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Abstract:  In this paper a current controller based on space voltage vector PWM scheme is presented for induction motor 

drives.  The design consists of a modified continuous state feedback control. This controller guarantees global asymptotic 

stability for the system as well as robustness against parameters variations and external torque disturbances. Complete 

theoretical analysis and a simulation example are given to illustrate our approach. 
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1. Introduction 

Since the induction motor is modeled as a nonlinear multi-input single output dynamic system, many 

researchers have proposed the use of nonlinear state-feedback theory in order to design advanced 

controllers with requirements of high performance in terms of precision and operation efficiency [1]. 

This has motivated some researchers to use robust controllers such as adaptive approaches e.g. [1], 

sliding mode controllers on the basis of variable structure control theory (VSS) e.g.[2] or some 

advanced optimal-like controllers such as H2/H∞ e.g. [3].  In this paper we propose a new different 

approach for current fed controller design, which consists of a continuous state feedback control.  The 

proposed scheme will be proved to guarantee a continuous solution of the system output and an 

asymptotic convergence of the statoric current of the machine even in the presence of system 

uncertainties.  Because the rotor flux linkage drλ can not be easily measured, our design will be on the 

basis of the only knowledge of statoric currents in the d-q frame dsi and qsi , whereas we consider the 

transient of the state of rotor flux linkage drλ  in the d-axis as a time varying bounded disturbance.   

 

2. Induction motor state equations 

The electromagnetic dynamics of induction motor in the synchronously d-q frame, when applying the 

field oriented control as in [4], is given by:  
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where 

qsds ii ,  : d-axis and q-axis stator currents 

qrdr λλ , :d-axis and q-axis rotor flux linkages. 0=qrλ , == rdr λλ constant. 

qsds VV , : d-axis and q-axis stator voltages 

rs RR ,  : stator and rotor resistances 

rs LL ,  : stator and rotor inductances 

σLLm , : mutual and leakage inductances; 
r

m
s L

L
LL

2
: −=σ  

re ωω ,  : electrical angular speed and rotor angular speed 
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3. Robust current controller design 

This equation represents the decoupled current control form for the induction machine. In general, the 

rotor flux linkage drλ can not be easily measured.  For this purpose, our design will be on the basis of 

the only knowledge of dsi and qsi , whereas we consider the transient of the state drλ as a time varying 

bounded disturbance under controlled current dsi and has a constant disturbance component in the 

steady state.  The state space equation can then be written as   
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α∆ represents variations in values of statoric and rotoric resistances and inductances.  

 

Assumption 1  

Without loss of generality, we suppose that each uncertainty is bounded by a certain known function 

as 

ddD ρ≤  

and               qqD ρ≤  

Under the above formulation, drλ is not required to be measured or estimated.  But the transient 

dynamics of the induction motor can be obtained as well.  Define now the state variable errors as 
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where dsri and qsri represent the reference currents commands in d-q axis. 

The state error dynamics can be then obtained as 
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where 

dsrddd iLDE ασ−=  

qsrdqq iLDE ασ−=  

In this equation, Ed and Eq are seen as disturbance terms. 
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Consider the following continuous state feedback control  
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where  

[ ]Tqsds VVu = , [ ]Tqsrqsrsr iii =  

and the subset Ω  is defined as 

          { })(~:~ tεϕξξ ≤=Ω  

In (4)ε  is a positive sufficiently small real and ϕ(t) is a class of uniformly continuous functions such 

that 1)(0 ≤tϕp and ∫= dttt )(:)( ϕω satisfying 0)( ≤tω . 

The continuity of the control is derived from the fact that the switching sphere defined by 

)(~ tεϕξ = keeps shrinking in the state space as the time increases. 

 

Lemma 1 

The control (5) is continuous and stabilizes asymptotically the uncertain dynamical system if there 

exist a Lyapunov function candidate verifying +ℜ→ℜ×ℜ2:(.)V  such that 

i. )~(),()~( 21 ξγξξγ ≤≤ tV          ℜ×ℜ∈∀ 2),~( tξ  

ii. )()()~(),~( ttV ϕηγξγξ +−≤&   ℜ×ℜ∈∀ 2),~( tξ  

where η  is a positive constant, ∞=∞→ )(lim rir γ , i=1, 2 and γ  a positive  definite function, such 

that 0)0( =γ .  If ),(, tϕγ and )(tω verify 0>)()( ηγγ −y for any η>y , 1)(<0 ≤tϕ , 0)( ≤tω  and if 

η  is a positive definite function in oξ ( ))0(0 ξξ = , then every solution nttt ℜ→∞),[:),~;(~
000ξξ of 

the system is globally asymptotically  stable equilibrium.  

 

Theorem 1 

In the current control PWM drive, the control (4) asymptotically stabilizes the uncertain dynamical 

system (3) and guarantees a zero-error convergence for the state statoric currents. 

 

Proof: By replacing sV by the control u, where Vs represents the combined voltage vector such that 

[ ]Tqsdss VVV = yields to the following error dynamics equation  
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Choosing a Lyapunov candidate function  
2

2
1 ~ξ=V      (6) 

it is easy to verify that this candidate Lyapunov function satisfies i. In Lemma 1 [6]. 

Taking the derivative of V with respect to time,  
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then 

           0~ 2 ≤−≤ ξAV&         (7) 

If Ω∈ξ~ , from the Caushy-Shwartz inequality, we can write 

           )~
~

(1~)(1~
ξ
ξρξξ

σσ
+≤+ D

L
Eu

L
 

                                                    )~
~~

)(
(1~

ξ
ξρξ

εϕ
ρξ

σ
+−=

tL
  

This last term achieves a maximum value of 2/)(tερϕ when 2/)(~ tεϕξ =  

then,  

2/)(~2 tAV ερϕξ +−≤&      (8) 

From (7) and (8), in both cases we have 

                          2/)(~ 2 tAV ερϕξ +−≤&    

which satisfies ii. In Lemma 1.  It follows from Lemma 1 that every solution ξ~ is asymptotically 

stable in large, and then 0~lim =∞→ ξt . 
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4. Simulation example 

In this section we present simulation results obtained from a 3 kW induction motor drive.  The 

characteristics for the induction motor are given below 

P : 3 kW 

V : 220 V (rms) 

ωnom : 310 rad/s 

150=== mr LLLσ mH 

Ω= 1.1sR ; Ω= 4.1rR  

The function )(tϕ is taken as 
21

1)(
t

t
+

=ϕ , while ε is taken as 1. 

Figs.1-4 represent the current waveforms and the current errors of the d-q frame statoric currents iqs 

and ids with the control (4).  To test the behavior of the proposed robust control under parameters 

changes, a variation of 50 % of rotor resistance is considered. 

 

 
Figure 1. Waveform of the statoric current ids under control (4) 
 

 
Figure 2. Waveform of the statoric current iqs under control (4) 
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Figure 3. error convergence of the statoric current ids 

 

 
Figure 4. error convergence of the statoric current iqs. 

 

It can be seen from the above results that the control objective to ensure asymptotic convergence of 

the statoric currents in d-q frame is mainly achieved.  This asymptotic convergence is maintained 

even in the presence of system parameters variations such as the rotoric resistances and inductances.  
 

5. Conclusions 

In this paper, a robust current control based on space voltage vector PWM scheme is proposed to 

improve dynamic and static performances of the drive system.  The proposed control is simple to be 

implemented in a practical setup and possesses the advantage to be continuous and ensuring global 

asymptotic stability to the statoric currents in d-q frame.  
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