 bImprove := true
 else

p := random number[0…1]
 m := exp(delta / Temperature)

 if p < m then
make the change permanent

 bImprove := true
end if

 end if
end for
if bImprove := true then

 return true
end if

}

Fig.5. Pseudo code of modified SA

Number of Annealing Steps
0 5 10 15 20 25

Te
m

pe
ra

tu
re

s
o C

0

20

40

60

80

100

120

N
um

be
r o

f C
om

po
ne

nt
s

0

2

4

6

8

10

12

Temperature Reduction Function
Component Reduction Function

Fig.6. Temperature vs. Component Reduction Function

entity Module01 is
 port (a_in : in std_logic_vector (7 downto 0);

b_in : in std_logic_vector (7 downto 0);
e_out : out std_logic_vector (7 downto 0);
ce, reset, clock : in std_logic;);

end Module01;

architecture Behavioral of Module01 is
-- vhdl component declaration
component AddC
--signal declaration
signal a,b,e: std_logic_vector (7 downto 0);

begin
-- vhdl component instantiation
Comp01 : AddC
--data in
process(clock, reset)
begin

if reset = '1' then
a <= (a'range => '0');
b <= (b'range => '0');

elsif clock'event and clock = '1' then
if ce = '1' then

a <= a_in;
b <= b_in;

end if;
end if;

end process;
--data out
e_out <= e;

end Behavioral;

Fig.7. VHDL module for instruction e = a + b.

-

+

+-

/

*

+

+ +

+
+

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Reg

Fig.8. Abstract representation of the top module.

7 Experimental Results
The language and compiler have been implemented
and tested based on the design illustrated in Fig.9,
which contains eight operation nodes and the critical
path formed by four operation nodes. In order for the
SA algorithm to perform efficiently in our compiler, a
suitable component reduction function must be
chosen. A series of experiments has been done to
compare the results from various component
reduction functions in our compiler. These functions
are shown below and the result is shown in Table 2.

#define:a,b,c,d,e,f,g,h,i,j,k,l,m,n,o:integer:=8;
#define:p,q:integer:=12;
#define:w:integer:=24;

e=a+b;
f=c+d;
g=e+f;
i=g-h;
j=k+l;
m=j+n;
o=i-m;

w=p*q;

-

-

*

+

+ + +

+

(a) (b)

Fig.9. Example (a) Instructions set (b) CDFG

()(1 o o NT T i T T N= − −) (3)

()2
i N

o N oT T T T= (4)

() ()3 , ln lnA
o o NT T i A T T N= − = − (5)

()() ()()()4 1 2 1 tanh 10 5o N NT T T i N= − − − +T (6)

() ()()5 co sh 1 0o N NT T T i N T= − + (7)

() ()()()6 1 , 1o o NT A i T A A T T N N= + + − = − + (8)

() ()()3 2
7 1 i N

o N NT T T e T−= − + + (9)

()() ()()()8 1 2 1 c o so NT T T i Nπ= − + NT+ (10)

() (9 , 1 lnAi
oT T e A N T T−= =)o N (11)

() (2 2
1 0 , 1 lnA i

oT T e A N T T−= =)o N
 (12)

From Table 2, we can observe that T5 is superior as

it obtains the highest probability of achieving
minimum critical path delay. Besides, the delay time
obtained in various trials is always less than 90.3 ns.
Fig.10 shows the delays obtained from our SAA
experiments. These critical path delays are decreasing
along the component reduction (temperature) steps.
Some increases in delay time are accepted to avoid
being stuck at local minimum.

Table 2. Results (dalay) of SAA for 15 trials with various
component reduction functions

Delay time (ns)

Trial
Eqn
T1

Eqn
T2

Eqn
T3

Eqn
T4

Eqn
T5

Eqn
T6

Eqn
T7

Eqn
T8

Eqn
T9

Eqn
T10

1 92.2 88.2 93.2 88.9 90.0 88.1 88.1 91.5 88.8 90.4
2 90.8 90.1 90.7 88.0 88.4 89.1 90.3 91.6 88.1 87.6
3 87.6 87.6 90.4 92.3 88.7 87.6 88.8 88.9 89.4 88.6
4 91.0 90.6 90.7 88.8 90.9 88.9 88.9 91.6 91.5 91.2
5 94.1 88.7 90.8 88.2 87.6 92.8 91.1 91.8 89.1 89.4
6 88.8 87.6 91.5 92.2 88.2 90.1 90.9 89.5 90.9 89.7
7 91.9 93.3 92.1 88.2 88.2 87.6 88.1 87.6 93.4 88.2
8 87.6 88.2 89.5 89.8 90.3 93.0 91.6 90.8 89.1 89.9
9 91.4 89.5 89.2 88.2 88.4 88.7 92.1 88.8 92.7 93.1

10 91.8 87.6 90.7 92.5 88.2 94.0 87.6 91.5 89.6 90.7
11 87.6 87.6 91.1 88.4 87.6 90.1 90.2 92.4 90.2 92.9
12 88.4 89.4 87.6 89.3 87.6 89.5 87.6 87.6 88.7 89.4
13 92.6 88.4 91.9 89.8 90.1 90.5 91.2 88.9 88.4 89.5
14 90.7 88.3 91.4 90.9 88.2 91.4 89.4 90.4 87.6 90.3
15 90.8 90.9 87.6 89.5 87.6 89.3 89.1 91.3 90.2 89.4

In our subsequent experiment, the design is
simulated based on T5 as component reduction
function. The simulated delay and area of the
abovementioned optimization modes are compared.
From Table 3, it is shown that optimization with SD
mode outperforms the others in term of speed which
obtains minimum delay time (87.6ns). Whilst,
optimization with AR mode is superior in term of area
because area size (274 slices) obtained is smaller
compared with the others. The simulation results for
SAA and AAS modes are in between SD and AR
optimization modes’ results.

Number of component reduction steps
0 5 10 15 20

C
rit

ic
al

 P
at

h'
s

D
el

ay
 (n

s)

85

90

95

100

105

110

Trial 1
Trial 2
Trial 3
Trial 4
Trial 5

Fig.10. Critical path’s delay obtained in a SAA trials

Table 3. Simulation results

Modes Speed (SD) Area (AR)

Delay (ns) 87.6 99.4
Area (slices) 318 274
Modes Speed with acceptable area (SAA) Area with acceptable speed (ASS)
Trials 1 2 3 4 1 2 3 4

Delay (ns) 90.3 88.0 91.8 90.4 93.8 94.9 92.6 98.9
Area (slices) 299 296 307 289 278 282 281 285

 The results simulated by our compiler were
compared with the results generated by Xilinx ISE
5.2i. The parameters were set as follow:

device family : Spartan2
device : xc2s200
package : pq208
speed grade : -5
optimization goal : speed
optimization effort : normal
place & route effort : default (low)

Table 4 shows the results of the selected component in
our four trials. From the table, we can see that the time
delay and area size generated by using Xilinx ISE are
greater than the simulated results. This is because
registers are added in front of all modules for latching
their input signals. Besides that, delay time and the
number of resource used are depended on the
place-and-route algorithm of the Xilinx ISE.

Table 4. Simulation results

Trial 1 Trial 2

Component Delay Area Component Delay Area

AddCFast[8,3] 20.86 17AddCFast[8,2] 23.00 17

AddCFast[8,3] 20.86 17AddV[8,1] 23.49 12

AddCFast[8,3] 20.86 17AddC[8,2] 23.49 12

AddCFast[8,3] 20.86 17AddC[8,2] 23.49 12

AddCFast[8,3] 20.86 17AddV[8,3] 24.06 12

Sub[8,2] 21.57 11 Sub[8,2] 21.57 11

Sub[8,2] 21.57 11SubC[8,1] 23.49 12

MulUns[12,3] 39.87 211MulUns[12,2] 41.67 210

Our proposed system *39.87 ^318Our proposed system *41.67 ^298

Xilinx ISE 43.4 365Xilinx ISE 43.1 354

Trial 3 Trial 4

Component Delay Area Component Delay Area

AddCFast[8,3] 20.86 17AddC[8,3] 23.49 12

AddCFast[8,3] 20.86 17AddC[8,1] 23.49 12

AddC[8,1] 23.49 12AddC[8,2] 23.49 12

AddMod2Nm1S0[8,2] 25.45 19AddMod2Nm1[8,3] 30.65 15

AddV[8,1] 23.49 12AddMod2Nm1S0[8,3] 31.20 16

SubV[8,3] 22.31 13Sub[8,3] 21.57 11

SubVZ[8,3] 23.02 13Sub[8,1] 21.71 9

MulUns[12,3] 39.87 211MulUns[12,2] 41.67 210

Our proposed system *39.87 ^314Our proposed system *41.67 ^297

Xilinx ISE 42.8 367Xilinx ISE 44.6 389

 Note: * = Largest and ^ = Total

8 Conclusion
We have presented a high-level, algorithmic, and
single assignment language and its compiler. We have
demonstrated, through an example, that the compiler
is capable of generating synthesizable VHDL code for
circuit design using our proposed programming
language. Simulated annealing approach is used for
speed and resource optimization. Future effort will be
concentrated on refinement of the presented
techniques.

References
[1] W. A. Najjar, W. Bohm, B. A. Draper, J.

Hammes, R. Rinker, M. Chawathe, and C. Ross,
High-level language abstraction for
reconfigurable computing, Computer, vol.36,
issue.8, 2003, pp.63 – 69.

[2] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P.
Vecchi, Optimization by simulated annealing,
Science, vol.220, 1983, pp.671-680.

[3] M. P. Vecchi and S. Kirkpatrick, Global Wiring
by Simulated Annealing, IEEE Transactions on
Computer-Aided Design of Integrated Circuits
and Systems, vol.2, issue.4, October 1983,
pp.215-222.

[4] D. E. Brown, C. L. Huntley, B. P. Markowicz,
and D. E. Sappington, Rail network routing and
scheduling using simulated annealing, IEEE
International Conference on Systems, Man and
Cybernetics, vol.1, 1992, pp.589-592.

[5] J. Hammes, R. Rinker, W. Najjar, and B. Draper,
A High-level, Algorithmic Programming
Language and Compiler for Reconfigurable
Systems, The 2nd International Workshop on the
Engineering of Reconfigurable Hardware/
Software Objects (ENREGLE), part of the 2000
International Conference on Parallel and
Distributed Processing Techniques and
Applications (PDPTA), Las Vegas, NV, June
2000.

[6] R. Zimmermann, VHDL Library of Arithmetic
Units, in Proc. First Int. Forum on Design
Languages (FDL'98), Lausanne, Switzerland,
Sept. 1998.

