
Using Petri Net and Branch and Bound Algorithm for
Modeling and Scheduling of a Flexible Manufacturing System

ABOLFAZL JALILVAND

Electrical Engineering Group
Islamic Azad University of Abhar

Abhar
 IRAN

SOHRAB KHANMOHAMMADI
Faculty of Electrical Engineering

University of Tabriz
Tabriz
IRAN

Abstract: In this paper a flexible manufacturing system is investigated where the production process
is accomplished in two main stages: machining and assembling. For Modeling of the system the
timed Petri net is used. The minimum time requirement for completing the machining is discussed so
that assembling the parts would be performed at the possible least time. Scheduling the
manufacturing system is performed via a Petri net based controller supervised by a branch and bound
algorithm. Also for speeding up the running of algorithm a new method is introduced which doesn't
need large memory. The proposed approaches are verified through simulation results.

Keywords: Manufacturing system, Task scheduling, Assembly, Branch and Bound, Petri net.

1 Introduction
Producing customized products in a short time at low
cost is one of the goals of the manufacturing systems.
In most of the manufacturing systems the production
is performed in two main stages: machining and
assembly. At the machining stage, non-standard and
raw parts are machined with machines. At the
assembly stage the machined parts are assembled
with assembly equipments and techniques. The
successful implementation of these two stages lies in
efficient scheduling of the system [1]. The schematic
structure of the manufacturing system that
implements these two main stages is shown in Fig. 1
[1].

Fig.1: The general structure of a manufacturing system

There are m multi-purpose machines at the
machining stage and one assembly machine at the
assembly stage. The machining Operations include
all activities that are required to perform on raw
materials. Assembly stage involves in assembling the
machined parts to form the final product.

Although in a simple manner each raw part can be
machined by a respective machine but for flexibility
purpose, it has been assumed that each part can be
machined by each of several machines in machining
stage. Furthermore we assume that removing

different materials and allocating each of them to
each machine is performed by a robot manipulator.
In deed we consider a system so called flexible
manufacturing system which is collection of work-
stations that produce a family of related parts that
require similar operations. A key feature of a flexible
manufacturing system is the way in which raw
materials are routed into and finished pieces are
routed out of the manufacturing system. A focus in
such system is that how the given pieces travel
through the system [2-5]. Accordingly in such case
we encounter the problem that in which sequence the
parts must be removed by robot and in which order
they must be allocated to machines so that the total
completion time for a product would be minimum.

2 Manufacturing System
In this section we consider a flexible manufacturing
system that consists in three multi-purpose machines:
M1, M2 and M3 that each of them can process
different raw materials: a, b and c. The output parts
from these machines will be assembled by M4 and
finally finished part will be produced. The removing
and carrying of each raw material and also allocation
of it to each of the machines is performed by a robot.
In this system, at a production cycle each of three
machines receives one of the three different parts and
performs its prescribed task on it. When all of the
three machines accomplished their tasks and
produced their outputs, the assembly machine can

work on them and produce the final product. The
production cycle terminates when finished piece is
produced. The schematic construction of the
manufacturing system is shown in fig. 2.

Fig. 2: The flexible robotic manufacturing system

The machines: M1, M2 and M3 must have an input
buffer related to each part and one output buffer.
Also the machine M4 has three input buffer and one
output buffer (fig. 3).

Fig. 3: The complete model of each machine in machining

stage and assembly stage.

The Petri net [6] model for each of these machines is
depicted in fig. 4. Figure 4(a) shows the Petri net
model of each of the machines in machining stage
and fig. 4(b) depicts the Petri net model of the
assembly machine.

Fig.4: Petri net model of each machine: (a) machining

stage (b) assembly stage.

Where each places means as follows:
Bi': The input buffer is empty.
Bi: The input buffer is filled.
Bo': The output buffer is empty.
Bo: The output buffer is filled.
M': The machine is idle.
M: The machine is busy.
Furthermore each of the transitions means as follows:
t1: The input buffer is loaded.
t2: The machine starts to work on the part.
t3: The machine finishes the working on the part.
t4: The output buffer is unloaded.

Note that in this Petri net models ignoring the times
of loading the input buffer and unloading the output
buffer, all of time that is consumed for machining the
part has been assigned to transition t3. In other word
we use the timed Petri net for modeling.

In this system, based on that the robot's arm has
been neighbor which machine after carrying and
assigning the previous part and attempts to remove
which next part for which machine, it may consume
different times. We summarize this times in three
matrices: T1R, T2R and T3R. Where tixj means the time
is required to robot moves from neighboring machine
Mi to remove part x and carries it to machine Mj.

 (1)
















=

312111

312111

312111

1

ccc

bbb

aaa

R

ttt
ttt
ttt

T
















=

322212

322212

322212

2

ccc

bbb

aaa

R

ttt
ttt
ttt

T
















=

332313

332313

332313

3

ccc

bbb

aaa

R

ttt
ttt
ttt

T

Furthermore the required processing time for each
part relating to each machine is given as follows:

 (2)
















=

cccbca

bcbbba

acabaa

M

ttt
ttt
ttt

T

111

111

111

1
















=

cccbca

bcbbba

acabaa

M

ttt
ttt
ttt

T

222

222

222

2
















=

cccbca

bcbbba

acabaa

M

ttt
ttt
ttt

T

333

333

333

3

Where tixy is the time that ith machine consumes in
order to process part y whereas its previous processed
part was x. for ensuring that assembly machine can
produce a finished part at each production cycle, it is
required that robot carries one of each parts: a, b and
c and machines: M1, M2 and M3, is allocated one of
the parts at each cycle. Furthermore, the sequence of
robot actions in allocating the parts to machines and
also machines actions in machining stage must be
considered in such manner that the final product
would be produced in minimum time.

To solve the first problem we introduce two Petri
net controllers called: sequencer 1 and sequencer 2
that are shown in fig. 5.

Fig. 5: Petri net model of flexible robotic manufacturing system.

Each of the places Pa, Pb and Pc in sequencer 1

must have one token at first as initial marking.
When robot picks up one of the parts: a, b or c the
token of its respective place (Pa, Pb or Pc)will be
removed. This permits the robot to pick up the
other type of parts in next step. When all types of
different parts: a, b and c are moved by robot
(each of them once), the tokens of places: Pa, Pb
and Pc have been removed and the place s has
three tokens that are required for firing the
transition ts and consequently deposit one token in
each places: Pa, Pb and Pc , for next production
cycle. Also places: P1, P2 and P3 in sequencer 2
must have one token initially. When robot delivers
the part to one of machines: M1, M2 and M3, the
token of its respective place: P1, P2 or P3 will be
removed. This permits the robot to delivers the
next part to other machines in next step. When all
of the machines have their part, the tokens of
places: P1, P2 and P3 have been removed and the
place s2 has three tokens that are required for
firing the transition ts2 and deposit one token in
each of the places: P1, P2 and P3, for next
production cycle.

For solving the second problem we will use a
Branch and Bound based algorithm which enable
us to decide which sequence of parts and also
which sequence of machines must be chosen by
robot in each cycle in order to minimize the total
completion time for each finished part.

3 Task scheduling
As it mentioned before, it is required to determine
the sequence of picking up each part by robot and
allocating it to the machines in such manner that
outputs of machining stage would be ready in
minimum time for the assembly stage. It must be
investigated all of the possible sequences that
based on them the robot can pick up a part and
allocate it to machines and select the optimum
sequence so that the maximum consumed time in
order to a part will be ready to assembling will be
minimum for each production cycle. Whereas
selecting such optimum sequence is dependent on
the previous conditions of the system at the end of
last cycle, we need an algorithm that can calculate
the optimum sequence. The Branch and Bound
(BB) is a well known method that can be used for
this purpose [7-8]. But its requirement that all of
the possible sequences have been produced
previously needs a large size memory and causes
the running time of algorithm increases
considerably [9]. We consider the BB algorithm to
determine the optimum sequence for the
manufacturing system. But in order to speed up
the running of BB algorithm a new method is
proposed that doesn't need large size memory.

Regarding the manufacturing system, we must
consider that at beginning a new sequence the
robot arm may be near each of the three different
machines in machining stage and each of the

machines may work on one of the three different
parts. The tree of the decision making
construction is shown in fig. 6.

Fig. 6: The decision making tree.

We demonstrate index of the last machine in
machining stage by i and the last processed parts
by the machines: M1, M2 and M3, by u, v and w
respectively. In order to use the BB algorithm, i
plus u, v and w is considered as a root node.
Content of the other nodes demonstrate the start
point, picking up part and the end point of robot in
a route. For each of such nodes we can assign a
total time, including the robot consuming time and
the time that machine consumes in order to
process the corresponding part based on its
previous processed part. For example for the node
1b2, considering the previous processed part by
machine M2, is v we have the total time t1b2+ t2vb
and for the node 2c3, considering the previous
processed part by machine M3, is b we have the
total time t2c3+ t3bc .

In the tree, each branch from node to one of
the leaves demonstrate a possible operation
sequence for the manufacturing system which
consists in three nodes, each node related to one
machine and one part. In order to that the
assembly stage would be able to accomplish its
task as soon as possible we must consider
maximum time of each sequence and finally select
the sequence with the minimum of the maximum
time. We can describe this by formula as follows:

 (3)
)})(

),...(),{(min(max

},,{,,
}3,2,1{,,
},,{,,

nrzmznlymixl

mqylymixllpxixl

wvurqp
nml

cbazyx

tttt

ttttt

+++

+++

∈
∈
∈

Where i is the index of the last machine which
robot delivered the part to it at previous sequence.
u, v and w are the parts that M1, M2 and M3
processed them at previous sequence respectively.
x, y and z are the new order of parts and l, m and
n are the indices of the machines which the parts
must be delivered them respectively.

Now for applying the BB algorithm we
introduce a new method that in each iteration

produces and investigates only one branch of tree
hence it don't need large memory and speed up
the running of the BB algorithm considerably.

4 Branch and Bound Algorithm
For describing the BB algorithm we must
determine a route (R) as the sequence of operation
order and an array for the time of a route (TR) that
includes the total time relating to each part and the
machine works on it. For instance for i=2 and [u,
v, w]=[c, b, a], for route R=[i, [(b,1) (a,3) (c,2)]]
we have the time array TR=[(t2b1 + tc1b),(t2b1 + t1a3
+ tb3a),(t2b1 + t1a3 + t3c2+ ta3c)] and the maximum
time for this route will be MR= max(TR). Now
we describe the BB based algorithm for searching
the optimum sequence as follow:
1- Get r as the initial root and [u, v, w].
2- Get the TR as time matrix of robot, TM as time

matrix of machines
3- Set][wvuS = ,]'321[' NB K= T as the

initial value of B' where N' is the length of S,
[]TTTT SSSA K=' as the initial value of A'

and F'=N' as a temporary flag.
4- Select an arbitrary sequence of the N states as

the first permutation and locate it in vector P.
5- Set the initial path as R=[r , P]
6- Calculate the maximum time of path R as

MR.
7- Set]321[NB K= T as the initial value

of B, []TTTT PPPA K= as the initial value
of A and F=N as a temporary flag.

8- Set R to optimum path (OR) and the MR to
minimum value of maximum time (M).

9- Set S'=A'(N',:).
10- If MR ≥ M then go to step12 else go to step 11
11- If F = N then set OR=R & M=MR and go to

12 else set F=F+1 and go to 15.
12- Set B(F)=B(F)+1.
13- If B(F)>N and F>1 then set B(F)=F, F=F-1

and return to step 12 else go to step 14.
14- Substitute the A(F,B(F)) by A(F,F) and vice

versa. Set rows F+1 to N of A equal to A(F,:).
15- Set R=[r , A(F,1:F)] and MR=max(TR).
16- If B(F)<=N then go to step 10 else go to step

17.
17- Set B'(F')=B'(F')+1.
18- If B'(F')>N' and F'>1 then set B'(F')=F', F'=F'-

1 and return to step 17 else go to step 19.
19- Substitute the A'(F',B'(F')) by A'(F',F') and

vice versa. Set rows F'+1 to N' of A' equal to
A'(F',:).

20- If B'(F')<=N' then set F'=N' and go to step 9
else go to step 21.

21- END.
Figure 10 shows the flow chart of this algorithm.

Fig. 7: the flow chart of proposed BB algorithm

This algorithm only needs vectors B and B' and
matrices A and A' during its running cycle, hence
its memory demanding decreases considerably.

5 Simulation Results
To verify the proposed modeling and scheduling
methods we simulated them relating to the
described manufacturing system. For this purpose
a modified Petri net Tool Box [10] has been used.
In order to demonstrate the effect of BB algorithm
in operation of system the simulation results are
obtained for two different situations:
1) With sequencers and without BB based

supervisor.
2) With both sequencer and BB based supervisor.

Figure 8 shows the simulation results of Petri
net model controlled by sequencers but without
BB algorithm. When the carrying of a part is
finished by robot, it is located in input buffer of
the specified machine if it would be empty. In this
case, selecting the part and allocating it to each of
the machines is random. For simulation purpose
we considered 20 parts from each type. The
results show that the time of machining and
assembling all parts is 403 time units.

Fig. 8: The simulation result for manufacturing system
with sequencer and without BB based supervisor.

The simulation results, when the BB algorithm
is used are shown in figure 9. As it is seen from
the results the total time of machining and
assembling all the parts is reduced to 338 time
units. Consequently it can be deduced that the BB
algorithm based task scheduling reduces the idle
time of assembly machine. In other word applying
the proposed method has reduced the total time
that is required for finished parts.

Fig. 9: The simulation result for manufacturing system

with sequencer and without BB based supervisor.

6 Conclusion
Modeling and scheduling of a flexible

manufacturing system was investigated in this
paper. For modeling and control purposes of the
system the timed Petri net was used. Task
scheduling of the system based on the Branch and
Bound algorithm is discussed. In order to apply
the Branch and Bound method an efficient
algorithm was proposed which doesn't need large
memory size and reduces running time of
algorithm. The validity of proposed approaches
was examined through simulation results.

References
[1] D. He, A. Babayan and A. Kusiak, Scheduling

manufacturing systems in an agile
environment, Robotic and Computer
Integrated Manufacturing, Vol. 24, No. 1,
2001, pp. 44-50.

[2] W. S. Newman, A. Podgurski, R. D. Quinn, F.
L. Merat and M. S. Branicky Design lessons
for building agile manufacturing systems,
IEEE Trans. on Robotic and Automation, Vol.
16, No. 3, June 2000, pp. 228-238.

[3] D. He and A. Kusiak, Design of assembly
systems for modular products, IEEE Trans. on
Robotic and Automation, Vol. 13, No. 5, Oct.
1997, pp. 646-655.

[4] S. Flake, W. Mueller, U. Pape and J. Ruf,
Analyzing timing constraints in flexible
manufacturing systems, International NAISO
Symposium on Information Science
Innovations in Intelligent Automated
Manufacturing (IAM 2001), Dubai, March
2001.

[5] J. J. westman, F. B. Hanson, and E.K. Boukas,
Optimal production scheduling for
manufacturing systems with preventive
maintenance in an uncertain environment,
Proc. of 2001 American Control Conference,
June 2001.

[6] Tado Murata, Petri nets: properties, analysis
and application, Proc. of IEEE, Vol. 77, No.
4, April 1989.

[7] P. Y. Gan, K.S. Lee and Y. F. Zhang, A
Branch and Bound algorithm based process
planning system for plastic injection mould
bases, the international Journal of Advanced
Manufacturing System, Vol. 18, 2001, pp.
624-632.

[8] A. Bemporard, D. Mignone, M. Morari, An
efficient Branch and Bound algorithm for
state estimation and control of hybrid systems,
Proc. of the European Control Conference,
Karlsruhe, Germany, 1999.

[9] S. Khanmohammadi, Single array Branch and
Bound method, Iranian Journal of
Engineering, Vol. 3, Nos. 1&2, 1990, pp. 71-
72.

[10] G. Ribichini, and P. Messina, Un toolbox
per la progettazione la simulazione el' Analisi
di Rti di Petri Temporizzate, Universita Degli
Studi Pisa, Facolta di Ingegneria, 7 Marzo
2002.

