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Abstract: Doubletalk detection is commonly used in acoustic echo cancellation units. In situations of doubletalk
the adaptive filter in the acoustic echo canceler might diverge, thereof the need for doubletalk detection. In this
paper, an open-loop doubletalk detector based on power spectrum estimation is presented. The detector explores
the signal characteristic of speech signals to define a frequency distance measure. The present signals are evaluated
by this distance measure, and the measure is compared to a preset threshold. Doubletalk is declared whenever the
measure exceeds the threshold. An objective evaluation technique is used to compare the proposed detector with
two classic open-loop detectors, the Geigel detector and the open-loop correlation detector. It is shown that the
proposed method outperforms the other two in the given evaluation technique.
’
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1 Introduction
Hands-free operation can be a desirable feature in many
products, e.g. car phones, desktop phones, videocon-
ference systems, conference phones, etc. A hands-free
phone call takes part between the participants located
in the same room/car as the hands-free phone, the near-
end talkers, and participants at a remote location, the
far-end talkers. In a hands-free system it is possible that
acoustic echoes arise, i.e. speech originating from the
far-end talkers, that is reproduced by the loudspeaker,
picked up by the microphone, and thereafter transmitted
back to the far-end talkers. Acoustic echoes are in gen-
eral considered very annoying. Several solutions to the
acoustic echo problem have been proposed. One type
of solutions are those based on the system identifica-
tion scheme [1], [2]. A common solution, conforming
to the system identification scheme, is often denoted an
Acoustic Echo Canceler (AEC) [3]. Other acoustic echo
cancelers using adaptive methods can also be catego-

rized as acoustic echo cancelers. In the sequel, an AEC
will denote the type of solution defined in [3]. The most
algorithms for the implementation of an AEC are based
on the Least-Mean-Square(LMS) algorithm, thanks to
the LMS algorithm’s robustness [4]. The performance
of an AEC is linked to the estimation of certain param-
eters, such as speech activity, acoustic coupling etc [5].
The detection of speech activity parameters is crucial
for most AEC systems, in particular doubletalk detec-
tion. Doubletalk occurs when the near-end speech is of
such a level that the adaptation of the AEC should be
stopped. Several doubletalk detectors have been pro-
posed, e.g. the Giegel detector [6], cross-correlation and
coherence based detectors [7]-[9], detectors making use
of parallel filters [10], and detectors using power com-
parison or cepstral techniques [5]. This paper proposes
a DoubleTalk Detector (DTD) based on power spectrum
estimation. Doubletalk is detected by comparing a fre-
quency domain distance measure with a preset thresh-



old.

2 AEC and Doubletalk Detection
An AEC and its environment are depicted in figure
1. The present signals are: the far-end signal, x(k),
the acoustic echo, a(k), the near-end speech signal,
s(k), the near-end background noise, n(k), the mi-
crophone signal, m(k), the estimated echo, â(k), and
the error signal, e(k), i.e. the near-end line-out sig-
nal, where k is the sample index. The acoustic echo
is generarated through filtering the far-end signal with
the Loudspeaker-Enclosure-Microphone (LEM) sys-
tem, i.e. the combined influence from the loudspeaker,
the room, and the microphone, see figure 1. The LEM
system is often modeled as a linear system [5], [11], it
is assumed that the nonlinear part of the LEM can be
modeled as a part of n(k). Further, it is assumed that the
power of the background noise n(k) is at a low level as
compared to a(k), a sudden large increase of the back-
ground noise is modeled as a part of s(k). These as-
sumptions will be considered valid.

The AEC consist of an Adaptive Filter (AF) and a
Adaptive Control Mechanism. The purpose of the AEC,
is to adapt the AF in such a manner, that its transfer
function is as similar as possible to that of the LEM,
in some given measure. Since e(k) = m(k) − â(k),
and m(k) = a(k) + s(k) + n(k), the effect will be
that the acoustic echo a(k) is in large removed from the
near-end line-out signal e(k), providing that the trans-
fer function of the AF is sufficiently close to that of the
LEM, i.e. that â(k) ≈ a(k). In the AEC, the signal e(k)
is used as feed-back input to the ACM, examples of al-
gorithms possible for the implementation of the ACM
are: the Normalized Least Mean Squares (NLMS), the
Recursive Least Squares (RLS), and the Affine Projec-
tion Algorithm (APA) [1]. If a near-end speech signal
s(k) exists the AF might diverge, and thus an increased
portion of the acoustic echo will be transferred back to
the far-end talkers. A near-end speech detector is thus
desirable in order to stop the adaptation of the AF. If the
near-end signal x(k) is not present, there is no acoustic
echo a(k) and the detection of a high near-end speech
signal is easy, since m(k) ≈ s(k) in such a situation. It
is therefore the detection of doubletalk that is of interest,
i.e. the detection of simultaneous existence of the x(k)
and s(k) signals.

Closed-loop DTDs are defined as those detectors
whose performances depend on the adjustment of the
AF, while open-loop DTDs are those whose perfor-

mances are independent of the AF [5]. From figure 1
it can be seen, that DTDs using only signals x(k) and
m(k) are open-loop, while DTDs making use of sig-
nal â(k) or e(k) are likely to be closed-loop detectors,
since â(k) and e(k) are dependent on the AF. Closed-
loop detectors are considered to outperform open-loop
detectors in situations where the AF is well adapted [5].
However, the adaptive filter of a hands-free phone is not
always well adapted, e.g. during initial adaptation or af-
ter a sudden spatial movement of the phone. In these
situations, the open-loop detector might outperform the
closed-loop detector. Thus, improved open-loop de-
tectors or alternatively combined open-loop/closed-loop
methods are still attractive.

The proposed DTD is a single statistic binary detec-
tion DTD, i.e. a detector that either declares doubletalk
or not doubletalk, and which:

1. Produces a single detection statistic, ξ(k)

2. Declares doubletalk if ξ(k) > T , where T is a pre-
set threshold

3. If doubletalk is declared for sample k = k0 contin-
ues to declare doubletalk for the next Thold samples
no matter the value of ξ(k)

Most DTDs follow the characterization given above
[11]. Two classic open-loop DTDs that conform to this
characterization are the open-loop cross-correlation de-
tector and the Geigel detector. The definitions of these
two detectors given below are as in [5] and [11], re-
spectively. The detection statistic for the Geigel detector
ξg(k) is defined as

ξg(k) =
|m(k)|

max{|x(k)|, · · · , |x(k − Ng)|} , (1)

where Ng is a positive integer constant. The detec-
tion statistic for the open-loop cross-correlation detector
ξc(k) is defined as

ξc(k) =

[
max

lε[0,··· ,Lc]

|∑Nc−1
i=0 x(k − i − l)m(k − i)|∑Nc−1

n=0 |x(k − i − l)m(k − i)|

]−1

,

(2)
where Nc and Lc are two positive integer constants.

3 The Proposed DTD
The proposed DTD compares a Power Spectrum Esti-
mate (PSE) of the far-end speech signal x(k) and the
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Figure 1: The AEC and its environment.

microphone signal m(k). The main idea of the pro-
posed DTD, is that a frequency bin in the microphone
PSE cannot have a significantly larger magnitude than
the corresponding far-end PSE bin, unless the near-end
speech signal s(k) is present. A sound signal is damped
as it travels through open-air or is reflected by a wall.
During sufficiently short durations of time the LEM sys-
tem can be approximated by a Finite Impulse Response
(FIR) filter, [5], [11]. This motivates the assumption that
the LEM-system does not introduce too extreme ampli-
fication, delay or non-linear effects. These conditions
imply, that if the PSE of the microphone signal contains
bins with significantly larger magnitude than the magni-
tude of the corresponding bins in the PSE of the far-end
speech signal, it is likely that near-end speech is present.

As speech is far from a flat spectrum signal [12],
some of the frequency bins in the far-end speech PSE
are likely to have magnitudes that are significantly less
than the mean magnitude of the other bins. An example
of a PSE of a far-end speech signal is shown in the top
plot in figure 2, where bin 24, 25, and 29 can be con-
sidered as low energy bins. Assume that the near-end
speech signal has low energy as compared to the acous-
tic echo. Then the near-end speech signal cannot effect
the microphone signal PSE, except possibly for the bins
where the acoustic echo has its lowest energy.

Thus, doubletalk can be detected by comparing the
PSE of the far-end speech signal and the microphone
signal for the bins corresponding to the lowest magni-
tude bins in the far-end speech PSE. This concept is
visualized in the lower two plots in figure 2, where
the presence of a near-end speech signal can be noted
by comparing the microphone PSEs and far-end speech
PSE for the ”low” energy bins 24, 25, and 29.

PSE of a microphone signal containing near-end speechno

PSE of a microphone signal containing near-end speech

PSE of a far-end speech signal

dB

Bins

Figure 2: Bins 21-30 of PSEs for a 512 sample seg-
ment of a far-end speech signal (top plot), the corre-
sponding microphone signal segment when no speech
is present (middle plot), and the corresponding micro-
phone segment when near-end speech is present (bottom
plot). Scale is in dB, where 0dB is the magnitude of the
smallest bin in the far-end speech PSE.

The proposed DTD is defined mathematically
through the computation of its detection statistic, ξp(k),
which is given by

ξp(k) =
Np−1∑
l=0

wl(k)(PSEmm,l(k) − PSExx,l(k)) (3)

where wl(k) is a weight function and PSEmm,l(k) and
PSExx,l(k) are PSEs of the signals m(k) and x(k),
where l is the frequency bin index. In this paper, the
modified periodogram is used for PSE. The PSE of the
signals m(k) and x(k) are thus given by

PSEmm,l(k) =
∣∣∣ Np−1∑

i=0

m(k−Np +1+ i)gie
−2jπli/Np

∣∣∣2
(4)

PSExx,l(k) =
∣∣∣ Np−1∑

i=0

x(k − Np + 1 + i)gie
−2jπli/Np

∣∣∣2
(5)

where Np is a positive integer and g = [g0, · · · , gNp−1]
is a window function of length Np. The length of the
power spectrum estimates, Np, should be sufficiently
long to provide satisfying estimation quality. However,
detection delay increases with higher values of Np, so
there is a tradeoff between detection delay and estima-
tion quality.



The weight function wl(k), used in equation (3),
should reflect the principle given above, i.e. that bins
with a ”low” magnitude in the PSE of the far-end signal
x(k) should be favored in the calculation of the detec-
tion statistic ξp(k). One way to obtain such a weight
function is to define wl(k) by

wl(k) =
{

1 if PSExx,l(k) ≤ Tp

0 if PSExx,l(k) > Tp,
(6)

where Tp is some preset threshold.
The calculation of ξp(k) contains two power spectrum

estimates, which are quite computational demanding as
compared to the calculations performed in equations (1)
and (2). To reduce the computational load, the detec-
tion statistic ξp(k) could be computed only every Mp

sample. The intermediate Mp − 1 samples are then de-
fined as ξp(Mpi + j)= ξp(Mpi) with i = [0, 1, 2, · · · ]
and j = [1, · · · , Mp − 1]. High values of Mp implies
a lower computational load. However, with increased
values for Mp, there is an increased detection delay.

The proposed DTD, as given in equations (3)-(6), re-
quires that the power spectrum of the near-end speech
signal x(k) contains sufficiently many frequency bins
that fulfill the condition (6) to make a detection accord-
ing to equation (3) possible. This implies that Np cannot
be set too large, due to the non-stationarity of speech
signals. If the near-end speech signal s(k) is present,
but its spectrum has no or only a small part of its en-
ergy located in the bins used in equation (3) the near-
end speech might pass undetected. Thus, it is required
that when the near-end speech signal s(k) is present,
its spectrum contains significant energy in the bins cor-
responding to those weights, wl(k), that are equal to
one, see equation (6). In order to determine if these re-
quirements can be sufficiently met to make the proposed
DTD attractive, an objective evaluation was performed.

4 Evaluation and Result
An objective technique for evaluating doubletalk detec-
tors was proposed in [11]. The technique presented here
is mainly the same, for motivations of methods and the
settings of certain variables see [11]. The evaluation
is based on Receiver Operating Characteristics (ROC).
The characteristics used are probability of a false alarm,
Pf , i.e. declaring doubletalk when doubletalk is not
present, and probability of miss, Pm, i.e. not declaring
doubletalk when doubletalk in fact is present. The pro-
cedure is as follows: for a number of specific preset Pf

values one computes the value of Pm for a number of

different levels of the Near-end to Far-end speech power
Ratio (NFR). This measure is defined as

NFR =
σs

σx
, (7)

where σs and σx are the variance of the near-end sig-
nal, s(k), and far-end speech signal, x(k), respectively.
Thus, one plot of Pm vs. NFR is obtained for each spec-
ified value of Pf . From these plots visual inspection is
then used to make judgments about the DTD. Because
the effect of a pause of the adaptation of the filter in the
AEC during inactive far-end speech is minimal, a miss
or a false alarm is counted only during the active por-
tion of the far-end speech. A speech activity detector
K[z(k)], where z(k) = x(k) or z(k) = s(k), is defined
as:

K[z(k)] =
{

1 if z(k) > Zl

0 if z(k) ≤ Zl
, (8)

where Zl is a preset constant and z(k) is an average
of the absolute value of z(k) given by z(k) = (1 −
e−1/Zm)z(k − 1) + e−1/Zm |z(k)|, where Zm is a preset
constant. The constant Zl defines for what level speech
activity should be declared and the constant Zm defines
the ”memory” in the average estimator.

The characteristics Pf and Pm are obtained through a
method where several single realization characteristics
are used. A single realization means that the charac-
teristics are obtained by using one specific set of signals
x(k), n(k), s(k) and one specific LEM system. The sin-
gle realization parameters corresponding to Pf and Pm

are denoted Pfs and Pms, respectively. They are defined
through

Pfs =
∑

k φ(k)K[x(k)]∑
k K[x(k)]

(9)

Pms =
∑

k φ(k)K[x(k)]K[s(k)]∑
k K[x(k)]K[s(k)]

, (10)

where Lk is the total number of samples of the signal
x(k) and φ(k) is the doubletalk detector output, i.e.

φ(k) =
{

1 if ξ(k) > T
0 if ξ(k) < T

, (11)

To obtain the plot of Pm vs. NFR for a given Pf , the
following method is proposed in [11], introduced sig-
nals are defined below:

1. Select a Pf value, set x(k) = xt(k), n(k) = nt(k),
and choose one representative room impulse re-
sponse as the LEM system



2. Set s(k) = 0 and compute m(k)

3. Select a threshold T and compute φ(k)

4. Compute Pfs

5. Repeat step 3 and 4 over a range of values for T

6. Select the value of T which corresponding Pfs

value is closest to the chosen Pf value

7. Select an NFR value

8. Set s(k) = vt,i(k) with i=1, and compute m(k)

9. Compute φ(k) using the value of T chosen in 6

10. Compute Pms

11. Repeat step 8-10 for i = [2, · · · , 16]

12. Set Pm to the average of the 16 Pms values

13. Repeat step 7-12 over a range of NFR values

14. Plot Pm as a function of NFR

In the above xt(k) consists of a male voice speech
signal with continuous speech with a duration of 5s.
The 16 near-end signals vt,i(k) are generated by choos-
ing two male sentences and two female sentences of
a duration of approximately 2s each, and from each
of these creating 4 signals with a duration of 5s, by
adding each sentence into a silent signal of length 5s
at different random positions. The background noise,
nt(k), is a flat spectrum bandlimited signal, with its
variance set to -30dB as compared to the variance of
xt(k). The communication bandwidth of all speech sig-
nals is [0Hz, 8000Hz].

The Giegel, the open-loop correlation, and the pro-
posed detector, were evaluated using the technique de-
scribed above. The sample rate was 16kHz, and Thold

was set to 30ms for all three detectors. The constants
in the speech activity detector were set to Zl = −30dB
and Zm = 512. The parameters in the Giegel and the
open-loop correlation detectors were set Ng = 1000,
Nc = 300, Lc = 30. These settings were obtained from
a large set of tried settings, and were chosen as being the
optimal ones of the values in the tried set. The decision
of optimality was made by visual inspection of the Pm

vs. NFR plots. The settings for the proposed DTD were
Np = 512, Mp = 256, Tp = 0.0001, and g was the
Hanning window function. These settings are not op-
timal, but were considered sufficient for demonstrating

the virtues of the proposed DTD. In [11] Pf values in
the range [0, 0.3] were considered acceptable for AEC
systems. In this paper, as well as in [11], simulations
were performed for Pf=0.1 and Pf=0.3.
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Figure 3: Pm vs. NFR for Pf = 0.1. Proposed DTD:
circles, Giegel DTD: triangles, Open-loop correlation
DTD: squares.

Figure 3 show a plot of Pm vs. NFR for the three
detectors for Pf = 0.1. Figure 4 show the same for
Pf = 0.3. From these two plots it can be seen that
the probability of a miss in the detection for the pro-
posed DTD is less or approximately the same as com-
pared to the other two methods. For NFR values in
the range -20dB to 30dB the difference is significant
for both Pf = 0.1 and Pf = 0.3. The result of the
evaluation is thus that the proposed DTD outperforms
the other two methods. The increased performance is
mainly given by the weighting performed in equation
(6). Through this weighting specific frequency bands
with low NFR is excluded in the detection of the near-
end signal.

5 Conclusions
In this paper an open-loop DTD was presented. The
proposed DTD uses the power spectrum estimates of
the far-end speech signal and the microphone signal to
produce a frequency domain measure. The measure is
compared with a preset threshold, and doubletalk is de-
clared if the measure exceeds the threshold. The pro-
posed DTD was compared with two classic open-loop
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DTDs by an objective evaluating technique. The eval-
uation showed that the proposed DTD outperforms the
other two. The proposed DTD is thus an interesting can-
didate for the doubletalk detection in future AEC imple-
mentations.
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