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Abstract: Parallel computing is becoming increasingly important for solving technological and scientific
problems. In fact, the most powerful computers in the world are now parallel machines. In this paper we
utilize a low-cost parallel computing environment, based on the UNIX operating system and the PVM
(Parallel Virtual Machine) and MPI (Message Passing Interface) communication protocols, to compute the
dynamical evolution of one-dimensional cellular automata with large numbers of sites. Specifically, we
develop and validate parallel binary PVM and MPI implementations, analyse their parallel performance
measures, and use the relatively faster MPI  implementation to obtain some results for cellular automata with
large numbers of sites.
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1 Introduction
The importance of parallel  and distributed
computing for solving technological and scientific
problems has been growing steadily over the last
fifteen years (El-Rewini & Lewis, 1998; Leiss,
1995). Powerful parallel machines and clusters of
machines are nowadays available to researchers and
the scientific community at supercomputing centers
in large research laboratories and universities
throughout the world. In addition, general-purpose
parallel routines are also available through the
Internet (e.g., PETSc (Balay et al., 1997)), which
can be incorporated into the user’s application code.
In order to make appropriate use of such valuable
computing resources, access to a parallel program
development environment is necessary for the users,
where they can produce and test parallel algorithms
and codes.

In this paper we briefly describe a low-cost
parallel computing environment that we have
recently implemented (Dallalana et al., 1998), and
utilize it to compute the dynamical evolution of
one-dimensional cellular automata (Wolfram,
1994) with large numbers of sites. Specifically, we

develop parallel binary implementations using the
PVM (acronym for Parallel Virtual Machine, Geist
et al., 1994) and MPI (acronym for Message
Passing Interface, Snir et al., 1996) communication
protocols. We first present the binary and parallel
algorithms, and describe how they are
implemented under PVM and MPI. Next, we
validate these implementations by comparing serial
and parallel computations to benchmark results
obtained by Wolfram (1994) with small numbers
of sites. We then present and discuss the parallel
performance measures of the PVM and MPI
implementations. Finally, we perform parallel
calculations with the relatively faster MPI
implementation to obtain some results for cellular
automata with large numbers of sites.

As detailed in Wolfram (1994), cellular
automata are mathematical models for complex
physical systems, in which the discrete values of
the physical quantities at discrete spatial sites
evolve in discrete time steps according to well-
defined local or non-local rules. Cellular automata
have been shown to model a wide range of
physical (Rothman & Zaleski, 1997; Toffoli &



Margolus, 1987) and biological systems
(Bernardes & Zorzenon dos Santos, 1997; Stauffer,
1991). Typically, the simulation of the behavior of
real systems by cellular automata is much
improved when the number of sites is increased.
Therefore, the memory size of a machine executing
a serial computation may become a severe limiting
factor for the desired simulations. When the
algorithm for the time evolution of a particular
class of cellular automata can be efficiently
parallelized, as we show here in the context of one-
dimensional cellular automata, distributed-memory
parallel computing becomes an attractive way to
effect simulations with large numbers of sites, in
order to obtain more relevant results.

2 Parallel Computing Environment
Our low-cost parallel computing environment
(Dallalana et al., 1998) is based on the UNIX
operating system and the cost-free communication
protocol  software packages PVM (Geist et al.,
1994) and MPI (Snir et al., 1996), supported by a
local Ethernet network which connects the
participating machines. The UNIX system
employed may be either the native operating
system in workstations or the cost-free version
Linux (Welsh, 1995) in personal microcomputers.
The software packages PVM and MPI enable a
cluster of homogeneous or heterogeneous
computers to function as a single parallel machine;
messages can be exchanged between processors
through UNIX networking resources. Therefore,
the environment supports the distributed-memory
message-passing − MIMD loosely-coupled −
computational model (El-Rewini & Lewis, 1998;
Leiss, 1995). PVM and MPI come equipped with a
collection of FORTRAN77 library subroutines,
which are linked to the application object code and
accessed at runtime.

The parallel environment has been utilized in
previous work on heat conduction in composite
materials (Dallalana et al., 1998), where it has
been observed that parallel computations can be
both faster and slower than the equivalent serial
computations, depending on the parallel algorithm
adopted and the size (or granularity) of the
problem. Also, as we show here, the same parallel
algorithm performs differently on the same
hardware when different communication protocols
are used.

In this work we use a machine cluster
composed of three workstations IBM RISC
System/6000 43P-133 running the AIX operating
system, each with 64 Mb of RAM and a native

Ethernet card which transmits and receives data at
a rate of 10 Mbps. We have used Version 3 of
PVM and Version 1.1.1 of MPI.  The machines in
this homogeneous cluster are interconnected
through a hub, such that they topologically form a
2-D ring network (El-Rewini & Lewis, 1998).

3 One-Dimensional
Cellular Automata
Cellular automata (Wolfram, 1994) are discrete
mathematical models for complex physical
systems. A cellular automaton consists of a
uniform lattice of identical sites in n-dimensional
space. At each site, discrete values (in a finite set)
are assigned to each physical variable considered,
which evolves in discrete time steps according to a
well-defined local or non-local rule. The value of
one variable at a site depends on the values of the
variable at neighboring sites evaluated at previous
time steps. Typically, the neighborhood of a site is
taken as the site itself and a prescribed number of
adjacent sites. The state of an automaton at an
instant of time is completely specified by the
values of all the variables at each site. During the
physical evolution of the automaton, the update of
the values of the variables is effected
simultaneously, or synchronously, at all the sites.

Cellular automata are employed to model real
systems constituted by a large number of
elementary discrete components which interact
locally or non-locally with each other (for
example, a volume of gas with many molecules, or
a living organism with many cells). Even when the
interactions are simple to describe, the large
numbers of components in these systems lead to
very complex global behaviors. A comprehensive
analysis of cellular automata is presented in
Wolfram (1994), where applications to different
fields are developed, and many important issues
are addressed, such as classification, local and
global statistical properties, topology and self-
organization of configurations, irreversibility, and
computational irreducibility, universality and
undecidability.

Here we consider the dynamical evolution of
finite one-dimensional cellular automata. In
particular, one binary variable V is defined at N
sites; the neighborhood of a site is simply taken as
the site itself and the two adjacent sites to the right
and left. Such cellular automata are called
elementary (Wolfram, 1994), for which there are
23=8 possible configurations for the neighborhood
of a site, 28=256 local rules, and 2N possible states.
The variable V may be subject to fixed or periodic



boundary conditions; since both types of boundary
conditions lead to essentially the same global
behavior, we impose here the latter type, so that
the first and last sites are neighbors. The temporal
evolution of an elementary cellular automaton may
be written in the general form
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instant t, t≥0. Rule F may be specified by a binary
number with eight digits, one digit for each
possible configuration for the neighborhood of a
site; rule F may thus be labeled by an integer
decimal number in the set {0,1,...,255}. To update
the value of V at a site i, the configuration of the
neighborhood of site i is first identified at the
previous time, and then V takes on the value of the
digit of F corresponding to that configuration.

A general algorithm to allow for the
calculation of the evolution of an elementary
cellular automaton according to any rule F in the
set {0,1,...,255} may be described as follows: (i)
first, we convert the decimal number specifying
rule F to a binary number with eight digits,
d7d6d5d4d3d2d1d0; (ii) next, for site i, i∈{1,...,N},
we determine the configuration of the
neighborhood, C, using the expression
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where C is an integer such that C∈{0,...,7}; (iii)
finally, the update may be effected by setting
Vi

t+1=dC. The algorithm just described for the
automaton evolution under rule F could be
implemented in a parallel or serial machine; only
one N-long integer vector array, A={A1,A2,...,AN},
would be required to store the values of V at the N
sites (Nt sites with values at time t and Nt+1 sites
with values at time t+1, Nt+Nt+1=N). An auxiliary
integer array with three entries would then be
needed to store the values of V in the neighborhood
of site i at time t; Nt, Nt+1, and the three entries
would change after the update of each site.
However, since V is a binary variable, such an
implementation would not make optimal use of
machine memory. In the next section we describe
our general binary algorithm, which will allow for
optimal use of machine memory in both parallel
and serial implementations.

4 The Binary Algorithm
The binary algorithm is devised so that each bit of
machine memory can be used to store the value of
V at a site.  A word of memory with Nby bytes
contains Nbi=8Nby bits; thus, NW words can hold
N=8NWNby=NWNbi sites. A general binary algorithm
to allow for the update of all the sites in a word
according to any rule F in the set {0,1,...,255}
cannot be constructed using a single binary
operation; a sequence of binary operations is thus
needed, as described next.

We consider a word with Nbi bits, which are
numbered from 0 to Nbi-1, from right to left. Also,
the decimal number specifying rule F is assumed
to be converted to a binary number with eight
digits, d7d6d5d4d3d2d1d0, and in the following we
refer to the array A of the previous section and to
the words W1, W2, W3, which respectively store  the
words Ak-1, Ak, and Ak+1, 1≤k≤(N/Nbi)-1. For a site i
whose value of V is stored at bit b of the word W2,
b∈{0,...,Nbi-1}, and belonging to word Ak, the first
step is to identify the corresponding configuration,
C, of its neighborhood. If b=0, four steps are
necessary to determine C: first, W2 is shifted to the
left by Nbi-2 places; second, the resulting word is
shifted Nbi-3 places to the right; third, W1 is shifted
by Nbi-1 places to the right; fourth, the binary
operation “or” operates on the words obtained in
the second and third steps. If b=Nbi-1, four steps
are also necessary to determine C: first, W3 is
shifted to the left by Nbi-1 places; second, the
resulting word is shifted Nbi-3 places to the right;
third, W2 is shifted by Nbi-2 places to the right;
fourth, the binary operation “or” operates on the
words obtained in the second and third steps.
Finally, if b∈{1,..., Nbi-2}, only two steps are
necessary to determine C: first, W2 is shifted by
Nbi-2-b places to the left; second, the resulting
word is shifted by Nbi-3 places to the right. The
word obtained after executing the corresponding
steps for each value of b contains the binary
representation of the integer value of C,
C∈{0,...,7}. The update of  V at site i may now be
effected by simply setting Vi

t+1=dC. This new value
must next be introduced at bit b of the word Ak. We
start with bit b=0: we simply attribute the integer
value dC to the word Ak, thus erasing its contents at
time t. For b∈{1,..., Nbi-1}, we introduce the new
value at bit b through the binary operation “or,”
whose operands are the word Ak (at time t+1) and
the word whose bits are all zero except the one at
position b, whose value is dC.

(1)

(2)



5 The Parallel Algorithm
The purpose of our parallel computing effort is to
allow for cellular automata simulations with larger
numbers of sites compared to serial simulations,
for a given machine specification and a given
spatial dimension n of the lattice. The synchronous
update of the values of V at the N sites, based on
the previous time step, is the characteristics of the
dynamical evolution of the automata which permits
efficient parallel processing in a network of
computers. The parallel algorithm which we now
describe, to simulate the evolution of one-
dimensional elementary cellular automata as given
by expression (1), has been devised for the
distributed-memory message-passing − MIMD
loosely-coupled − computational model (El-Rewini
& Lewis, 1998; Leiss, 1995), in which there are P
participating processors.

The first component of the parallel algorithm
is data partition: the line (i.e., one-dimensional
lattice) with N sites is divided into P equal, or
approximately equal, segments, each segment
containing N/P, or approximately N/P, sites; next,
the segments are distributed to the processors, as
illustrated in Fig. 1. The sites are numbered locally
in each processor, from 1 to N/P (or approximately
N/P), from right to left. The other component of
the parallel algorithm is nearest-neighbor data
communication: in order to compute the evolution
of all its resident (local) sites, each processor at
each time step needs to exchange the values of V at
its two extremal sites of the resident segment. This
is accomplished through nearest-neighbor
message-passing, as illustrated in Fig. 1; since we
are imposing periodic boundary conditions, the

first and last processors are neighbors, and need to
exchange data.

6  The Parallel Implementations
The binary and parallel algorithms presented in the
previous two sections are implemented together as
a single code, one for the PVM protocol and
another one for the MPI protocol. The parallel
codes are written in the FORTRAN77

programming language, and are essentially
identical, except for the specific PVM and MPI
calls which effect the parallel computing tasks. We
use words of type INTEGER4 to store the values
of V at the sites; thus, Nby=4 and Nbi=32. In both
PVM and MPI implementations, the minimum
amount of data that can be exchanged between
processors is one word, or 32 bits in our case.
Therefore, instead of exchanging data with one of
its neighbors corresponding to one single site, a
processor exchanges one word of data,
corresponding to 32 sites; the processor thus uses
just one bit of information, and disregards the
remaining 31 bits.

6.1  The PVM Implementation
The PVM implementation is now described by
indicating the FORTRAN77 PVM routines (Geist
et al., 1994) which are called from within the
program to effect the various tasks of the parallel
algorithm previously presented. It is first required
to start up PVM and, next, to configure a parallel
virtual machine with P machines of our cluster,

3≤P ; one of the P participating machines is the
parent (the one where PVM is started), the other

1−P  are the children (initialized by the parent
with the pvmfspawn routine).

Data partition requires the labeling of each of
the P participating machines of a virtual machine;
the setup and identification of each of the P
machines are effected with the pvmfmytid  and
pvmfparent  routines. Nearest-neighbor data
communication, required to update the extremal
sites of the resident automaton segment in one
processor, is effected in four steps: first, a message
buffer is initialized by calling the
pvmfinitsend  routine; second, the word of
data containing one of the extremal sites is
exchanged by the call to the pvmfpsend routine,
which must be matched at the receiving processor
by the call to the pvmfprecv  routine; third and
fourth, respectively, the first and second steps are
repeated for the other extremal site.

6.2  The MPI Implementation
The MPI implementation follows the same
structure of the PVM implementation; we now just
indicate the FORTRAN77 MPI routines  (Snir et
al., 1996) needed to implement the parallel
algorithm. Start up of MPI and the configuration of
the parallel virtual machine are effected by writing
the names of the  P machines to an ASCII data file
(in our case named machines.rs6000 ) and
calling the MPI_INIT and MPI_COMM_SIZE

Figure 1. Illustration of the parallel algorithm
showing data partition and nearest-neighbor data
communication (N=15 sites, P=3 processors).



routines. The labeling of each of the P machines is
effected by calling the  MPI_COMM_RANK
routine. Finally, calls to the routines MPI_SEND
and MPI_RECV are necessary to send and to
receive one word of data, respectively.

7  Validation Results
The validation of the PVM and MPI
implementations has been effected in two steps:
first, we reproduce some of the previous
benchmark results presented in Wolfram (1994),
utilizing only one processor of our cluster; second,
for the same computation and for each
implementation, we verify that the same evolution
is obtained as the number of processors in the
parallel virtual machine is increased to 2 and 3. We
report here that both the PVM and MPI
implementations are working properly: serial and
parallel computations agree, and also the
implementations agree with each other. As an

illustrative example, in Fig. 2 we show 370 time
steps of the evolution of cellular automata with
N=320 sites, starting from a single initial nonzero
site, according to rules 18, 45, 73, and 110. It is
visually observed, to printing resolution, that these
evolutions agree with those reported in Wolfram
(1994, p. 501).

8  Parallel Performance
We now present and discuss the parallel
performance measures obtained with our PVM and
MPI implementations. In Fig. 3 we show the total
execution time, T, required to compute 500 time
steps of the evolution of a cellular automaton with
N sites, using P processors of our cluster; the
execution time is measured with the Unix ����

command, and is given in seconds. In Fig. 4 the
speed-up, S, defined as the execution time for one
processor divided by the execution time for P
processors, is shown as a function of P; the speed-
up results are obtained for 500 time steps of the
evolution of two cellular automata, one with
N=1.5x106 sites and the other with N=4.5x106

sites. Several observations can be drawn from
these figures. First, it is clear from Fig. 1 that
parallel computation of cellular automata
evolution with either the PVM or the MPI
implementation is advantageous with respect to the
corresponding serial computation, which has
higher execution times for all N in the range
5.0x105 to 4.5x106. Second, it is observed from
Fig. 2 that, for fixed P, the speed-up increases as
the number of sites is increased; this behavior is
explained by the fact that the amount of
computation on one processor increases when N  is
increased, whereas the amount of communication
remains fixed. Third, for fixed N, the speed-up
increases as the number of processors is increased
from 1 to 3; the speed-up curve for the PVM
implementation, contrary to the curve for the MPI
implementation, is beginning to level-off,
indicating that the latter will benefit more than the
former if the number of processors is increased
beyond 3. Finally, we observe from Figs. 3 and 4
that the MPI implementation has a better parallel
performance than the PVM implementation; this is
mainly due to the ‘communicators’ used in the
MPI protocol (Snir et al., 1996), which may
completely eliminate intermediate buffering when
sending and receiving messages (as opposed to the
PVM protocol). As a last comment, we obviously
expect that the performance of both the PVM and
MPI implementations would improve with better
(i.e., faster) communication hardware (Geist et al.,
1994), such fast Ethernet devices.

9  Results for Cellular Automata
with Large Numbers of Sites

In order to illustrate the enhancement of computing
power afforded by parallel processing to simulate
the time evolution of cellular automata, we now

Figure 2. Illustration of 370 time steps of the
evolution of cellular automata with N=320 sites,
according to rules (a) 18, (b) 45, (c) 73, (d) 110.



show some results obtained for the density of
automata with one billion sites, N=109, for 100
time steps. For the machines of our cluster, serial
simulations with N=109 are impossible due to
memory limitations. Density D is a statistical local
property defined as the number of sites at which
the value of V is 1 divided by N, 0≤D≤1 (Wolfram,
1994; local and global properties characterize,
respectively, individual and the ensemble of all
possible configurations of a cellular automaton).

In Fig. 5 we show a plot of D versus time t for
the complex rules 18, 90, 110, and 182; at time
t=0, the state is disordered and the density is
D0=0.5 for all rules. We observe that all rules lead
to asymptotic values for D as time is increased, as
predicted by Wolfram (1994). Finally, in Fig. 6 the
density D is shown in the course of the time
evolution of cellular automata according to rule 22,
starting from three different disordered initial
states, with D0 taking on the values of 0.1, 0.2, and
0.3.  We note that, irrespective of the value of D0,
the density D for rule 22 approaches the same
asymptotic value of 0.351. As pointed out by
Wolfram (1994, p. 23), no simple domain structure
appears with rule 22, rendering impossible a rule

transformation approach  to derive the exact
asymptotic value of D; Wolfram (1994) thus
estimates, based on simulations of automata with
relatively small numbers of sites, such asymptotic
value to be 0.35±0.02. Based on our simulations of
cellular automata with large numbers of sites, we
are able to confirm his estimate to within 0.3%.

We would like to conclude by stating that we
have successfully utilized a low-cost parallel
computing environment, based on the UNIX
operating system and the communication protocols
PVM and MPI, to compute the time evolution of
one-dimensional cellular automata with large
numbers of sites. Extensions of this work to multi-
dimensional cellular automata is possible and
promising.
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Figure 5. Density D versus time t for the complex
rules 18, 90, 110, and 182; at time t=0, the state is
disordered and the density is D0=0.5 for all rules.

Figure 6. Density D versus time t for the complex
rule 22, starting from three disordered initial states
with D0 equal to 0.1, 0.2, and 0.3.
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