
A Unit Resolution Approach to Knowledge Compilation

Arindama Singh and Manoj K Raut
Department of Mathematics

Indian Institute of Technology
Chennai-600036, India

Abstract : Knowledge compilation deals with the computational intractability of reasoning problems. To
overcome this difficulty we provide three different compilation approaches to a first order knowledge base.
The knowledge base Σ is preprocessed by unit resolution into an approximate knowledge base CKB(Σ) from
which a subset of possible queries can be answered by unit refutation. The number of clauses obtained by
each of the three methods is less than the number of clauses in the prime implicate set.

Keywords : First Order Logic, Resolution Restriction, Horn Clauses

1. Introduction

Answering a query in propositional knowledge base
is a central issue in Artificial Intelligence. Deter-
mining whether or not a given query follows from a
propositional knowledge base is intractable [3] since
every algorithm takes exponential time in the worst
case. To overcome such computational difficulties the
knowledge base is mapped (compiled) during an off-
line phase into an appropriate data structure with
respect to which inference becomes tractable. The in-
ference process is referred to as the on-line reasoning,
and the off-line phase is termed as knowledge compila-
tion [2]. Such type of knowledge compilation involves
the mapping of Σ into a logical equivalent set of for-
mulas Π(Σ), the set of prime implicates/implicants
[6, 7, 10, 11] of Σ, where answering queries with re-
spect to Π(Σ) is tractable. Another equivalence pre-
serving compilation is given in [4, 9] where Σ is com-
piled into a logically equivalent database FPI(Σ) and
the queries are answered by unit refutation in an on-
line phase in polynomial time.

Most of the research works to date in knowledge
compilation have been carried out in propositional
knowledge base in spite of the higher expressing ca-
pability of first order knowledge base. In this paper
we describe three knowledge compilation methods to
map the given clausal data base Σ by unit resolu-
tion to an approximate data base CKB(Σ) with re-
spect to which a subset of possible queries can be
answered. These methods extend the corresponding
propositional algorithms [1, 5, 8] to first order knowl-
edge base. We will see that Σ ≡ CKB(Σ), for all
the three compilation methods. The compilation in-
volves the derivation of all possible resolutions among

clauses exploiting a resolution based prime implicate
algorithm in first order knowledge base.

The paper is structured as follows. In Section 2,
the definition of two types of restrictions of resolu-
tion are described and their relationship with unit
resolution is established. All the three compilation
methods are described in Section 3. We finally give
some concluding remarks in Section 4.

2. Preliminaries

We assume the syntax and semantics of first order
logic along with the usual notions of literals, disjunc-
tive clauses, and SCNF or Skolem conjunctive nor-
mal form formulas. Two literals s and t are said to
be complementary to each other iff there exists a sub-
stitution ξ(most general unifier) such that sξ = ¬tξ.
Such a substitution is called a complementary substi-
tution. For example, Qyb and ¬Qax are complemen-
tary to each other with respect to the substitution
ξ = [y/a, x/b]. We also refer a clause as fundamental
if it does not contain a literal and its negation.

Let C1 and C2 be two clauses. C2 is said to be
subsumed by C1 iff C1σ ⊆ C2 for a substitution σ and
then C1 subsumes C2. For example, {Px, Qb} sub-
sumes {Pa, Qb,Rxc} for the substitution σ = [x/b].

A fundamental disjunctive clause C1 is an impli-
cate of a formula Σ iff Σ |= C1. A clause C1 is said
to be a prime implicate of Σ if C1 is said to be an
implicate of Σ and there is no other implicate C2 of
Σ such that C2 subsumes C1.

Let C1 and C2 be two clauses in a knowledge
base Σ. If there exists exactly one literal which oc-
curs unnegated in one of C1 or C2 and negated in
other and s and t be such a pair of complementary

1



literals in C1 and C2, respectively with respect to a
most general unifier σ then resolution of C1 and C2 is
C = ((C1−{s})∪(C2−{t}))σ which can also be writ-
ten as ((C1σ−{l}∪ (C2σ−{¬l})), where sσ = l and
tσ = ¬l for a literal l. If C is obtained by the resolu-
tion of C1 and C2 with respect to a most general uni-
fier σ then the resolvent C is said to be associated with
σ. By default, each clause Ci in Σ = {C1, . . . , Cn} is
associated with the empty substitution ε. If Ci and
Cj are two resolvent clauses associated with substi-
tutions σ1 and σ2, respectively then their resolution
with respect to σ is defined provided σ1σ = σ2σ. A
unit resolution is a resolution in which one of the two
clauses is a unit clause.

Recall that if C is the resolution of two clauses
C1 and C2 then C = ((C1σ − {l}) ∪ (C2σ − {¬l})).
Moreover if u ∈ C1σ−{l} and v ∈ C2σ−{¬l} and for
some substitution ξ, uξ = vξ then the merge literal is
a literal which subsumes both u and v. We denote by
M the set of all merge literals for all possible ξ. We
call C a merge resolvent with M as the set of merge
literals. For example, let C1 = {Pxa,Qa, Rz} and
C2 = {Pzy,¬Rb}. The merge literal of the resolvent
C = {Pxa,Qa, Pby} is Pxy.

Let C be the resolution of two clauses C1 and C2.
If u1σ ∈ C1σ − {l}, then the occurrence of u1σ is
an immediate descendant of u1 ∈ C1 and u1 is an
immediate ancestor of u1σ. Similarly, the definition
can also be applied to C2 instead of C1. A resolution
deduction of a clause D from a clausal database Σ is
a sequence of clauses D1, . . . , Dm such that each Di

is either a member of Σ or a resolvent of Dj and Dk

preceding Di and D = Dm. Let ‘descendant’ be the
reflexive transitive closure of the relation ‘immediate
descendant’ in a given resolution deduction.

A resolution deduction is called a general resolu-
tion deduction if every resolvent is obtained by reso-
lution. A resolution deduction is called a unit deduc-
tion if every resolvent is obtained by unit resolution.
A resolution deduction is said to be weak no-merge
(wnm) deduction if no resolvent is a merge resolvent.
A resolution deduction of a clause C from a set of
clauses Σ is said to be no-merge (nm) deduction if no
merge resolvent has any descendants of its merge lit-
erals resolved upon. Let Σ ` C, Σ `u C, Σ `wnm C

and Σ `nm C denote respectively, the general, unit,
weak no-merge and no-merge deductions. The wnm-
deduction does not allow merges whereas no-merge
keeps all merge resolvents provided no merge literal
is resolved upon later in the deduction. Unit resolu-
tion is a special case of both wnm- and nm- resolution

as merge does not occur in it.

Theorem 2.1 Let Σ be a set of clauses and C be any
clause. The following two statements are equivalent.
(i) Σ `nm D where Dη ⊆ C, for some

substitution η and some clause D

(ii) Σ ∪ ¬C `u ⊥

Proof Let Σ = {C1, . . . , Ck} be the set of clauses.
Let D1, . . . , Dn be the nm-deduction of a clause D (=
Dn = {d1, . . . , dm}) from the set of clauses Σ. Rewrite
the given clause C as {d∗1, . . . , d∗m, d∗m+1, . . . , d

∗
l } where

d1η = d∗1, . . . , dmη = d∗m for a substitution η so that
Dη ⊆ C. Then, Σ ∪ ¬C becomes {C1, . . . , Ck,

¬d∗1, . . . ,¬d∗m,¬d∗m+1, . . . ,¬d∗l }. We show that Σ ∪
¬C `u ⊥ by induction on the length n of the nm-
deduction.

Suppose D is obtained by resolution in one step
from Σ. In particular, let D = ((C1σ−{s})∪ (C2σ−
{t})) where s and t are two complementary pair of
literals. Then taking resolution (in fact, unit resolu-
tion) on Σ ∪ ¬C (where ¬Dη ⊆ ¬C) all the literals
of ¬C will be resolved away with clauses of Σ except
possibly, s and t. This two literals can be resolved by
the substitution σ. Hence it upholds for n = 1.

Let it be true for all i such that 1 ≤ i ≤ n. To
show that it is true for n + 1, let the deduction be
D1, . . . , Dn, Dn+1 of the clause D = Dn+1 and for
some η, Dη ⊆ C. We want to show that Σ ∪ ¬C `u

⊥. Suppose D is obtained by the resolution of two
clauses Dn and D∗ by a substitution σ which are as-
sociated with substitutions σ1 . . . σn and η1 . . . ηn′ re-
spectively and D∗ comes from some other deduction.
Let {d1

′
, . . . , di

′
, s} = Dn and {dj

′
, . . . , dm

′
, t} = D∗

be such that
d1, . . . , di, l ∈ Dnσ and dj , . . . , dm,¬l ∈ D∗σ,
where d1

′
σ = d1, . . . , di

′
σ = di, dj

′
σ = dj , . . . ,

dm

′
σ = dm, sσ = l, tσ = ¬l. Since Dn and D∗ are

obtained in at most n steps, by the induction hypoth-
esis, Σ `nm Dn for some Dnσ ⊆ C1

′
. This implies

that Σ ∪ ¬C1

′
`u ⊥. And also, Σ `nm D∗ for some

D∗σ ⊆ C2

′
implies Σ ∪ ¬C2

′
`u ⊥. Since s ∈ Dn

and t ∈ D∗ are resolved to get D, s and t must not
be merge literals as it is an nm-deduction. So we
have exactly two clauses Cp and Cq in Σ such that
l1 ∈ Cp, l2 ∈ Cq, and l1σ1 . . . σn = s, l2η1 . . . ηn′ = t

which implies

l1σ1 . . . σnσ = l, l2η1 . . . ηn′ σ = ¬l (1)

When we take resolution in Σ∪¬C (where ¬Dη ⊆
¬C), all the clauses will be resolved away with respect

2



to the substitution σ1 . . . σnση and η1 . . . ηn′ ση due to
unit refutation of Dn and D∗ (by induction) leaving
l1 and l2 which can then be resolved away with the
substitutions σ1 . . . σnσ and η1 . . . ηn′ σ by (1) to ob-
tain a unit refutation in Σ ∪ ¬C.

Conversely, since every unit refutation is an nm-
refutation, Σ ∪ ¬C `u ⊥ implies Σ ∪ ¬C `nm ⊥. By
soundness of resolution Σ `nm C. Taking D = C we
get Σ `nm D. This completes the proof. �

Since every wnm-deduction is also an nm-deduction,
we have the following:

Corollary 2.2 Let Σ be a set of clauses and C be
any clause. Σ `wnm D for some D ⊆ C implies
Σ ∪ ¬C `u ⊥.

We will use the following terminology. A unit
(nm-, wnm-) deduction of ⊥ from a set of clauses
Σ is called a unit (nm-, wnm-) refutation of Σ. If
there is a unit (nm-, wnm-) refutation of Σ, then we
call Σ to be unit (nm-, wnm-) refutable.

Let Σ be a clausal knowledge base and C be any
clause. Then Σ is unit refutation complete (nm-refutation
complete, wnm-refutation complete) iff for any clause
C, Σ |= C iff Σ ∪ ¬C is unit (nm-, wnm-)refutable.
we abreviate it to uc(nmc,wnmc). Using Theorem
2.1, the following results can be proved.

Theorem 2.3 Let Σ be a clausal knowledge base.
Then Σ is nm-refutable iff it is wnm-refutable iff it
is unit refutable. Moreover, Σ is uc iff it is nmc iff
it is wnmc.

The knowledge base Σ is preprocessed (compiled)
into another knowledge base CKB(Σ) from which a
subset of possible queries can be answered. We com-
pute the prime implicates for first order logic formu-
las by consensus-subsumption algorithm. Note that,
if each clause in a CNF is assumed to be a sentence,
i.e, each variable is universally quantified then the
resolution principle that resolvent of two clauses is
a logical consequence of the previous clause holds.
Those implicates are added to Σ in violation of the
nm or wnm restriction. We get nmc and wnmc which
ensures uc.

3. wnm-, nm- resolution and horn com-
pilation

We compute the implicates by a resolution based
algorithm. Recall that we can compute an implicate
C with respect to a substitution σ from two clauses
C1 and C2 associated with σ1 and σ2 respectively,

provided σ1σ = σ2σ. The set of clauses obtained by
this algorithm is collected in CKB1(Σ), the compiled
knowledge base of Σ, which is partially unit refutation
complete.

Algorithm(wnmerge)

Input: Σ, the given set of clauses
Output: CKB1(Σ)
begin

CKB1 := Σ;
Π := Σ;

While two clauses contain a pair of complementary
literals in CKB1

do
compute the implicate C;
if C := φ;

return CKB1

else
if C is subsumed by some clause
in Π

continue;
else

if C subsumes any clause D

from Π and CKB1

CKB1 :=
(CKB1 − {D}) ∪ {C};
Π = Π− {D};

endif
Π = Π ∪ {C};
if C is a merge resolvent

CKB1 := CKB1 ∪ {C};
endif

endif
endif

od
return CKB1(Σ)

end

Let Σ be the the given set of clauses. Let L(Σ)
be the set of clauses obtained after the application
of one step of the algorithm, i.e, after taking the res-
olution of two clauses. Similarly we can construct
the sequence Σ, L(Σ), L(L(Σ)), . . ., i.e, with Ln+1(Σ)
= L(Ln(Σ)), for n ≥ 0 and L0(Σ) = Σ, and we write
CKB1(Σ) = ∪{Li(Σ) : i ∈ N}. Does the sequence
{Ln(Σ)} terminate ? The following example shows
that it may not. This is because, the process may
not terminate for some inputs. The above algorithm
reflects these possibilities in the step ‘compute an im-
plicate C’.

3



Example 3.1 Let Σ = {¬Pxy∨¬Pyz∨Pxz, ¬Pst∨
¬Ptu∨¬Puw∨Psw}. The consensus closure of both
the clauses is infinite. L(Σ) = {¬Pxy ∨ ¬Pyz ∨
Pxz, ¬Pst ∨ ¬Ptu ∨ ¬Puw ∨ Psw, ¬Psy ∨ ¬Pyt ∨
¬Ptu∨¬Puw∨Psw}. We can see there is no m > n

such that Lm(Z1) = Ln(Z1), i.e., none of the clauses
subsumes any of the others. Hence the process does
not terminate for transitivity axiom as input.

However, the following results about the weak no
merge resolution compilation hold; proofs may be ob-
tained using the results of Section 2.

Theorem 3.1 If the algorithm wnmerge terminates,
then it correctly computes the set CKB1.

Theorem 3.2 Let Σ be a given clausal database and
CKB1 be the compiled database of Σ. Then Σ ≡
CKB1.

Theorem 3.3 Let CKB1(Σ) be the database obtained
by the algorithm wnmerge from the clausal database
Σ. Then Σ |= C iff CKB1(Σ) ∪ ¬C `u ⊥, i.e.,
CKB1(Σ) is unit refutation complete.

The knowledge base CKB1 stores all merge resol-
vents whereas CKB2 keeps merge resolvents provided
merge literals are not resolved upon. We can see that
CKB2 does not produce more number of clauses than
CKB1. In the algorithm given below the set of merge
literals of a resolvent C (implicate) obtained from C1

and C2 are collected in a set M . But when we collect
all possible implicates, the set of merge literals of all
implicates are updated in the set M

′
which equals

M
′ ∪M .

Algorithm(nmerge)

Input : Σ, a set of clauses
Output : CKB2(Σ)
begin

CKB2 := Σ;
M

′
:= φ;

while two clauses Ci and Cj in CKB2

contain a pair of
complementary literals r and s

do
if the complementary literals do not
unify with any element of M

′

compute an implicate C from
Ci and Cj

M := set of merge literals of C;
if C := φ

return CKB2

if C is subsumed by some

clause in CKB2

continue;
else

if C subsumes some clause
D in CKB2 or C is a
merge resolvent

CKB2 := CKB2 − {D};
CKB2 := CKB2 ∪ {C};

endif
endif

endif
else

continue
endif

M
′
:= M

′ ∪M ;
od
return CKB2(Σ)

end

In general, CKB2 saves space as compared to
CKB1, see Example 4.1 below. Analogous to wnmerge,
the algorithm nmerge need not terminate. We show
its partial correctness. Moreover, the following re-
sults about the no merge resolution compilation hold.

Theorem 3.4 If the algorithm nmerge terminates,
then it correctly computes the set CKB2.

Theorem 3.5 Let CKB2(Σ) be the knowledge base
obtained by the algorithm nmerge from the knowledge
base Σ. Then Σ |= C iff CKB2(Σ) ∪ ¬C `u ⊥,i.e.,
CKB2(Σ) is unit refutation complete.

As another alternative approach, we take the clausal
database Σ as the set of horn clauses and non-horn
clauses. In the algorithm we avoid taking resolutions
between horn clauses as it increases the search space.
We collect the set of horn clauses in CKBH and non-
horn clauses in CKBN and perform their union to
obtain CKB3. We compute C as the resolution of
two clauses where at least one clause is non-horn due
to [5].

Algorithm(horn)

Input : Σ, the set of given clauses
Output: CKB3(Σ)
begin

H:=horn clauses of Σ;
N :=non horn clauses of Σ;
CKBH := H and CKBN := N ;
while two clauses C1 and D1 from
H ∪N and N respectively contain
a pair of complementary literals

4



do
compute C;
if C := φ;

return CKB3

else
if C is subsumed by some clause
D ∈ H ∪N

continue;
else

if C is horn
if C subsumes some clause

D from H,N ,CKBH

and CKBN

H := H − {D},
N := N − {D},
CKBH :=
CKBH − {D},
CKBN :=
CKBN − {D};
H := H ∪ C;

endif
if C is a merge resolvent or

C subsumes some clause
D from CKBH ∪ CKBN

CKBH := CKBH ∪ {C};
endif

else
if C subsumes any clause D

from N and CKBN

N := N − {D},
CKBN :=
CKBN − {D};
N := N ∪ C;

endif
if C is a merge resolvent or

C subsumes some clause
D ∈ CKBN

CKBN := CKBN ∪ C;
endif

endif
endif

endif
od
CKB3 := CKBH ∪ CKBN ;
return CKB3(Σ)

end

Note that here also, the algorithm may not ter-
minate as is evident form Example 3.1. However, the
following results about the algorithm horn hold.

Theorem 3.6 Let Σ be a knowledge base and C be
any clause. Then Σ |= C iff CKB3(Σ) ∪ ¬C `u ⊥,
i.e., CKB3(Σ) is unit refutation complete.

Theorem 3.7 If the algorithm horn terminates, then
it correctly computes the set CKB3(Σ).

We illustrate the above three algorithms in the
following example.

Example 3.2 Let Σ = {{Px, Qya,Rx}, {Pa,

¬Qbz, Sy}, {¬Pb,Qbz, Ta}, {¬Py,¬Qxa,Uz},
{¬Sb, V y, Wb}}. Taking resolution between
{Px, Qya,Rx} and {¬Pb,Qbz, Ta} we get C =
{Qya, Rb,Qbz, Ta} associated with the substitution
[x/b]. As Qyz subsumes both Qya and Qbz, it is the
merge literal in C. M = {Qyz} = M

′
. CKB1 = Σ∪

{Qya, Rb,Qbz, Ta}, CKB2 = Σ∪{Qya, Rb,Qbz, Ta}.
Taking resolution between {Pa,¬Qbz, Sy} and
{¬Py,¬Qxa,Uz} we get C = {¬Qbz, Sa,¬Qxa,Uz}
associated with a substitution [y/a]. ¬Qxz is the
merge literal in C as it subsumes both ¬Qbz and
¬Qxa. M = ¬Qxz and M

′
= {Qyz,¬Qxz}. So

CKB1 = CKB1 ∪ {¬Qbz, Sa,¬Qxa,Uz}, CKB2 =
CKB2 ∪ {¬Qbz, Sa,¬Qxa,Uz}. Taking resolution
between {Px, Qya,Rx} and {Pa,¬Qbz, Sy} we get
C = {Px, Rx, Pa, Sb} associated with [y/b, z/a]. As
the complementary literals Qya and ¬Qbz of the above
two clauses unify with M

′
, C can be added to CKB1

but not to CKB2. CKB1 = CKB1∪{Px, Rx, Pa, Sb}
but CKB2 remains as such. Similarly, we get C =
{¬Pb, Ta,¬Py, Ua} by taking resolution between
{¬Pb,Qbz, Ta} and {¬Py,¬Qxa,Uz} with respect
to complementary literals Qbz and ¬Qxa. Since this
two complementary literals unify with M

′
, C is added

to CKB1 but not to CKB2. Thus, CKB1 =
{{Px, Qya,Rx}, {Pa,¬Qbz, Sy}, {¬Pb,Qbz, Ta},
{¬Py,¬Qxa,Uz}, {¬Sb, V y,Wb}, {Qya, Rb,Qbz,

Ta}, {¬Qbz, Sa,¬Qxa,Uz}, {Px, Rx, Pa, Sb},
{¬Pb, Ta,¬Py, Ua}} and CKB2 = {{Px, Qya,Rx},
{Pa,¬Qbz, Sy}, {¬Pb,Qbz, Ta}, {¬Py,¬Qxa,Uz},
{¬Sb, V y, Wb}, {Qya, Rb,Qbz, Ta}, {¬Qbz, Sa,¬Qxa,

Uz}}. It can be verified that CKB1 = CKB3 and the
set of prime implicates become PI = {{Px, Qya,Rx},
{Pa,¬Qbz, Sy}, {¬Pb,Qbz, Ta}, {¬Py,¬Qxa,Uz},
{¬Sb, V y, Wb}, {Qya, Rb,Qbz, Ta}, {¬Qbz, Sa,¬Qxa,

Uz}, {Px, Rx, Pa, Sb}, {¬Pb, Ta,¬Py, Ua}, {Pa, Sy,

¬Pb, Ta}, {Pa,¬Qbz, V b,Wb}, {Px, Rx, Pa, V b, Wb},
{V b,Wb, Pa,¬Pb, Ta}}. The resolutions between
{¬Pb,Qbz, Ta} and {Px, Rx, Pa, Sb}, {¬Py,¬Qxa,

Uz} and {Pa,¬Qbz, V b,Wb}, {Px, Rx, Pa, Sb} and
{Pa, Sy,¬, Ta}, etc. cannot be computed due to un-

5



defined composition of substitution, i.e, σ1σ 6= σ2σ.

Note that the number of clauses produced by the
above three methods are smaller than the number of
clauses in the set of prime implicates.

4. Conclusion

In this paper we have presented three algorithms
to transform a knowledge base Σ into an approximate
knowledge base CKB(Σ). But first order compilation
is having many issues such as semi-decidability of en-
tailment and the problem of termination of the com-
pilation algorithms, which are not visible in proposi-
tional knowledge base. This is the reason why we can
not compute a logically equivalent database to Σ, in
general. Since implicates and implicants are dual to
each other one algorithm which computes the impli-
cates of CNF can be used to compute implicants of a
DNF. These algorithms can then be used to compute
CKB(Σ) of an SDNF formula Σ.

Since the compilation of the data base can take
a long time to be completed, it is desirable to ask
queries before the compilation stops. In these meth-
ods queries can be asked to the database at any inter-
mediate stage of compilation. They can be queried
at any time during compilation to obtain the answer
by unit refutation. Though all the queries can not
be answered but as the compilation goes on the pos-
sibility of answering the number of queries increases.
If we want any query to be answered and it is an-
swered at any intermediate stage during compilation
then we do not need to continue the compilation fur-
ther as it is too much space consuming. So the off
line computation can be avoided partially.

When the original knowledge base is updated or
modified a little, we need an incremental method to
answer queries rather than preprocessing the knowl-
edge base from the very beginning. Compilation with
respect to wnm and with respect to horn clauses are
incremental whereas compilation based on nm is not.
Special attention must be paid to find the incremental
methods of the above knowledge compilation meth-
ods. Similarly, other knowledge compilation methods
such as the transversal clauses method [10] may be
explored for the first order knowledge base.

References

[1] Andrews, P. B.(1968), Resolution with merging,
Journal of the ACM, 15, pp. 367-381.

[2] Cadoli, M., & Donini, F. M. (1998), A survey
on knowledge compilation. AI Communications-
The European Journal for Articial Intelligence,
10, pp. 137–150.

[3] Cook, S. A. (1971), The complexity of theorem
proving procedure, In Proc. of the 3rd Annual
ACM Symposium on the Theory of Computing,
pp. 151-158.

[4] del Val, A. (1994), Tractable databases: How
to make propositional unit resolution complete
through compilation, In Proceedings of Fourth In-
ternational Conference on Principles of Knowl-
edge Represantation and Reasoning, pp. 551-561.

[5] Henschen, L. & Wos, L. (1974), Unit refutations
and horn sets, Journal of the ACM, 21, pp. 590-
605.

[6] Kean, A., & Tsiknis, G. (1990), An incremental
method for generating prime implicants / impli-
cates, J. of Symbolic Computation. 9, pp. 185-206.

[7] de Kleer, J. (1992), An improved incremental al-
gorithm for computing prime implicants. In Pro-
ceedings of AAAI-92, San Jose, CA, pp. 780–785.

[8] Reiter, R. (1971), Two results on ordering for res-
olution with merging and linear format, Journal
of the ACM, 18, pp. 630-646.

[9] Selman, B. & Kautz, H.(1991), Knowledge compi-
lations using horn approximations, In Proceedings
of AAAI-91, pp. 904-909.

[10] Singh, A. (1999), Computing prime implicants
via transversal clauses, Int. J. Computer Math.,
70, pp. 417-427.

[11] Tison, P. (1967), Generalized consensus theory
and application to the minimisation of boolean
functions, IEEE Trans. on Elec. Comp, EC-16
(4), pp. 446-456.

6


