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Abstract: - In this paper an extension to the learning rule of the Self-Organizing Map (SOM) namely the Free
Projection SOM (FP-SOM) is presented in order to enhance the SOM projection. The general idea of the FP-
SOM is to mirror the movement of weight vectors during the training process allowing their images on the
map grid to move more freely between the junctions. The result of the extended training algorithm allows
intuitive analysis of the similarities inherent in the input data and most important, intuitive recognition of
cluster boundaries. Experiments on artificial and real data sets show the advantages of the proposed extension
as a cluster visualization method.
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1   Introduction
Data mining is an emerging area of new research
efforts, responding to the presence of large
databases in com-merce, industry and research. It is
also a title for a large number of widely divergent
methods ranging from belief networks and relational
learning to statistics and neural networks. Data
mining is part of a larger framework, Knowledge
Discovery in Databases (KDD) [1], whose purpose
is to find new knowledge from databases where
dimension, complexity or amount of data is
prohibitively large for human observation alone.
Data mining is an iterative process requiring that the
intuition and background knowledge of humans be
coupled with the computational efficiency of
modern computer technology. For this reason,
visualization is a very important part of data mining.
By nature, visualization requires a mapping process
from the high dimensional input space to a low
dimensional output space. This problem can be
attenuated by projection techniques such as the well-
known Principal Component Analysis (PCA) [2].
However, PCA is a strictly linear method that is
unable to detect nonlinear dependencies between
variables. Numerous nonlinear projection methods
have been created to address this issue. For example,
the nonmetric Multidimensional Scaling (MDS) [3]
and Sammon's nonlinear mapping (NLM) [4] are
based on the preservation of either pair-wise
dissimilarities or Euclidean stances. Neural ver-
sions of the NLM, like Curvilinear Component
Analysis (CCA) [5], [6] generally show better
performance, particularly when they do not use the

traditional Euclidean metrics [7], [8]. Finally,
nonlinear projection can be achieved by the Self-
Organizing Map (SOM) [9]. But the projection
implemented by the Self-Organizing Map (SOM) is
restricted to the junctions of the map grid, which
makes it very crude and raises the necessity to use
other computationally expensive projection
methods.
The Self-Organizing Map is a neural network
algorithm based on unsupervised learning. It has
proven to be a valuable tool in data mining and
KDD with applications in full-text and financial data
analysis. It has also been successfully applied in
various engineering applications in pattern
recognition, image analysis, process monitoring and
fault diagnosis [10], [11]. The use of the SOM in
exploratory data analysis is studied in [12], [13],
[14], [15].
The SOM has several beneficial features, which
makes it a useful method in data mining. It
implements an ordered dimensionality-reducing
mapping of the training data. The map follows the
probability density function of the data and is robust
to missing data. It is readily explainable, simple and
- most importantly - easy to visualize. Visualization
of complex multidimensional data is indeed one of
the main application areas of SOM.
In spite of these advantages, the projection
implemented by the SOM is restricted to the
junctions of the map grid, and therefore it is very
crude. To visualize the shape of the SOM in the
input space, the prototype vectors of the map are
typically projected separately using one of the
previously mentioned methods. In this paper an
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extension to the learning algorithm of the SOM is
presented in order to enhance the SOM projection
for the sake of better visualization of clusters in the
input data.
We show the applicability and the effect of this
extension, referred to as the Free Projection SOM
(FP-SOM) approach with a prominent artificial test
data set for semantic classification and another real
data set. The remainder of the paper is organized as
follows. Section 2 gives an overview on the self-
organizing map algorithm and the proposed
extension of its learning rule. Section 3 presents the
implementation and results of the FP-SOM applied
on a popular benchmark artificial data set and a real
data set. A discussion about the performance and
benefits of the FP-SOM is given in section 4. Finally
our conclusion is presented in section 5.

2  The Free Projection Self-Organizing
Map (FP-SOM)
The SOM consists of neurons located on a regular
low-dimensional grid, usually 1- or 2-dimensional.
Higher dimensional grids are possible, but they are
not generally used since their visualization is
problematic. The lattice of the grid can be either
hexagonal or rectangular. Each neuron k is
represented by an n-dimensional prototype (weight)
vector mk = [mk1,…, mkn], n is the dimension of the
input space. On each training step, a data sample x is
selected and the nearest unit mc (the best-matching
unit, BMU) is found from the map. The prototype
vectors of the BMU and its neighbors on the grid are
moved toward the sample vector

mk = mk + α(t) hck(t) (x – mk)  (1)

where α(t) is the learning rate and hck(t) is a
neighborhood kernel centered on the winner unit c.
Both learning rate and neighborhood kernel radius
decrease monotonically with time. In this paper the
Gaussian neighborhood kernel [9] is used. It can be
written as:

                                  (2)

where rc         and rk          are the location vectors of
neurons c and k respectively, in the grid and σ(t) is a
monotonically decreasing function of time that
defines the width of the kernel.
The basic idea of the FP-SOM is to mirror the
movement of prototype vectors during the training
process allowing their images on the map grid to
move more freely between the junctions in a way
that makes the boundaries between related and
unrelated input data intuitively recognizable.
Each prototype vector is assigned a position p,
where p        .  This position is initialized to random
values around 1. At each training cycle the
activation of the various prototype vectors is done
according to (1). A similar activation is done on the
position vectors according to:

pk = pk + α(t) vck(t) (rc – pk)  (3)

Where vck(t) is another Gaussian neighborhood
kernel defined as:

 (4)

We note that the position vectors pk learn from rc the
location of the BMU in the map grid. Also the
neighborhood kernel depends on the distance
between the sample data vector x and the prototype
vector mk. Thus the clustering of units around the
winning unit resembles the clustering of the units
weight vectors around the presented input signal
after the current training cycle.
After convergence of the training process the
clusters learned by the self-organizing map can be
visualized by using the position vectors of the units
for graphical representation.

3   Experimental Results
For the example presented below we used the
Animals data set (see Fig. 1) as defined in [16]
because it is widely used and discussed as a

hck(t) =
2ℜ∈ 2ℜ∈

vck(t) =

Fig. 1. The Animal data set.

2ℜ∈



reference data set in numerous papers on related
topics (e.g. [17]) allowing easy comparison of the
results obtained. Furthermore, the data set is simple
enough to be presented within the limited space of
this paper while still being sufficiently complex to
demonstrate the main features of our approach.
Please note that we omitted the encoding of the
animals’ names in the input vector as suggested in
[16], hence the animals Hawk and Owl as well as
Zebra and Horse are mapped onto the same unit
respectively since they have equal feature vector
representation.
Figure 2(a) depicts a trained 8×8 SOM with the
winning units being labeled by the corresponding
input signal. In spite of the fact, that the map
presents a topographic ordering of the input signals
(e.g. all birds are mapped to the upper half of the
map) cluster boundaries are not detectable from this
standard representation, unless one has sufficient
prior knowledge concerning the input data. Fig. 2(c)
gives the Sammon’s nonlinear mapping of the SOM
prototype vectors. It is clear that the cluster
boundaries are not recognized easily and also the
locations of the clusters are changed which makes it
difficult to link with other SOM-based

visualizatioins. This is in addition to the long time
taken for its computation.
Contrary to that, the representation of FP-SOM as
provided in Fig. 2(b) clearly shows the distinct
clusters learned by the map, the birds are separated
from all other animals in the bottom of the map, the
cluster itself being substructured into two groups
consisting of the hunting birds Hawk and Eagle and
the non-hunting Duck, Hen, Goose and Dove. Horse
and Cow on the bottom right corner are separated
from both the birds and the big hunters Tiger and
Lion. There is another sub-cluster in the upper right
corner containing the medium sized carnivore
animals Dog, Wolf, cat and Fox.
Finally the FP-SOM has been applied on a real data
set namely the Iris data set [18]. Iris flower data set
contains 3 classes and 150 vectors, 50 in each class,
where each class refers to a type of Iris plant,
namely, Setosa, Virginica and Versicolor. Each
vector has 4 continuos attributes: Septal length,
Septal width, Petal length, and Petal width. We refer
to the 3 classes as class a, class b and class c
respectively. Its clear from Fig. 3 (b) that class a is
distant from both class b and c and class c occupies
the upper left corner of the map. The Sammon’s
nonlinear mapping of the map vectors almost give

(a) (b)

(c)

Fig. 2. 8×8 SOM trained on the Animal data set, (a) Standard SOM Representation (b) FP-SOM
Representation (c) Sammon nonlinear mapping of the SOM prototype vectors.



the same information but it takes a lot of
computational time.

4   Discussion
FP-SOM provides a method to visualize and detect
the structures learned by a self-organizing map as an
extension to the standard training process. The
structure of the input data as analyzed by the
resulting mapping is clearly visible as a set of
clusters within the map. Each cluster in turn may
consist of a set of sub clusters providing a finer
granularity for exploratory data analysis. On the
other hand the clusters themselves are organized in
the map corresponding to their mutual similarity i.e.
similar clusters are located more closely to each
other than distinct ones. Note that the FP-SOM
representation does not reveal new clusters
compared to the standard representation of self-
organizing maps in the sense that the same mapping
is represented. In other words the structure of the
FP-SOM presentation is identical to the structure
present in the standard SOM as far as the overall
topographic ordering is concerned.
The basic differences are that - due to the fixed
neighborhood relation within the grid and the fixed
distance between units - first, cluster boundaries
usually can not be detected satisfactorily and second
the degree of similarity is not or only to a limited

extent expressed by the basic network topology. To
overcome this limitation the extended training
algorithm allows units to change their location more
freely within the map with respect to their weight
vector's movement. Thus the training process leads
to varying distances between neighboring units in
terms of both network topology and their
neighborhood in terms of input space. By being an
extension to the basic SOM training procedure FP-
SOM provides a supplementary improved
visualization method for self-organizing maps
instead of replacing the existing architecture. Thus
results obtained and experiences gathered so far with
the basic SOM learning process are still valid and
can further be used. Another benefit of being an
extension to the standard fixed grid representation is
the ability to link between the resulting visualization
and other visualizations -which are based on the
fixed grid - by position [13]. Furthermore, the
computational cost to obtain the FP-SOM
representation is neglectable, consisting in two
operations performed on the position vectors: first
initialization, which is done once and second an
adaptation analogous to the one performed on the
map units (see Section 2). With respect to the space
complexity, FP-SOM uses only a position vector
consists of two attributes (x and y coordinates) for
each map unit.

(a) (b)

(c)

Fig. 3. 10 × 10 SOM trained on the Iris data set, (a) Standard SOM Representation (b) FP-
SOM Representation (c) Sammon’s nonlinear mapping of the SOM prototype vectors.



4   Conclusion
FP-SOM has been shown as an extended learning
algorithm for self-organizing maps. The
development of the extension was motivated by the
fact that the projection of the SOM is restricted to
the junctions of the map grid, which makes it
difficult to detect the cluster boundaries in the
standard representation. FP-SOM enables both the
visualization of similarity of input data comprising
one cluster and the visualization of similarity
between different clusters. Furthermore FP-SOM
representation does not affect the standard training
process or the fixed grid structure of the SOM. The
computational cost for obtaining the FP-SOM
representation is small compared to other methods
that are used separately to project the map units, for
example Sammon nonlinear mapping.
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