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Abstract– In recent years, progress has been made on the problem of face recognition, especially in head-on 
face images with controlled illumination and scale. Good results have been obtained for 2-D frontal images and 
many researchers are now trying to extent this high recognition capability of the system, to recognize more 
general view positions of images that cover the entire 3-D viewing sphere. It is argued that 3-D recognition can 
be accomplished using linear combinations of as few as four or five 2-D viewpoint images, however, there are 
some drawbacks, because the system should calculate quite many numbers of two-dimensional observed 
images at various visual points, and memorizing 3-D objects required large memory requirements. In this paper 
we present the development of 3D face images databases using the merging and splitting methods. The first 
method will merge two eigenspace models, where each eigenspace represent a set of n-dimensional observation 
into union of sets. The second method will split one model from another to represent the difference between the 
sets. Result of experiments show that the developed system has higher degree of similarity, even using 84% of 
eigenvectors.  
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1  Introduction 
Recently, the eigenspace representation of images 
has attracted a lot of researchers. In this transformed 
space, the individual features of the images could be 
designed to be uncorrelated, and its dimension will 
reduce significantly. For a given set of images, the 
eigenspace representation can be achieved by 
performing the Eigen Value Decomposition (EVD) 
(also called Principal Component Analysis) or 
Singular Value Decomposition (SVD). Both methods 
are well known techniques in image processing as 
batch computation, however, this batch computation 
has disadvantage on its high computational cost, due 
to all observations should be simultaneously 
computed at once. Another computational technique, 
the incremental method computes the eigenspace 
model by successively updating the earlier model 
when new observations are available and neccesary. 
This method does not need to compute all 
observations at once, thus, reduce storage 
requirements and opening the possibility of 
computing on its searching an image-data on a very 
large gallery of images. Other advantages of using 

incremental computation lie on its application when 
the gallery of images is dynamically changed.  

Previous research in incremental computation of 
eigenspace models has only considered by adding 
each one new observation at a single time to the 
already developed eigenspace model [1], [2], [3], [4], 
[5]. These methods, however, ignore the fact that a 
change in incoming new data will also change its 
mean. More over, we know that when a few 
incremental updates were made, the inaccuracy was 
very small and acceptable for the great majority of 
applications; however, when thousands of updates 
were made frequently, the inaccuracies increases 
higher, and sometimes could not be tolerated.  

Since eigenspace models have a wide variety of 
applications, Hall et all [6] then proposed the 
merging and splitting eigenspace model algorithms. 
Since the eigenspace model has been used frequently 
in the various classification problems, such as: 
recognition systems [7], motion sequence analysis 
[8], and temporal tracking of signals [4], the used of 
the merging and splitting of eigenspace models is 
then very useful. Using this model, building the 
eigenspace new model, due to its new coming data, 
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could be accomplished without re-compute the 
previous eigenspace model. Hall et all also shows 
that the efficiency and accuracy of this method is 
better than the batch methods, on its performing to 
build a database of 2D face images. 

We have developed a 3D face recognition system 
by using a cylindrical structure of hidden layer neural 
network (CSHL-NN) [9][10]. The input given is 
usually a number of two-dimensional images that are 
observed at the specific visual positions. It is very 
difficult; however, to realize a recognition system 
with high quality and high speed processing, because 
the system should calculate quite many numbers of 
two-dimensional observed images at various visual 
points.  Another problem arises due to memorizing 3-
D objects required large memory sizes, and when 
various directions of light beams are considered, 
even for the predetermined visual point, a large 
number of images should be calculated leading to 
larger memory requirements. 

In order to increase its recognition rate of or 
developed system, especially, the ability to compute 
a huge gallery of face images, we then investigate the 
possibility of using merging and splitting eigenspaces 
techniques. In this paper, we would like to construct 
the eigenspace models of 3D face databases, and 
compare the accuracy of the images before and after 
performing the eigenspace transformation technique. 
We also investigated the performace of the 
eigenspace matrix transformer, through its value of 
cumulative percentage. This value is related to the 
degree of importance of the usage eigenvalue. 

 
 
2  Merging and Splitting Eigenspace 
Models 
Suppose an image of size n x m pixels is represented 
as a vector in an n.m dimensional space. In practice, 
however, this (n.m)-dimensional space is too large to 
process, so that a common way to resolve this 
problem is by using dimensionality reduction 
techniques. In its dimensionality reduction space, 
(n.m)-dimensional data should be firstly transformed 
into vector in the eigenspace model. For clarity, we 
define the nomenclature of an eigenspace model as 

, with the mean vector (Ω x ), a (reduced) set of 
eigenvectors ( ), their eigenvalues ( ), and 
number of observations ( ): 

npU ppΛ
N ( )Npp ,np ,, ΛUx=Ω .  

Consider N observations, with each a column 
vector , then we  can compute the mean of the 
observations: 
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Please note that C is real and symmetric. nn

The eigenvalue decomposition (EVD) of C can 
be calculated through: 
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T
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where the columns of are eigenvectors, and 
is a diagonal matrix of eigenvalues. The 

eigenvectors are orthonormal so that . 
The ith eigenvector  and ith eigenvalue  are 
associated. 
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Typically, only ),min( Nnp ≤ of the eigenvectors 
have significant eigenvalues and, hence, only p of the 
n eigenvectors need be retained. This happens when 
the observations are highly correlated so that the 
covariance matrix is, to a good approximation, rank 
degenerate. In this case, small eigenvalues are 
presumed to be negligible. Having chosen to discard 
certain eigenvectors and eigenvalues, we can recast 
Eq.3  using block from matrices and vectors. Without 
loss of generality, we can permute the eigenvectors 
and eigenvalues such that U  and  are those 
eigenvectors and eigenvalues that are kept, 
respectively, and  and  are those eigenvectors 
and eigenvalues that are discarded, with  d = n – p. 
We may then rewrite Eq.3 as: 
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with error U , which is small if T
ndddnd UΛ dddd 0Λ ≈  

 
2.1  Construction of Eigenspace Models with 
SVD 
In principle, computing an eigenspace model requires 
a construction of (n x n) matrix, where n is the 
dimension of each observation. In practice, however, 
the model can be computed by using an (N x N) 
matrix, where N is the number of observations. This 
is an advantage in its applications to the problem of 
image processing where, typically, . nN <<

This technique can be done by considering the 
relationship between eigenvalue decomposition and 
singular value decomposition, which leads to a 
simple derivation for a low-dimensional batch 
method [11] on its computational of the eigenspace 
model. 

Let be the set of observations shifted to the 
mean so that 

nNY
xxY −= ii . Then, an SVD of is: nNY
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NNnNnnnN VΣUY = , where U  are the left singular 

vectors, which are identical to the eigenvectors 
previously given;  is a matrix with singular 
values on its leading diagonal, with 
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and  are right singular vectors. Both  and 

 are orthonormal matrices. This can now be used 
to compute eigenspace models in a low-dimensional 
way, as: ; which 
is an (N x N) eigenproblem. 
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 is the same as 
 except for the presence of extra trailing zeros on 

the main diagonal of . If we discard the small 
singular values, and their singular vectors, following 
the above, then remaining eigenvectors are 
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2.2  Merging Process of Eigenspace Models  
This section explained the process of merging the 
eigenspace models. We derive a solution to the 
following problem. Let  and  be two sets of 
observations. Let their eigenspace models be 

)  and ( )Mnq, VyΨ , 
respectively. The problem is related to how to 
compute the eigenspace model ( )Knr ,, Wz , 
for  using the already known nN Y Ω  
and . 

Clearly, the total number of new observations is 
, then the combined mean can be 

calculated through: 
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with the combined covariance matrix: 
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where the first two terms are the combine scaled 
versions of and for the covariance matrices  
of  and , respectively, while the third term is 
related to the change of mean. 
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We then compute the s eigenvectors and 
eigenvalues that satisfy: 
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where some eigenvalues are subsequently discarded 
to give r nonnegligible eigenvectors and eigenvalues. 
The problem is then related to its dimension of s, 
which is bounded by 
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Then we can now forming a new eigenproblem by 
writing such [6]: 
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If we multiplied the left side of Eq.9 by [ and 
the right side by 

]Tntnp vU
[ ]ntnp vU ; and by using the fact that 

[ ]Tntnp vU is a left inverse of [ ]ntnp vU , then we obtain: 
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which is a new eigenproblem whose eigenvectors 
constitute the . However, since and  are 
unknown, we should change the Eq.11 to be Eq.12: 
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2.3  Splitting Process of Eigenspace Models  
In this section we show how the process of splitting 
the combined eigenspace to be a two eigenspace 
models. Given a combined eigenspace model of  

( )Krrnr ,,, ΠWz=Φ , in which we would like to 

 



 

remove ( )Mqqnq ,,, ∆Vy=Ψ  to give a third model of 
eigenspace ( )Nppnp ,,, ΛUx=Ω  
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The splitting derivation process of combined 
eigenspace can be straightforwardly done inversely 
to that of the merging process. Let , and 
the new mean is: 
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As in the case of merging process that a new 
eigenvalues and eigenvectors are computed via a new 
eigenproblem, for splitting process, we have: 
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The eigenvalues that we would like to have are the p 
nonzero elements on the diagonal of . Thus, we 
can permute and , and rewrite the Eq.15, 
without loss of its generality, to be: 
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where: p = r – q. 
 Hence, we need only identify the 
eigenvectors in R  with nonzero eigenvalues and 
compute the  as: 
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2.4  Data Reconstruction Process  
Eigenspace model ( )Nppnp ,,, ΛUx=

nℜ∈

Ω  is then used to 
transform data  such that ix
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and we can reconstruct equation (19) to get 
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3 Experimental Set-Up and Its Results 
The experimental procedure is conducted by using a 
3-D face database that consists of 11 Indonesian 
persons. The images are taken under four different 
expressions such as, neutral, smile, angry and laugh 

expressions. The 2-D images are given from 3-D 
human face image by gradually changing visual 
points, which is successively varied from -900 to 
+900 with an interval of 150, i e -900, -750, -600, -450, 
-300, -150, 00, +150, +300, +450, +600, +750, +900. The 
total face images in the gallery that is utilized in this 
experiments are consists of 143 images, and part of 
them can be seen in Figure 2. The experiment are 
conducted using Matlab on a computer with standard 
configuration (Compaq, Pentium III, 128 Mb RAM). 

 
3.1 Time for Merging Eigenspace Models 
The merging eigenspace model is created by adding 
every 13 images into the already established 
eigenspace models. The number of eigenvectors that 
retain and used in every eigenspace model, is set to 
be a maximum. Computational result of merging 
time for every model of eigenspace is depicted in 
Figure 1. The total computational time is a 
combination of time-construction of eigenspace 
model and its merging-time, which can be 
categorises as the incremental time and the joint 
time.  

Time to Make Eigenspace Model

0

40

80

120

160

0 13 26 39 52 65 78 91 104 117 130 143

Number of Images in First Model

C
pu

 T
im

e 
in

 S
ec

on
ds

 
Figure 1. Computational time for complete 

eigenspace model of 143 images. (Solid line for the 
incremental time and dashed line for the joint 

time, respectively). 
 

The incremental time is the time for computing 
and merging every one eigenspace model to the 
existing one, while the joint time is the time for 
computing both eigenmodels before merging and 
then to merge them. When measuring CPU time, we 
ran the same code several times and chose the fastest 
time to minimize the effect of other concurrently 
running process. As shown in Figure 1, incremental 
time and joint time are mostly the same. 

 
3.2 Time for Splitting Eigenspace Models 
Computational time for splitting eigenspace is done 
by removing every 13 images from a total 143 
images. Result of experiments show that the average 

 



 

splitting time is approximately constant, range 
between 1.87 and 2.14 seconds, with a mean time 
around 1.933 seconds. These computational splitting 
times are much smaller than that of merging time, 
due to complicated calculation orthonormal basis. 
 
3.3 Reconstruction Accuracy of 3D Face 
Images 
In this type of experiments, we would like to 
elaborate the capability of the developed merging 
and splitting eigenface technique, to reconstruct the 
images with as small as possible error. Two types of 
gallery of images are developed; the first data set is 
the gallery images without background manipulation, 
while the second data set is for the gallery images 
with background manipulation. 

The importance of every eigenvalue to its 
strength on giving the optimal matrix transformation 
for lower error rate, can be determined by computing 
the cummulative proportion of the eigen value using: 
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where α the cumulative percentage of the used 
eigenvalue, λ the eigenvalues that are nonnegative 
and arranged in decreasing order. The percentage of 
the used eigenvalue is 100%, 98%, 91%, 84% and 50 
%, respectively. 

The visualization result for reconstructing 3D face 
images are shown in Figure 2, including with its 
relative mean errors that can be seen in Table 1. This 
result are just example of the overall data set, ranging 
from -900 to +900 with an interval of 150. The 
original images are depicted in the first line, while 
the second line is the reconstruction result by using 
100% eigenvectors. The third line is the 
reconstruction result by using 98% eigenvectors that 
have largest eigenvalues, and the fourth line is the 
reconstruction result by using 91% eigenvectors with 
the largest eigenvalues. The fifth line is the 
reconstruction result by using 84% eigenvectors, 
while the sixth line is the reconstruction result by 
using 50% of its eigenvectors.  

The last column is the mean error for determining 
the degree of similarity between the original images 
(x) and the reconstruction result of images (y). This 
similarity degree is calculated through the equation 
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N
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. While the overall similarity degree are 
shown in Table 1.  

  
 

 
Figure 2. Reconstruction of images without 

background manipulation 
 

It is clearly shown in this table, that the 
reconstruction of images is almost perfect for 100% 
of used eigenface, with an error of only 0.0074. The 
differences between original image values and 
reconstruction result image value is very small, 
however, as the used of eigenvector is decreasing, the 
mean error is increases. The relative mean errors are 
0.0131 for 98%, 0.034 for 91% and 0.034 for 91%, 
and 0.05 for 84%, respectively.  Please note that 
when using only 50% of its eigenvectors, the relative 
mean error value is 0.1087, which is not acceptable. 
It is visually shown that when using the eigenvector 
higher than 84%, results are good and errors are 
acceptable. 

Table 2 shows that the relative mean error when 
the number of the first eigenspace are different. 
When the first eigenspace is built from 13 images 
and added up to 143 images, the relative mean error 
still comparable with that of the first eigenspace is 
built from 130 images.  
 

Table 1. Mean relative error of images without 
background manipulation 

 

 

 



 

Table 2. Mean relative error of images without 
background manipulation from smaller to bigger 

of its first eigenspace model 
 

 
 
The visualization result for reconstructing 3D face 

images with background manipulation are shown in 
Figure 3, and its relative mean errors are depicted in 
Table 3. As the same with that the images without 
background manipulation, results show that the 
merging and splitting eigenspace could be used for 
3D faces databases.  
As we can see in Table 3, the relative mean error still 
low enough when using 84% of its eigenvectors or 
higher, i.e 0.033.  The background of the images is 
not considered to be an obstacle of the system, and 
the overall relative mean errors are not changing 
much by this difference. 

 
 

 
Figure 3. Reconstruction of images with 

background manipulation 
  

As also has been shown for the images without 
background manipulation, increasing the number of 
images to be the first eigenfaces, will lowering the 
relative mean error slightly, and these values is still 
acceptable for 84% of the used eigenvectors or 
higher. These results are clearly shown in Table 4.   

 
 
 
  

Table 3. Mean relative error of images with 
background manipulation 

 

 
 

Table 4. Mean relative error of images with 
background manipulation from smaller to bigger 

of its first eigenspace model 
 

 
 

 
6  Conclusions 
We have shown that merging and splitting 
eigenspace models for 3D face images is 
possible. Our experimental results show that 
there are no differences in CPU time between 
incremental time and joint time. The 
reconstruction results have shown that for all of 
the images used in these experiments, i.e images 
with or without background manipulation, the 
used of eigenvectors with 84% or higher will 
have an acceptable relative mean error.  
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