
An Algorithm for Detection of Calibration Points for
Photogrammetric Camera Calibrations Independent of

Illumination Variations

Otniel Portillo, Luciano Chirinos, Carlos Vázquez
División Ingeniería y Arquitectura

Instituto Tecnológico y de Estudios Superiores de Monterrey. Campus Toluca.
Eduardo Monroy Cárdenas No. 2000. Toluca, Estado de México. C.P. 50110.

México

Abstract: - Getting 3D information from 2D images depends on the appropriate camera calibration of the internal
and external CCD (Charge Couple Device) camera parameters. The photogrammetric camera calibration
technique needs a set of world coordinates and their corresponding calibration object image coordinates as an
input. During this work we developed an algorithm to detect the image coordinates of a calibration object for
different illumination conditions with subpixel accuracy. In other words, the proposed algorithm allows that any
photogrammetric camera calibration technique that needs image coordinates of the calibration object will not be
sensitive to illumination changes within a 200 to 6000 lux interval. The algorithm was tested in a vision system
composed by a P.C., a robotic arm and a CCD camera. The system automatically controls the position of the
camera within the work space and it captures and processes the images using Matlab®.

Key-Words: - Machine Vision, Image Processing and Applications.

1 Introduction
The camera calibration is the process of finding the
internal geometry and optic characteristics of the
device (internal parameters), as well as the position
and orientation of the camera with respect to an
external reference point (external parameters). The
purpose of the calibration is to establish the
relationships between the 3D coordinates of the
external reference system and the corresponding 2D
coordinates of the image. Once the relationships are
established it is possible to get 3D information from
2D images and vice versa.
 The camera calibration techniques are classified
within two categories: photogrammetric calibration
and auto-calibration. The camera calibration under
photogrammetric technique is done using a
calibration object whose geometry in the 3D space is
well known [1], [2]. The calibration object consists
mainly of two or three orthogonal planes. The
photogrammetric techniques were the first to be
developed and they have reached enough maturity
[3]. For this reason the camera calibration can be
done efficiently.
 Some work has been done to determine the
calibration points of the calibration objects with
controlled illumination conditions: in [4] calibration
points are detected using binarization and object
labeling procedures, in [5] Hough Transform is used
and in [6] calibration point coordinates are given

manually. In [5] and [6] the images to be processed
are sent to the Matlab® work space using graphic
files of previously taken images, making the
coordinate procuring process slow and boring.
 Using the proposed algorithm it is possible to
strengthen any photogrammetric camera calibration
algorithms like [1] [2], because we have minimized
illumination effects to detect the calibration image’s
coordinates.
 The main contributions of this work are:
- A strengthened algorithm to processes an image of a
calibration object to find the calibration points in
different illumination conditions with subpixel
accuracy.
- The implementation of the algorithm in an
automatic vision system developed with Matlab®,
electronically available for those people that are
interested in calibrating their own cameras1.

2 Methodology
In this section we are describing the vision system in
which the image processing algorithm was
implemented. Such a system consists of a 700 MHz
Pentium III personal computer, a CCD Electrim

1 The implementation in Matlab of this algorithm can be
obtained in: http://paginasweb.tol.itesm.mx/Campus/otnielp/
calibra.

EDC-1000U black and white camera, a CRS
Robotics A465 robot arm and its controller. The
algorithm was implemented in Matlab® 6.0. The
program controls the robot using the serial port, and
an image is acquired with the camera (using dynamic
link library -DLLs- to communicate Matlab® with
the camera driver), and the calibration object image is
processed. The illumination intensity was measured
using the exposition measure device Sekonic L-308.

Figure 3. Elements of the vision system (robotic arm CRS

A465, CCD camera and calibration object).

3 The Algorithm
The aim of the algorithm is to aquire the coordinates
(row and column) of the calibration points under
different illumination conditions. The core of the
algorithm is what we call “binarization threshold
adjust” using image histogram equalization.
 Figure 4 shows the flow diagram of the algorithm.
Next, every single step is clearly explained using our
vision system as an implementation example.
 Figure 1. Block diagram of vision system
3.1 Image Capture

 There are many types of possible calibration
objects: single plane or multiple plane [1], with
squares or circles [7]. To develop our algorithm we
used a white stepped object with black squares. There
are four different planes with a distance of ten
centimeters between each one. There are three
squares of 10x10 cm in each plane and all its corners
are taken as calibration points to get 48 points as
total. We have given a number to each corner to
identify them (see Figure 2). In Figure 3 we can see
the robot arm holding the CCD camera. The camera
is focusing on the calibration plate. The robot can
move the camera to every position alloweable inside
the work space making our system very flexible.

The first step is the image aquisition. In our vision
system we developed a dynamic link library that
allows communication between Matlab® and the
camera driver, such that the image is acquired and
sent automatically to the Matlab® work space. Figure
6 shows an image that was acquired from the vision
system. The resolution of the image is 486 rows and
1134 columns.

3.2 Filtering
The noise present in the image results in highlighted
pixels. If such pixels aren’t eliminated, they will
produce mistakes in the following stages of the image
processing. To clean the image we use a median
filter. Figure 7 is the result of applying a median filter
to the Figure 6 image.

3.3 Image Equalization
Scene illumination is a prime factor in the calibration
object image processing. For example, if the
illumination is low the image will present a small
histogram in the dark side of the gray scale.
Otherwise, if the illumination is too high the
histogram will be in the brighter side of the gray scale
[8]. To distribute the histogram completely over the
gray scale, we use a technique called “Histogram
Equalization”.

Figure 2. Numeration of calibrations points.

 It is necessary to make sure that all the squares of
the calibration object are fully visible to assure proper
performance of our algorithm, otherwise the program
will indicate an improper illumination condition.

 To standardize our concept of illumination we
must define what low and high illumination is. The
recommended illumination to use in laboratories by
the CIE (Comisión Internationale de L’eclairage) is

500 lux [9]. Then, for us, a low illumination is 200 to
499 lux and high illumination is 500 to 6000 lux.
 In our vision system, if the illumination fluctuates
between 200 and 6000 lux the system will work
properly, if not, faulty results may be obtained.
Figure 8 shows the resulting image after applying
histogram equalization in image 7.

Figure 4. Algorithm’s flow diagram

3.4 Binarization
Once the image is equalized, it is necessary to
identify the squares and to separate them from the
other objects in the scene. The first process used to
separate them is to binarize the image [8]. Before
doing this, we need to obtained the optimal threshold
value. That is a parameter that must be calculated
before running the algorithm.
 To get the optimal threshold value, previously we
must acquire several images come from 200 to 6000

lux illumination scenes. Each image must be
equalized and binarized modifying the threshold
value. If the number of the connected objects from
each image varies between 20 and 80, then we have
found the optimal threshold value. In our vision
system the threshold value is 30%.
 Once we get the optimal threshold value we can
start the thresholding process. That means all the
image pixels must be compared to the threshold
value. If the compared pixel value is less than the
threshold value then it is part of the background and
it is assigned with the white attribute. If the compared
pixel value is more then the threshold value then it
could be part of a square and it’s assigned with the
black attribute. That is how we can slice our image
to get a binary one, so that, at the end of the process
we will have a black and white image.
 Figure 9 shows the resulting image after applying
the binarization process to a equalized image. We can
see that all squares and some other objects (such as
shadows) were removed from the scene because they
were dark enough to be changed to black after the
binarization process.
 If the threshold level of Figure 9 is modified to
28%, some of the equalized image pixels could be
higher in value than the threshold value and after
applying the thresholding process those pixels will be
changed to white and they will disappear from the
scene (Figure 12).
 The basis in our image processing procedure is to
find a threshold level from the optimal one to
minimize the amount of undesirable objects. Since
those undesirable objects won’t be processed later,
the processing time to find the image calibration
coordinates is reduced.

3.5 Edge Finding
The resulting image from the binarization process
always contains undesirable objects (shadows, lost
pixels, etc). For this reason it is necessary to find the
square’s edges and finally their corners. In our vision
system we used Sobel’s operators [8]. In the Figure
10 the edge detection of a binarized image is shown.
We did tests with other edge detection algorithms
such as Canny and Prewitt [8]. We decided to use
Sobel’s operators because the time of detection was
the lowest of the three.

3.6 Connected objects labeling and counting
Once the edges are found, it is necessary to label and
count the connected objects using an eight connected
neighborhood method [8] (see Figure 11). Depending
on the amount of connected objects of the image you
will either get the square’s corners or reduce the
binarization threshold.

3.7 Logic Conditions
In this section the logic conditions of the algorithm
flow diagram are shown (Figure 4).
1. If the amount of connected objects is higher than

100, the algorithm will produce an error
condition because the light in the camera’s
diaphragm isn’t enough or because there are
many objects in the scene. To solve this problem,
the scene must be illuminated with more light
intensity within the 200 to 6000 lux interval.
Otherwise, proceed to step two.

2. If the amount of connected objects is less than 20
go to step 4.Otherwise, go on to step three.

3. Reduce the binarization threshold, re-binarize the
equalized image, find the edges and label the
connected objects (Figures 12, 13, 14). Go to step
two.

4. Find the square’s corners (section 3.8).
5. Enumerate the obtained coordinates according to

the proposed corner numeration (see Figure 2).

3.8 Getting the Corners
The most frequently used procedure to get the corners
consists of using masks according to the corners we
want to find. To find a corner in the processed image,
a mask sweep over the image must be done. If a set
of pixels is equal to the mask the desired corner has
been found [8].
 The process described is very useful when the
object images are well delimited. Such images are
acquired under controlled illumination conditions , in
our case, we have illumination variations. In spite of
the edge processing, sometimes no corner can be
found using any known mask.
 To solve the afore mentioned problem we devised
a different process. First, we must know the number
of pixels and coordinates for each connected object.
With this information we can get the external
coordinates of every connected object using it’s
maximum and minimum row and column values
(Figure 5). In our vision system, in order to consider
the connected object as a square, it must have the
following conditions:
1. The connected object must be greater than 350

pixels.
2. It must be at least 50 pixels minimum but not

more than 230 pixels height as maximum.
3. It must have a width of at least 100 pixels but not

more than 210 pixels.
 It is possible to adapt these conditions to some
other vision system by changing the height and width
values.
 After detecting all the squares, its sides are
segmented. Using the coordinates of every pixel of
each segment, a linear regression is performed to get

a straight line. Then every corner is configured by
finding the intersection between two perpendicular
lines. This way we get the corners with subpixel
accuracy.
 Figures 15 and 16 shows the result of the
previously described procedure. You can see the
square’s center, the side segments and the corners.
Figure 17 shows the detected corners with the
algorithm overlapping the original image.

Figure 5. Method to getting the corners

4 Results
An algorithm to detect the calibration points was
successfully implemented. The algorithm will
compute the image calibration coordinates under the
appropriate illumination interval (200 to 6000 lux).
 Figure 6 shows an image captured with our vision
system under a 600 lux. In Figure 17, we can see the
corners (calibration points) detected by our proposed
algorithm. In the Figure 18, can be seen a second
image captured with a 400 lux illumination, you can
also see how the algorithm detects the corners in a
proper manner (see Figure 19). In Figure 20 you can
see that, when the correct threshold binarization
adjust is not used the detected corners are wrong.

5 Conclusion
The heart of our proposed algorithm is called
“Binarization Threshold Adjust”. It basically consists
of adjusting the binarization threshold value from the
number of connected objects in the image to process
the next stages faster and in a more efficient way.
 Matlab® was useful tool to make the proposed
algorithm automatically work and to control the

[9] CIE Website. Commission Internationale de
L’eclairage. http://members.eunet.at/cie/.

elements of the vision system (camera and robotic
arm). We developed a dynamic link library to allow
communication between Matlab® and the camera
drive. This performings only memory operations,
increasing the transference speed of the image and
avoiding the use of graphic files.

[10] Tebourbi Riad, 3D reconstruction of natural
targets by stereovision. Proceedings of the IEEE
1999 International Symposium on Geoscience and
Remote Sensing, No.2, 1999, pp. 1128 –1130.

 The results of this work are better than [4] and [5],
because we are considering the illumination
variations effect, in order to detect the calibration
coordinates. An improvement over against Bennett’s
work [5] is that our work automatically acquires,
processes and detects the calibration points of the
image.

 With the proposed algorithm it is possible to
strengthen any available photogrammetric camera
calibration technique that needs image coordinates
for calibrations points, for this reason in a future
work we will strengthen the Tsai camera calibration
technique [1] and detect 3D world coordinates of any
object using stereo vision [10].

Figure 6. Original Image with noise.

 Figure 7. Resulting Image after applying median filter.

References:
[1] Tsai R. Y., A versatile camera calibration

technique for high-accuracy 3D machine vision
metrology using off the shelf TV cameras and
lenses, IEEE Journal of Robotics and Automation,
Vol. 3 No. 4, August 1987, pp. 323-344.

[2] K. W. Wong, Mathematical formulation and

digital analysis in close-range photogrammetry,
Photogrammetric Engineering Remote Sensing.
No. 41, 1975, pp.1355-1373.

Figure 8. Resulting Image after applying histogram
equalization.

[3] Faugeras Oliver, Three-Dimensional Computer

Vision: a Geometric Viewpoint, MIT Press, 1993.

[4] Kampel M., Calibration of the Acquisition
System. Pattern Recognition and Image
Processing Group Institute of Computer Aided
Automation, Computer Science Department,
Vienna University of Technology.
http://www.prip.tuwien.ac.at/Research/3DVision/
calib. html.

Figure 9. Binarization of the equalized image.

[5] Bennett W., Automatic Feature Point Extraction
for Light Field Camera Calibration. Stanford
University’s VLSI Research Group. http://www-
vlsi.stanford.edu/~wilburn/Calibration/report.html

[6] Bouguet Jean-Yves, Camera Calibration Toolbox
for Matlab®. Computer Vision Research Group,
California Institute of Technology.
http://www.vision.caltech.edu/bouguetj/calib_doc. Figure 10. Resulting image after applying Sobel’s

operators. [7] Heikkilä, J., Geometric Camera Calibration Using
Circular Control Points. IEEE Transactions on
Pattern Analysis and Machine Inteligence. Vol.
22 No. 10, October 2000, pp.1066-1077.

[8] Gonzalez R. C. and Woods R. E., Digital Image
Processing, Addison-Wesley, 1992.

http://www.cs.tuwien.ac.at/
http://www.tuwien.ac.at/welcome_eng.html

of each square. (Amplified image to see details)

Figure 11. Resulting image after labelling all connected
objects. Figure 17. Detected corners overlapping the original

image.

 Figure 12. Binary image resulting after reducing threshold

value to 28%. Figure 18. An second probe image with noise.

 Figure 13. Resulting image after applying Sobel’s

operators to the last image. Figure 19. Detected corners using the proposed algorithm.

Figure 14. Resulting image after labelling all connected Figure 20. Detected corners without used the thresholding

adjust. objects in the last image.

Figure 15. Center, side segments and detected corners
of each square.

Figure 16. Center, side segments and detected corners

	México

