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Abstract: - This paper presents a high-level, algorithmic, single-assignment programming language and its 
optimizing compiler for reconfigurable systems. The compiler is capable of accepting our proposed instruction 
sets and generating a set of synthesizable VHDL codes. Simulated annealing algorithm at the heart of this 
compiler determines the design speed and resource needed on Field Programmable Gate Array (FPGA). 
Language features are introduced and the structure of the compiler is discussed. In the paper, we particularly 
study the effects of simulated annealing schemes on our compiler. 
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1 Introduction 
Since the introduction of Field Programmable Gate 
Array (FPGA), many companies rapidly come out 
with their own architectures to suit different 
applications. In order for designers to achieve the 
shortest system design time, as well as to attain the 
highest possible performance, FPGA companies 
always provide designers with their most 
comprehensive design tools for creating designs, such 
as Xilinx ISE and Altera Quartus II. 

Consequently, nowadays FPGA designers can 
concentrate more on circuit design, instead of 
worrying about how internal logic assignment and 
place-and-route being done in FPGA. However, 
designing circuit using hardware description 
languages like VHDL and Verilog is often 
over-looked. Although these languages are suitable 
for chip design, they are time consuming tasks and 
heavily relied on designers’ expert knowledge [1].  

In this paper, a high-level, algorithmic, and 
single-assignment programming language and its 
compiler are proposed to reduce designers’ loads in 
designing digital systems on FPGA. In our proposed 
method, design entry is a simple, readable, and C-like 
programming source code. The output is a set of 
synthesizable VHDL codes. In our proposed system, 
speed and area of the circuit are optimized in dataflow 
graph by using simulated annealing (SA) algorithm. 
In this paper, we particularly study the effects of 
simulated annealing schemes on our compiler. 
Experimental results show that simulated annealing is 
capable of finding the best possible implementation in 
an efficient manner and generating VHDL code for it. 
Fig.1 illustrates the overview of the proposed system. 
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Fig.1. System overview 
 
The main advantage of our proposed methodology 

is that they provide high-speed circuit design and 
verification capabilities to the circuit designers. 
Hence, it increases the designers’ productivity and 
shortens the time-to-market. This methodology is also 
promoting component reusability while preserving its 
flexibility by outputting synthesizable VHDL codes. 
In other words, it can be easily extended to other 
architectures like ASICs and other devices that accept 
VHDL as the design input. 

The rest of the paper is organized as follows: 
Section 2 reviews the related research. Section 3 
provides a brief overview of our proposed language. 
Section 4 provides the details of flow-graph 
transformations and Section 5 discusses the simulated 
annealing used for component selection in our 
compiler. The transformation from our proposed 
source codes to VHDL codes is depicted in section 6 
by using an example. Section 7 demonstrates the 



experimental results. Concluding remarks are given 
in Section 8. 

 
 

2 Related work 
Simulated annealing (SA) is a general-purpose 
algorithm and applicable in combinational and 
function optimizations. Optimization by simulated 
annealing was introduced by Kirkpatrick, Gelatt and 
Vecchi [2] and widely used for path reduction 
purposes. The work in [3] applied SA to global wiring 
path routing for both idealized and actual designs of 
realistic size and complexity. Vecchi et al. reported 
that SA could achieve superior performance than the 
other sequential or greedy strategies those commonly 
employed in automatic wiring programs. Besides, SA 
was also utilized in rail network routing and the 
results demonstrated that SA was much preferable 
over genetic algorithm (GA) approach in which SA 
produces much better plans and easier parameter 
setting [4]. In our proposed compiler, SA is used for 
efficient design space exploration. Components in 
circuit must be selected correctly in such a way that 
the component meets the imposed throughput 
requirements.  

 
 

3 The Proposed High-level Language 
The proposed language is high-level and algorithmic, 
which simplifies circuit designing leading to shorter 
design time. All instructions are single-assignments 
and no pointer is involved for better compiler analysis 
and dataflow graph transformation [5]. Data types are 
the same as used in VHDL and the proposed 
language’s variable name, type, and bit-width are 
user-specified. Operation assignment is similar to C 
programming as shown in Fig.2. Besides, timing and 
parallelism are excluded during system level design 
for hiding the details and intricacies of low-level 
hardware design.  
 

 
 

Fig.2. Proposed high-level instruction set 
 

4 Flow-graph Transformations 
The flow-graph is obtained by parsing the instruction 
codes. This is achieved by first translating the source 
codes into a stream of tokens via lexical analyzer. This 
stream of tokens is further subjected to semantic 
analyzer which imposes a hierarchical structure on 
them to verify the correctness of the syntax. If all 
syntaxes are correct, a parse tree is formed. The parse 
tree is then further compressed to obtain a syntax tree. 
Finally, the syntax tree is transformed into a control 
and data flow graph (CDFG) that depicts the total flow 
of the control and data in the original description. Data 
dependencies that are inherent in the flow graph can 
be revealed through a full scan of the graph. Fig.3 
gives a vivid description of the above methodology 
through an example. CDFG generated during control 
flow transformation just reveals its node operation and 
dependencies between nodes. Timing and other 
information will be added later on in the subsequent 
processes. 
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#define : a,b,c,d,e,f,g,h,i,j,k : std_logic_vector := 8;  
#define : l,m,n,o,r,s,t,u,v : std_logic_vector := 8;  
#define : p,q : std_logic_vector := 12;  
#define : w,x,y : std_logic_vector := 24;  
 
 
 
e  = a + b;  f = c + d;   g = e + f;   i = g - h; 
j  = k + l;   n = j + n;   o = i + m; 
w = p*q;   y = w + x; 

Fig.3. Transformation of CDFG from instruction set. 
 
 
5 Component Selection 
In this section, each node is assigned a VHDL 
component, which is chosen from a set of library, 
shown in Table 1. Note that timing delay (ns) and area 
(slice) in the table are generated by synthesizing the 
VHDL codes, from Zimmermann’s arithmetic library 
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Type



[6], in Xilinx Integrated Software Environment (ISE) 
series 5.2i.  
 

Table 1. Components Library 
 

Component Preferences Properties 4 bit 8 bit …… 64 bit
AddC Slow Area 6.00 12.00    

AddC Slow Delay 19.66 23.49    

AddC Med Area 6.00 12.00    

AddC Med Delay 19.66 23.49    

AddC Fast Area 6.00 12.00    

AddC Fast Delay 19.66 23.49    

AddCFast Slow Area 8.00 17.00    

AddCFast Slow Delay 18.99 23.50   

.             

 
When these VHDL components are assigned, the 

timing and resource information for a circuit can be 
estimated more easily. The critical-path circuit delay 
is 
 

circuit delay 
1

c

i
i

delay
=

= ∑    (1) 

 
In other words, the circuit delay is the summation of 
all delay times in the critical path. The total area is 
 

circuit area 
1

n

j
j

area
=

= ∑                                   (2) 

 
Circuit area is the total area in CDFG. From the 
example in Fig.4, we can see that the critical-path 
circuit delay is 93.14ns (24.06ns + 23.49ns + 22.77ns 
+ 22.82ns) which is determined by the total delay in 
the critical path and the total area is the summation of 
all nodes’ area in CDFG. 
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AddMod2Nm1 [Med]
[30.53,16.00]

MulSgn [Fast]
[41.93,216.00]

AddC [Slow]
[23.49,12.00]

AddCFast [Fast]
[20.86,17.00]

AddV [Fast]
[24.06,12.00]

SubC [Med]
[22.77,13.00]

DivArrSgn [Slow]
[32.23,8.00]

SubVZ [Med]
[22.82,13.00]

AddC [Med]
[23.49,12.00]

AddCFast [Fast]
[20.86,17.00]

AddV [Med]
[37.01,41.00]

Note: Component [preferences]
 [Delay,Area]

 
 

Fig.4. Nodes with VHDL component assigned 
 

The VHDL component selection is based on four 
optimization mode selections. They are: 
o Speed (SD). The speed of the circuit is set to 

maximum regardless of how large the area will be. 

o  Area (AR). The area of the circuit is set to 
minimum regardless of how slow the speed will be. 

o Speed with acceptable area (SAA). The speed of 
the circuit is set to as high as possible with 
acceptable increasing in area size.  

o Area with acceptable speed (AAS). The area of the 
circuit is set to as small as possible with acceptable 
decreasing in speed. 

If optimization mode is set for speed (SD), the VHDL 
component with smallest delay (ns) will be chosen for 
all nodes in a particular circuit. If optimization mode 
is set for area (AR), the VHDL component with 
smallest area (slices) is taken no matter how slow the 
component will be. On the other hand, if optimization 
mode is for speed with acceptable area (SAA) or area 
with acceptable speed (AAS), optimization will be 
done by using simulated annealing (SA) algorithm. 

SA performs speed and area optimizations in 
CDFG by randomly assigning various architecture of 
the defined VHDL component to the CDFG’s nodes. 
The number of nodes to be assigned with new VHDL 
component at each iteration is based on the concept of 
temperature reduction function in SA. The number of 
nodes with new VHDL component assignment is high 
at high temperature and then it is decreased according 
to the temperature cooling schedule. When the 
temperature reaches freezing point, the process will 
stop. For example, the numbers of nodes changed in 
12 iterations on CDFG in Fig.4 are 11, 10, 9, 8, 7, 6, 5, 
4, 3, 2, 1, and 0. This concept is called as Component 
Reduction Function in our work. The SAA 
algorithm, in Fig.5, describes the modified SA 
algorithm, in which component reduction function is 
included to suit our needs. Fig.6 shows the 
relationship between the Temperature Reduction 
Function and Component Reduction Function. 

In SAA mode, the delay of the critical path is 
evaluated every iteration. SA will just accept new 
component assignment if the iteration causes decrease 
in critical path delay. An increase in delay is accepted 
if the Metropolis criteria are fulfilled. In AAS mode, 
new assignment will be accepted if there is a decrease 
in total circuit area. On the other hand, an increase in 
area will be accepted if the Metropolis criteria are 
fulfilled. 
 

 
6 VHDL Transformations 
Assuming that the node with operator “+1” in Fig.4 is 
generated from operation e = a + b and is assigned 
with AddC (8-bits adder), this node is then 
transformed into VHDL module with input ports, 
output ports, clock, chip able, and reset signal. Note 
that, input ports in the module are the node’s input 



arcs (a and b) in CDFG. Whilst, the output port in the 
module is the node’s output arc (e) in CDFG. Fig. 7 
illustrates a part of VHDL (for operation e = a + b) 
source code. 

In order to perform the addition operation, the 
AddC’s VHDL component from Zimmermann’s 
arithmetic library will be instantiated into the module. 
This process is repeated until every node is assigned 
with a module. Lastly, a top-level module with the 
same feature is created and all the modules formed 
previously are instantiated into this top module to 
form a complete VHDL module. Fig.8 depicts the 
abstract view of the top module formed. Each operator 
is instantiated with two registers at their input ports to 
store their input signals. 

 
dTemp   = Number of temperature steps
dTrial     = Number of trials at each temperature

ComponentSelection ( ) {

Initial temperature and component
for i = 1…. dTemp do
    if  SimulatedAnnealing ( ) then
        Temperature := TemperatureReduction ( );
        Component   := ComponentReduction ( );
    else
        break
    end if

        RouteLength := GetRouteLength ( );
        AreaSize       := GetTotalArea ( );

    if RouteLength < BestRouteLength or
         AreaSize       < BestAreaSize then
         store best route
    end if
    end for

}
SimulatedAnnealing ( )  {

for j = 1….dTrial do
 randomly change Component  number of nodes

    trialCost := GetRouteLength ( );
    delta := current_cost - trial_cost

 if delta > 0 then
make the change permanent

            bImprove := true
        else

p  := random number[0…1]
            m := exp(delta / Temperature)

 if p < m then
make the change permanent

                bImprove := true
end if

        end if
end for
if  bImprove := true then

 return true
end if

}

Fig.5. Pseudo code of modified SA 
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Fig.6. Temperature vs. Component Reduction Function 
 

entity Module01 is
      port ( a_in    : in   std_logic_vector  ( 7 downto 0 );

b_in    : in   std_logic_vector  ( 7 downto 0 );
e_out  : out  std_logic_vector ( 7 downto 0 );
ce, reset, clock : in   std_logic; );

end Module01;

architecture Behavioral of Module01 is
-- vhdl component declaration
component AddC
--signal declaration
signal a,b,e: std_logic_vector ( 7 downto 0 );

begin
-- vhdl component instantiation
Comp01 : AddC
--data in
process( clock, reset )
begin

if reset = '1' then
a <= (a'range => '0');
b <= (b'range => '0');

elsif clock'event and clock = '1' then
if ce = '1' then

a <= a_in;
b <= b_in;

end if;
end if;

end process;
--data out
e_out <= e;

end Behavioral;  
 

Fig.7. VHDL module for instruction e = a + b. 
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Fig.8. Abstract representation of the top module. 



7 Experimental Results 
The language and compiler have been implemented 
and tested based on the design illustrated in Fig.9, 
which contains eight operation nodes and the critical 
path formed by four operation nodes. In order for the 
SA algorithm to perform efficiently in our compiler, a 
suitable component reduction function must be 
chosen. A series of experiments has been done to 
compare the results from various component 
reduction functions in our compiler. These functions 
are shown below and the result is shown in Table 2.  
 
#define:a,b,c,d,e,f,g,h,i,j,k,l,m,n,o:integer:=8;
#define:p,q:integer:=12;
#define:w:integer:=24;

e=a+b;
f=c+d;
g=e+f;
i=g-h;
j=k+l;
m=j+n;
o=i-m;

w=p*q;
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+ + +
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Fig.9. Example (a) Instructions set (b) CDFG 
 
 

( )(1 o o NT T i T T N= − − )    (3) 

( )2
i N

o N oT T T T=     (4) 

( ) ( )3 , ln lnA
o o NT T i A T T N= − = −   (5) 

( )( ) ( )( )( )4 1 2 1 tanh 10 5o N NT T T i N= − − − +T   (6) 

( ) ( )( )5 co sh 1 0o N NT T T i N T= − +    (7) 

( ) ( )( )( )6 1 , 1o o NT A i T A A T T N N= + + − = − +  (8) 

( ) ( )( )3 2
7 1 i N

o N NT T T e T−= − + +   (9) 

( )( ) ( )( )( )8 1 2 1 c o so NT T T i Nπ= − + NT+  (10) 

( ) (9 , 1 lnAi
oT T e A N T T−= = )o N   (11) 

( ) (2 2
1 0 , 1 lnA i

oT T e A N T T−= = )o N
  (12) 

 
From Table 2, we can observe that T5 is superior as 

it obtains the highest probability of achieving 
minimum critical path delay. Besides, the delay time 
obtained in various trials is always less than 90.3 ns. 
Fig.10 shows the delays obtained from our SAA 
experiments. These critical path delays are decreasing 
along the component reduction (temperature) steps. 
Some increases in delay time are accepted to avoid 
being stuck at local minimum. 
 

Table 2. Results (dalay) of SAA for 15 trials with various 
component reduction functions 

 

Delay time (ns) 

Trial
Eqn  
T1

Eqn  
T2

Eqn  
T3

Eqn  
T4

Eqn  
T5

Eqn  
T6

Eqn  
T7

Eqn  
T8

Eqn  
T9

Eqn  
T10

1 92.2 88.2 93.2 88.9 90.0 88.1 88.1 91.5 88.8 90.4
2 90.8 90.1 90.7 88.0 88.4 89.1 90.3 91.6 88.1 87.6
3 87.6 87.6 90.4 92.3 88.7 87.6 88.8 88.9 89.4 88.6
4 91.0 90.6 90.7 88.8 90.9 88.9 88.9 91.6 91.5 91.2
5 94.1 88.7 90.8 88.2 87.6 92.8 91.1 91.8 89.1 89.4
6 88.8 87.6 91.5 92.2 88.2 90.1 90.9 89.5 90.9 89.7
7 91.9 93.3 92.1 88.2 88.2 87.6 88.1 87.6 93.4 88.2
8 87.6 88.2 89.5 89.8 90.3 93.0 91.6 90.8 89.1 89.9
9 91.4 89.5 89.2 88.2 88.4 88.7 92.1 88.8 92.7 93.1

10 91.8 87.6 90.7 92.5 88.2 94.0 87.6 91.5 89.6 90.7
11 87.6 87.6 91.1 88.4 87.6 90.1 90.2 92.4 90.2 92.9
12 88.4 89.4 87.6 89.3 87.6 89.5 87.6 87.6 88.7 89.4
13 92.6 88.4 91.9 89.8 90.1 90.5 91.2 88.9 88.4 89.5
14 90.7 88.3 91.4 90.9 88.2 91.4 89.4 90.4 87.6 90.3
15 90.8 90.9 87.6 89.5 87.6 89.3 89.1 91.3 90.2 89.4

In our subsequent experiment, the design is 
simulated based on T5 as component reduction 
function. The simulated delay and area of the 
abovementioned optimization modes are compared. 
From Table 3, it is shown that optimization with SD 
mode outperforms the others in term of speed which 
obtains minimum delay time (87.6ns). Whilst, 
optimization with AR mode is superior in term of area 
because area size (274 slices) obtained is smaller 
compared with the others. The simulation results for 
SAA and AAS modes are in between SD and AR 
optimization modes’ results.  
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Fig.10. Critical path’s delay obtained in a SAA trials 

 
Table 3. Simulation results 

 
Modes   Speed (SD)     Area (AR)   

Delay (ns)  87.6    99.4   
Area (slices)   318     274   
Modes Speed with acceptable area (SAA) Area with acceptable speed (ASS)
Trials 1 2 3 4 1 2 3 4 

Delay (ns) 90.3 88.0 91.8 90.4 93.8 94.9 92.6 98.9
Area (slices) 299 296 307 289 278 282 281 285

 



 The results simulated by our compiler were 
compared with the results generated by Xilinx ISE 
5.2i. The parameters were set as follow: 
 

device family   : Spartan2  
device    : xc2s200  
package   : pq208  
speed grade    : -5  
optimization goal  : speed 
optimization effort : normal 
place & route effort   : default (low) 
 

Table 4 shows the results of the selected component in 
our four trials. From the table, we can see that the time 
delay and area size generated by using Xilinx ISE are 
greater than the simulated results. This is because 
registers are added in front of all modules for latching 
their input signals. Besides that, delay time and the 
number of resource used are depended on the 
place-and-route algorithm of the Xilinx ISE. 
 

Table 4. Simulation results 
 

Trial 1 Trial 2 

Component Delay Area Component Delay Area

AddCFast[8,3] 20.86 17AddCFast[8,2] 23.00 17

AddCFast[8,3] 20.86 17AddV[8,1] 23.49 12

AddCFast[8,3] 20.86 17AddC[8,2] 23.49 12

AddCFast[8,3] 20.86 17AddC[8,2] 23.49 12

AddCFast[8,3] 20.86 17AddV[8,3] 24.06 12

Sub[8,2] 21.57 11 Sub[8,2] 21.57 11

Sub[8,2] 21.57 11SubC[8,1] 23.49 12

MulUns[12,3] 39.87 211MulUns[12,2] 41.67 210

Our proposed system *39.87 ^318Our proposed system *41.67 ^298

Xilinx ISE 43.4 365Xilinx ISE 43.1 354

      

Trial 3 Trial 4 

Component Delay Area Component Delay Area

AddCFast[8,3] 20.86 17AddC[8,3] 23.49 12

AddCFast[8,3] 20.86 17AddC[8,1] 23.49 12

AddC[8,1] 23.49 12AddC[8,2] 23.49 12

AddMod2Nm1S0[8,2] 25.45 19AddMod2Nm1[8,3] 30.65 15

AddV[8,1] 23.49 12AddMod2Nm1S0[8,3] 31.20 16

SubV[8,3] 22.31 13Sub[8,3] 21.57 11

SubVZ[8,3] 23.02 13Sub[8,1] 21.71 9

MulUns[12,3] 39.87 211MulUns[12,2] 41.67 210

Our proposed system *39.87 ^314Our proposed system *41.67 ^297

Xilinx ISE 42.8 367Xilinx ISE 44.6 389

      

 Note: * = Largest and ^ = Total     

 
 
           

8 Conclusion 
We have presented a high-level, algorithmic, and 
single assignment language and its compiler. We have 
demonstrated, through an example, that the compiler 
is capable of generating synthesizable VHDL code for 
circuit design using our proposed programming 
language.  Simulated annealing approach is used for 
speed and resource optimization. Future effort will be 
concentrated on refinement of the presented 
techniques. 
 
References 
[1] W. A. Najjar, W. Bohm, B. A. Draper, J. 

Hammes, R. Rinker, M. Chawathe, and C. Ross, 
High-level language abstraction for 
reconfigurable computing, Computer, vol.36, 
issue.8, 2003, pp.63 – 69. 

[2] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. 
Vecchi, Optimization by simulated annealing, 
Science, vol.220, 1983, pp.671-680. 

[3] M. P. Vecchi and S. Kirkpatrick, Global Wiring 
by Simulated Annealing, IEEE Transactions on 
Computer-Aided Design of Integrated Circuits 
and Systems, vol.2, issue.4, October 1983, 
pp.215-222.  

[4] D. E. Brown, C. L. Huntley, B. P. Markowicz, 
and D. E.  Sappington, Rail network routing and 
scheduling using simulated annealing, IEEE 
International Conference on Systems, Man and 
Cybernetics, vol.1, 1992, pp.589-592.  

[5] J. Hammes, R. Rinker, W. Najjar, and B. Draper, 
A High-level, Algorithmic Programming 
Language and Compiler for Reconfigurable 
Systems, The 2nd International Workshop on the 
Engineering of Reconfigurable Hardware/ 
Software Objects (ENREGLE), part of the 2000 
International Conference on Parallel and 
Distributed Processing Techniques and 
Applications (PDPTA), Las Vegas, NV, June 
2000. 

[6] R. Zimmermann, VHDL Library of Arithmetic 
Units, in Proc. First Int. Forum on Design 
Languages (FDL'98), Lausanne, Switzerland, 
Sept. 1998. 

 
 
 


