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Abstract:- Secure communications over insecure networks relies on the security of cryptographic protocols. Formal 
verification is an essential step in the design of security protocols. In particular logic-based verification has been 
shown to be effective and has discovered a number of protocol flaws. However, manual application of the deductive 
reasoning process is complex, tedious and prone to error. This paper introduces a novel approach to the automation of 
such a deductive reasoning process. This new approach results in a comparatively simple – but powerful – proving 
system for logic based security protocol verification. 
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1. Introduction 
Security protocols are used to achieve secure 

communications over insecure networks by employing 
cryptographic ciphers. The security of such ciphers is 
an essential pre-condition for protocol security. 
However, a discussion on their cryptographic strength 
is outside the scope of this paper, but can be found in 
papers such as [1].  

The design of cryptographic protocols is a complex 
and error-prone process. This is particularly evident 
from the surprisingly large number of published 
protocols which have later been found to contain 
various flaws [2], [3], [4]. Formal verification is an 
imperative step in the design of security protocols [5]. 
Existing formal methods include state machine 
approaches, algebraic term rewriting, theorem proving 
techniques and modal logics [6]. Formal verification 
using logics has been shown to be effective and has 
discovered a number of flaws in protocols previously 
considered secure. Such logic-based techniques 
involve a process of deductive reasoning, where the 
desired protocol goals are deduced by applying a set of 
axioms and inference rules to the assumptions and 
message exchanges of the protocols. However, manual 
application of the deductive reasoning is complex, 
tedious and prone to error. Further, a single mistake 
during this process can render the result of the 
verification useless. Automated techniques reduce the 
potential for human errors during verification [7]. 

This paper introduces layered proving trees as a 
novel technique for the automation of logic-based 
verification of cryptographic protocols. While most 
current attempts to automate the application of logics 
are based on general theorem proving techniques, it is 
realised that logic based verification is a highly 
restricted theorem proving problem. The presented 
layered proving tree technique takes these restrictions 
into account, resulting in a comparatively simple - but 
powerful - proving system. 

2. Logic-Based Verification of Security 
Protocols 

Logic-based formal verification involves the 
following steps: 
 

1. Formalization of the protocol messages 
2. Specification of the initial assumptions 
3. Specification of the protocol goals 
4. Application of the logical postulates 

 
Formalization of the protocol messages involves 

specifying the protocol in the language of the logic by 
expressing each protocol message as a logical formula. 
The initial assumptions state the beliefs and 
possessions of protocol principals at the beginning of a 
protocol run and the protocol goals formalise the 
desired beliefs and possessions of principals after a 
successful protocol run. The objective of the logical 
analysis is to verify whether the protocol goals can be 



derived from the initial assumptions and the 
formalised protocol by applying the logical postulates. 
If so, the protocol is successfully verified; otherwise, 
the verification fails.  

2.1 Automated Logic-Based Verification 
As outlined above the application of the postulates 

of a verification logic is tedious and error prone. 
Hence, the use of software to automatically apply the 
axioms of the logic has the potential to offer 
significant benefits to the protocol designer. Several 
possible sources of error are automatically removed, as 
an automated system will:   

- not make implicit assumptions, 
- not take shortcuts, 
-  ensure thorough and unambiguous use of the 

postulates, 
- not make implicit assumptions about failed 

goals, 
- allow redundant assumptions to be identified 

easily. 
Also, the effort involved in protocol verification 

can be considerably reduced, since familiarity with the 
axioms is no longer required. The time taken to 
perform protocol verification is greatly reduced as 
software can automatically verify a protocol in 
minutes while a similar manual proof often requires 
hours or days.  

Current automated verification tools, such as TAPS 
[8], AAPA2 [9] and PIL/SETHEO [10], are based on 
general theorem provers. Others, such as SPEAR II 

[11] and Hauser-Lee [12], are based on declarative 
programming languages.  

While verification tools based on such systems 
offer some advantages to the protocol verifier, they 
often suffer the following common limitations: 

- Lack of Feedback: The presentation of the 
verification results is often highly cryptic and 
hard to decode. This results in poor support for 
identifying reasons for failed verifications. 

- Inability to Trace Verification: The performed 
verification is not accessible after completion of 
the verification. Only the verification results can 
be reviewed, but not the decisions that make up 
the verification. 

- Use of improper Logics: Verification logics are 
usually geared towards manual application. 
Many approaches to the automation of their 
application modify the logic to facilitate this 
automation. Commonly, no analysis of the 
correctness of the modified logic is presented. 

The introduced technique of layered proving trees 
will allow the creation of verification tools that do not 
suffer these limitations. Figure 1 outlines the structure 
of such a verification tool. The tool takes a formal 
protocol specification – consisting of the formalised 
protocol steps, the initial assumptions and the protocol 
goals – and a formalised logic as input and, after 
performing the verification automatically, outputs the 
verification result. The main operation in the 
automated verification is the matching of goals/sub-
goals against the conclusions of the logical postulates. 
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Figure 1: Structure of Automated Verification Tool



3. A Novel Approach to the Automation 
of Logic-Based Security Protocol 
Verification 
The basic idea of layered proving trees is to create a 
tree representing a L-based verification of a security 
protocol. Every node in this tree contains a statement, 
corresponding to a goal (or sub-goal) of manual 
verification. Nodes in the tree are expanded by 
application of some postulate of the verification logic 
L. Further, each node has an associated truth-value, 
which indicates whether the statement of the node has 
been proven or not.  

Layered proving trees can be operated in two 
modes: In mode 1, only the question if there exists any 
successful verification of the protocol is of interest. 
Mode 2 allows an exhaustive search for all possible 
ways of verifying the protocol in question. This is 
done by terminating extension of nodes within the tree 
only when no further L postulates can be applied to 
any leaf. Examination of the resulting layered tree will 
reveal all possible verifications in L. Such a tree is 
called an exhaustive layered proving tree. 

Links between nodes are associated with the logical 
connectives AND (AND-link) or OR (OR-link). The 
truth-value of a node can only change through truth-
values of children becoming true. If a node is 
connected to its children with an AND-link, it only 
becomes true if all children have truth-value true. On 
the other hand, if a node is connected to its children 
with an OR-link, it becomes true if any of the children 
has a truth-value true. Eventually, a state is reached 
where either the root of the tree becomes true or no L 
postulate can be applied to any leaf-node of the tree. In 
the former case the verification is successful, in the 
latter the verification failed. 

It is worth noting, that all links in the same level 
are associated with the same connective. Further, a 
level with AND-links is always followed immediately 
by a level with OR-links and vice versa. Hence, the 
tree can be considered to consists of alternating layers, 
which are associated with AND or OR connectives. 
Figure 2 depicts this structure of a layered proving 
tree. As it can be seen in this figure, the root node 
contains the statement “Protocol is Verified”  with 
default truth-value false. The nodes in layer 1 (the 
immediate children of the root) model the goals of the 
protocol and are connected to the root via AND-links. 
These first two layers form the initial layered proving 
tree. This initial tree is created directly from the formal 
protocol specification, which is inputted to the system. 
All nodes in any layer beyond layer 1 are created by 
the automated system. This is done by alternating 
expansion steps and truth-value propagation steps.  

Expansion steps extend the layered proving tree by 
matching the statements in the nodes against 
conclusions of the logical postulates. All matching 
postulates are added to the tree, thus expanding the 
layered proving tree. This expansion models the 
application of logical postulates in a backward proof 
and inserts the pre-requisites of the used postulate(s) 
as new sub-goals that need to be proven in the further 
verification process. Truth-value propagation steps 
ensure that the truth-value of any node reflects the 
current state of the verification process. 

In detail, the expansion of the layered proving tree 
is done as follows: Select any leaf-node in the tree that 
has truth-value false and call it l. Find all matching 
postulates of the used verification logic. For each of 
these matching postulates add a child-node lm to l, 
connected with an OR-link. This models the 
possibility of proving a goal through alternative 
postulates. Each of the lm is expanded by nodes lp, 
corresponding to the pre-requisites of the associated 
postulate. These lp are connected to the lm via AND-
links, thus modeling the requirement of pre-requisites 
being proven in order to prove the conclusion of 
postulates. This finalises a single expansion step. Each 
expansion step is followed by a truth-value 
propagation step.  

In a truth-value propagation step the truth-value of 
nodes is re-evaluated by examining the truth-value of 
child-nodes. If all children connected to a node with 
AND-links have become true, the parent-node will 
also become true. If children are connected to a parent-
node with OR-links, a single child being true will 
evaluate the parent node also to true. Further, for all 
leave-nodes it will be checked whether the associated 
statement has been proven or not. In the former case, 
the node will also be marked true. 

Continuing in this way, eventually either of two 
possible states will be reached: either the root 
evaluates to true or no node can be further expanded. 
In the former case the verification is successful and the 
protocol can be considered secure within the scope of 
the used verification logic and with respect to the 
initial assumptions and stated protocol goals. In the 
latter case, the verification failed. Examination of the 
layered proving tree reveals potential problems with 
the protocol or identifies missing assumptions. The 
identified problems should be addressed and the 
verification should be repeated. Re-design of the 
protocol and verification are performed iteratively 
until a verifiably correct protocol is reached. 

Correctness of the layered proving tree approach 
can be established by proving the correctness and 
completeness of the technique with respect to manual 
verification. However, due to space limitations, these 
proofs are not included here. 



 

Figure 2: Layered Proving Tree Structure



4. Conclusions 
Cryptographic protocols provide services for secure 

communications over insecure networks. However, 
experience has shown that the design of such protocols 
is highly complex. Often, subtle flaws in a protocol 
lead to weaknesses that can be exploited by an 
attacker. Formal verification provides a means to 
detect such flaws in a systematic and thorough way. 
Formal verification using logics has been shown to be 
effective and has discovered a number of flaws in 
protocols previously considered secure. 

On the other hand, the manual process of logic-
based verification is error-prone itself. Automation 
promises to reduce the number of potential error-
sources, as it will ensure correct application of the 
verification logic. However, existing automated 
verification tools often suffer from a lack of feedback 
on the performed verification. Further, they usually do 
not allow the user to trace the verification path after 
completion. Also they often require modifications to 
established verification logics to facilitate automation. 

This paper introduced the technique of layered 
proving trees, which can be used to implement 
verification tools for cryptographic protocols that do 
not suffer from the limitations above. The basic idea of 
a layered proving tree is to create a tree representing a 
L-based verification of a security protocol. Every node 
in this tree contains a statement, corresponding to a 
goal (or sub-goal) of manual verification. Nodes in the 
tree are expanded by application of some postulate of 
the verification logic L. Eventually, either the 
verification will be successful, or no postulate of the 
verification logic L can be further applied. 

In conclusion, the layered proving tree approach 
provided a simple, but powerful, proving system for 
automated logic-based verification of cryptographic 
protocols. 
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