

A Novel Approach to the Automation of Logic-Based Security Protocol
Verification

REINER DOJEN and TOM COFFEY

Data Communications Security Laboratory
Department of Electronic and Computer Engineering

University of Limerick,
IRELAND

Abstract:- Secure communications over insecure networks relies on the security of cryptographic protocols. Formal
verification is an essential step in the design of security protocols. In particular logic-based verification has been
shown to be effective and has discovered a number of protocol flaws. However, manual application of the deductive
reasoning process is complex, tedious and prone to error. This paper introduces a novel approach to the automation of
such a deductive reasoning process. This new approach results in a comparatively simple – but powerful – proving
system for logic based security protocol verification.

Key-Words:- Automated Security Protocol Verification, Cryptographic Protocols

1. Introduction
Security protocols are used to achieve secure

communications over insecure networks by employing
cryptographic ciphers. The security of such ciphers is
an essential pre-condition for protocol security.
However, a discussion on their cryptographic strength
is outside the scope of this paper, but can be found in
papers such as [1].

The design of cryptographic protocols is a complex
and error-prone process. This is particularly evident
from the surprisingly large number of published
protocols which have later been found to contain
various flaws [2], [3], [4]. Formal verification is an
imperative step in the design of security protocols [5].
Existing formal methods include state machine
approaches, algebraic term rewriting, theorem proving
techniques and modal logics [6]. Formal verification
using logics has been shown to be effective and has
discovered a number of flaws in protocols previously
considered secure. Such logic-based techniques
involve a process of deductive reasoning, where the
desired protocol goals are deduced by applying a set of
axioms and inference rules to the assumptions and
message exchanges of the protocols. However, manual
application of the deductive reasoning is complex,
tedious and prone to error. Further, a single mistake
during this process can render the result of the
verification useless. Automated techniques reduce the
potential for human errors during verification [7].

This paper introduces layered proving trees as a
novel technique for the automation of logic-based
verification of cryptographic protocols. While most
current attempts to automate the application of logics
are based on general theorem proving techniques, it is
realised that logic based verification is a highly
restricted theorem proving problem. The presented
layered proving tree technique takes these restrictions
into account, resulting in a comparatively simple - but
powerful - proving system.

2. Logic-Based Verification of Security
Protocols

Logic-based formal verification involves the
following steps:

1. Formalization of the protocol messages
2. Specification of the initial assumptions
3. Specification of the protocol goals
4. Application of the logical postulates

Formalization of the protocol messages involves

specifying the protocol in the language of the logic by
expressing each protocol message as a logical formula.
The initial assumptions state the beliefs and
possessions of protocol principals at the beginning of a
protocol run and the protocol goals formalise the
desired beliefs and possessions of principals after a
successful protocol run. The objective of the logical
analysis is to verify whether the protocol goals can be

derived from the initial assumptions and the
formalised protocol by applying the logical postulates.
If so, the protocol is successfully verified; otherwise,
the verification fails.

2.1 Automated Logic-Based Verification
As outlined above the application of the postulates

of a verification logic is tedious and error prone.
Hence, the use of software to automatically apply the
axioms of the logic has the potential to offer
significant benefits to the protocol designer. Several
possible sources of error are automatically removed, as
an automated system will:

- not make implicit assumptions,
- not take shortcuts,
- ensure thorough and unambiguous use of the

postulates,
- not make implicit assumptions about failed

goals,
- allow redundant assumptions to be identified

easily.
Also, the effort involved in protocol verification

can be considerably reduced, since familiarity with the
axioms is no longer required. The time taken to
perform protocol verification is greatly reduced as
software can automatically verify a protocol in
minutes while a similar manual proof often requires
hours or days.

Current automated verification tools, such as TAPS
[8], AAPA2 [9] and PIL/SETHEO [10], are based on
general theorem provers. Others, such as SPEAR II

[11] and Hauser-Lee [12], are based on declarative
programming languages.

While verification tools based on such systems
offer some advantages to the protocol verifier, they
often suffer the following common limitations:

- Lack of Feedback: The presentation of the
verification results is often highly cryptic and
hard to decode. This results in poor support for
identifying reasons for failed verifications.

- Inability to Trace Verification: The performed
verification is not accessible after completion of
the verification. Only the verification results can
be reviewed, but not the decisions that make up
the verification.

- Use of improper Logics: Verification logics are
usually geared towards manual application.
Many approaches to the automation of their
application modify the logic to facilitate this
automation. Commonly, no analysis of the
correctness of the modified logic is presented.

The introduced technique of layered proving trees
will allow the creation of verification tools that do not
suffer these limitations. Figure 1 outlines the structure
of such a verification tool. The tool takes a formal
protocol specification – consisting of the formalised
protocol steps, the initial assumptions and the protocol
goals – and a formalised logic as input and, after
performing the verification automatically, outputs the
verification result. The main operation in the
automated verification is the matching of goals/sub-
goals against the conclusions of the logical postulates.

Formal Protocol Specification

Protocol Steps
Step1
Step2

...
Step m

Initial Assumptions
IA1
IA2
...

IA n

Protocol Goals
Goal1
Goal2

...
Goal o

Logic for
Layered Proving

Trees

Logical
Postulates

Layered Proving Tree Verification Engine

Matches Goals/Subgoals agains conclusions of Logical
Postulates

Verification Result

Verification ok
Verification failed - Reasons for failure

Goals

Postulate
Conclusion

Figure 1: Structure of Automated Verification Tool

3. A Novel Approach to the Automation
of Logic-Based Security Protocol
Verification
The basic idea of layered proving trees is to create a
tree representing a L-based verification of a security
protocol. Every node in this tree contains a statement,
corresponding to a goal (or sub-goal) of manual
verification. Nodes in the tree are expanded by
application of some postulate of the verification logic
L. Further, each node has an associated truth-value,
which indicates whether the statement of the node has
been proven or not.

Layered proving trees can be operated in two
modes: In mode 1, only the question if there exists any
successful verification of the protocol is of interest.
Mode 2 allows an exhaustive search for all possible
ways of verifying the protocol in question. This is
done by terminating extension of nodes within the tree
only when no further L postulates can be applied to
any leaf. Examination of the resulting layered tree will
reveal all possible verifications in L. Such a tree is
called an exhaustive layered proving tree.

Links between nodes are associated with the logical
connectives AND (AND-link) or OR (OR-link). The
truth-value of a node can only change through truth-
values of children becoming true. If a node is
connected to its children with an AND-link, it only
becomes true if all children have truth-value true. On
the other hand, if a node is connected to its children
with an OR-link, it becomes true if any of the children
has a truth-value true. Eventually, a state is reached
where either the root of the tree becomes true or no L
postulate can be applied to any leaf-node of the tree. In
the former case the verification is successful, in the
latter the verification failed.

It is worth noting, that all links in the same level
are associated with the same connective. Further, a
level with AND-links is always followed immediately
by a level with OR-links and vice versa. Hence, the
tree can be considered to consists of alternating layers,
which are associated with AND or OR connectives.
Figure 2 depicts this structure of a layered proving
tree. As it can be seen in this figure, the root node
contains the statement “Protocol is Verified” with
default truth-value false. The nodes in layer 1 (the
immediate children of the root) model the goals of the
protocol and are connected to the root via AND-links.
These first two layers form the initial layered proving
tree. This initial tree is created directly from the formal
protocol specification, which is inputted to the system.
All nodes in any layer beyond layer 1 are created by
the automated system. This is done by alternating
expansion steps and truth-value propagation steps.

Expansion steps extend the layered proving tree by
matching the statements in the nodes against
conclusions of the logical postulates. All matching
postulates are added to the tree, thus expanding the
layered proving tree. This expansion models the
application of logical postulates in a backward proof
and inserts the pre-requisites of the used postulate(s)
as new sub-goals that need to be proven in the further
verification process. Truth-value propagation steps
ensure that the truth-value of any node reflects the
current state of the verification process.

In detail, the expansion of the layered proving tree
is done as follows: Select any leaf-node in the tree that
has truth-value false and call it l. Find all matching
postulates of the used verification logic. For each of
these matching postulates add a child-node lm to l,
connected with an OR-link. This models the
possibility of proving a goal through alternative
postulates. Each of the lm is expanded by nodes lp,
corresponding to the pre-requisites of the associated
postulate. These lp are connected to the lm via AND-
links, thus modeling the requirement of pre-requisites
being proven in order to prove the conclusion of
postulates. This finalises a single expansion step. Each
expansion step is followed by a truth-value
propagation step.

In a truth-value propagation step the truth-value of
nodes is re-evaluated by examining the truth-value of
child-nodes. If all children connected to a node with
AND-links have become true, the parent-node will
also become true. If children are connected to a parent-
node with OR-links, a single child being true will
evaluate the parent node also to true. Further, for all
leave-nodes it will be checked whether the associated
statement has been proven or not. In the former case,
the node will also be marked true.

Continuing in this way, eventually either of two
possible states will be reached: either the root
evaluates to true or no node can be further expanded.
In the former case the verification is successful and the
protocol can be considered secure within the scope of
the used verification logic and with respect to the
initial assumptions and stated protocol goals. In the
latter case, the verification failed. Examination of the
layered proving tree reveals potential problems with
the protocol or identifies missing assumptions. The
identified problems should be addressed and the
verification should be repeated. Re-design of the
protocol and verification are performed iteratively
until a verifiably correct protocol is reached.

Correctness of the layered proving tree approach
can be established by proving the correctness and
completeness of the technique with respect to manual
verification. However, due to space limitations, these
proofs are not included here.

Figure 2: Layered Proving Tree Structure

4. Conclusions
Cryptographic protocols provide services for secure

communications over insecure networks. However,
experience has shown that the design of such protocols
is highly complex. Often, subtle flaws in a protocol
lead to weaknesses that can be exploited by an
attacker. Formal verification provides a means to
detect such flaws in a systematic and thorough way.
Formal verification using logics has been shown to be
effective and has discovered a number of flaws in
protocols previously considered secure.

On the other hand, the manual process of logic-
based verification is error-prone itself. Automation
promises to reduce the number of potential error-
sources, as it will ensure correct application of the
verification logic. However, existing automated
verification tools often suffer from a lack of feedback
on the performed verification. Further, they usually do
not allow the user to trace the verification path after
completion. Also they often require modifications to
established verification logics to facilitate automation.

This paper introduced the technique of layered
proving trees, which can be used to implement
verification tools for cryptographic protocols that do
not suffer from the limitations above. The basic idea of
a layered proving tree is to create a tree representing a
L-based verification of a security protocol. Every node
in this tree contains a statement, corresponding to a
goal (or sub-goal) of manual verification. Nodes in the
tree are expanded by application of some postulate of
the verification logic L. Eventually, either the
verification will be successful, or no postulate of the
verification logic L can be further applied.

In conclusion, the layered proving tree approach
provided a simple, but powerful, proving system for
automated logic-based verification of cryptographic
protocols.

References:

[1] Dojen, R. and Coffey, T., “Applying Conditional
Linear Cryptanalysis to Ciphers With Key-
Dependant operations” , WSEAS Transactions on
Computers, Vol. 5, No. 3, 2004, pp.1425-1430

[2] Burrows, M., Abadi, M. and Needham, R., “A
Logic of Authentication,” ACM Operating
Systems Review, Vol. 23, No. 5, 1989, pp.1-13.

[3] Gong, L., Needham, R., and Yahalom, R.,
“Reasoning About Belief in Cryptographic
Protocols,” Proceedings of the IEEE Computer

Security Synopsis on Research in Security and
Privacy, Oakland, USA, May 1990, pp.234-248

[4] Coffey, T. and Saidha, P., “A Logic for
Verifying Public Key Cryptographic Protocols” ,
IEE Journal Proceedings-Computers and Digital
Techniques, Vol. 144, No. 1, 1997, pp.28-32.

[5] Coffey, T., Dojen, R. and Flanagan, T., “Formal
Verification: An Imperative Step in the Design
of Security Protocols” , Computer Networks
Journal, Elsevier Science, Vol. 43, No. 5, 2003,
pp.601-618

[6] Coffey, T., Dojen, R. and Flanagan, T., “On the
Formal Verification of Cryptographic
Protocols”, Proceedings of CSCC’03 (WSEAS
International Conference on Circuits, Systems,
Communciations and Computers), Corfu,
Greece, 7-10 July 2003

[7] Coffey, T., Dojen, R. and Flanagan, T., “On the
Automated Implementation of Modal Logics
used to Verify Security Protocols”, Proceedings
of International Symposium on Information and
Communication Technologies (Invited Workshop
on Network Security and Managemen), Dublin,
Ireland, September 2003, pp.324-347

[8] Cohen, E., “First-Order Verification of
Cryptographic Protocols”, Journal of Computer
Security, Vol. 11, No. 2, 2003, pp.189-216

[9] Brackin, S., “Automatically Detecting Most
Vulnerabilities in Cryptographic Protocols,”
Proceedings of DARPA Information
Survivability Conference and Exposition, Hilton
Head, USA, January 2000, pp.222-236

[10] Schumann, J., “PIL/SETHEO: A Tool for the
Automatic Analysis of Authentication
Protocols,” Proceedings of International
Conference on Computer Aided Verification,
Trento, Italy, July 1999, pp.500-504

[11] Saul, E. and Hutchison, A., “SPEARII: The
Security Protocol Engineering and Analysis
Resource”, Proceedings of South African Tele-
communications, Networks and Applications
Conference, Durban, South Africa, September
1999, pp.171-177

[12] Hauser, R.C. and Lee, E.S., “Verification and
Modelling of Authentication Protocols” ,
Proceedings of Second European Symposium on
Research in Computer Security, Toulouse,
France, November 1992, pp.141-154

