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ABSTRACT reasonable to assume that a number of multipaths should
The problem of estimating the nominal direction and its un- P& large enough so that their path gains can be character-
derlying angular spread is considered herein. As encoun-Z€d, under the central limit theorem, by a Gaussian ran-
tered in spatially distributed source localization, the compu- dom variable whose associated directions are also random
tation of these directional parameters might be regarded ad2]-[3]. With a priori knowledge of angle probability dis-
two consecutive tasks. In this paper, we proposasgmptotic tr_lbutlon, it appeared in gene_ral possible to govern all de-
maximum/ikelihood (AML) approach to successively esti- viated angles !nto a_parametrlc model_as weI.I. As a maftter
mate both of them. The first advantage of estimation in this Of course, an incoming source signal immediately consists

way is that it requires only two successivedimensional itself of three individual arrival parameters, such as, nom-
searches rather than joidimensional optimization as uti- Nl direction, angular spread and power observed by the
lized in the asymptotic maximum likelihood (AML) esti- sensor array. Since the exact likelihood function with all

mator. Therefore, the decoupled estimation in this way pro- 4 Parameters, which also include the spatially uncorrelated
vides more numerical flexibility. Since it belongs to a large- N0ise variance, can not be concentrated on explicitly [2],
sample approximation of the exact ML method, numerical !t IS therefore conflictive to account for |mplementat|pns as
simulation is conducted in order to validate its asymptotic Indicated before. Recently, a large-sample approximation
efficiency producible with respect to CrémRao bound. ~ Of the exact ML is proposed in [4]. It requires joint 2-
Although its non-asymptotic performance is inferior to that dimensional .search and yields Iower in error variances than
provided by the joint AML approach, it appeared that, in the the WLS (veighted eastsquares) estimator in [2]. Further-
region of large number of temporal snapshot, the proposedMore; relying on these restrictions, the reducible computa-

AML estimator for decoupled estimation is the same as the tion might be admitted by two successive one-dimensional
AML criterion which employed the joir2-dimensions. WLS searches [5] for estimating the nominal direction and
angular spread.

Here we propose aasymptotic maximum /ikelihood
(AML) approach to successively estimate both of them. The

Most works involved direction finding problem were based first advantage OT estllmat|or.1 in this way |s.that It requires
on maximum likelihood (ML) estimation due to its pro- only two successivé-dimensional searches instead of joint

ducible optimality [1]. To arrive at extremal quantity, an op- 2-dimensional (t))ptllm|zat|on TS utilized |r|1 the AML est!ma-f
timization search of the likelihood function seems to be in- ©©F [4]- Since itbelongs to a arge-sampie approxmatlon 0
evitable in a complex model. In general, the physical model the exact ML method, numerical simulation is conducted in
with well-described characterization would requires large order to vallda,te Its asymptotic efﬂuen.cy producible W'.th
number of model parameters. As a consequence, the Iargel?eS]E’eCt to Cra}m.-Rfac.) boundr; AIthou%h gsbnonh-asymptotlc
the number of model parameters, the larger the dimensionP®" orrr]na}nce IS 1N Z”Ohr tor': at provi E:j y the AML apf-
of optimization over parameter space. Unfortunately, this proach, It appeare t a_tt e proposed AML _es“”_‘?‘t"f or
might allow the ML estimator to be unsuitable for being in- decoupled estimation still keeps the asymptotic efficiency.

corporated into real-word applications. This is because of
suffering from implementation aspects, for instance, com- 2. SPATIALLY DISTRIBUTED SOURCE MODEL
putational complexity and memory consumption.

In the presence of local scattering around the vicinity Restrict our attention to a signal transmitting through a chan-
of source, most classical point source models will suffer nel and then impinging on theniform /ineararray (ULA).
from the lack of identifiability in the presence of large num- With phase reference at the first elementfiost element
ber of directions. To deviate from the given problem, itis reference (FER), the array response vee(d)) : [-7, 5] —

1. INTRODUCTION



CM=*1 can be, in general, written ideally as Accounting for small angular spread, the so-cakpdtial
frequencyapproximation results in a separable form as

a(¢) & [1 othdy sin(9) ezkdE(NEq)sin((z;)]T 1)

Znn(p,w;00) = pDy(w)B(o,) Dy (w) )

wherek = 2T designates the wave number with associat- <N

ing wavelength\ andN, is the number of sensor elements. WhereDq(w) : [=kd, kd,] — (C]D)IU # is diagonal and

As previously developed most local scattering models as-unitary matrix parametenzed by nominal angle #1@.) :

sume that the nominal angtes deterministic while angular Rl“ RQSETX £ is symmetric Toeplitz matrix parameter-

deviationds and associating path gainare considered as ized by angular spread. Their 71, )-th elements can be

stochastic quantities. According to linear regression analy-expressed by [3, p. 22])

sis, the array output at time instamf can be characterized

in a flat fading channel by the snapshgi..] € CNe <. [Da()ny iy =€ e ™6, 4 (8a)

Mathematically speaking, it can be represented as [3, p. 25] [B(0)]n = f.((ny —1,)0,|0,1)  (8b)

E7 E

whence characteristic functigfy. (¢],0,1) = F(f(6.],0,1))
Z Vnp[nrla(o+0s,  [n.])+nln.] (2) is equivalent to the Fourier transforf(-) of the associat-
ing random variable whose PDF holds zero-mean and unit

. variance. If additive noise assumed is spatially uncorrelated
whereN, denotes the number of scattering paths
o gp aind | € noise and absolutely uncorrelated from channels, it results

CNe*! designates the additive noise at sensor array. For an
large number of rays, the channel vector

Zoelng] = pln,]Da(w)B(ow)Dy (W) +on I (9)
Z Yo, [nr]a(¢ + 8o, , [n]) ®)

wherep[n,] £ p|s[n,]|> stands for the total power ob-
served at the sensor array. In what follows, we shall con-

seemed, under the central limit theorem, plausible to hold Sider only the deterministic signal with constant modulus so

a circularly-symmetric complex-valued Gaussian process,that¥zz[n,| = ¥:4(6,) ;Vn,, wheref, is the true value

i.e, hln,] ~ N, (0; Xp4,0). This N, -dimensional vari-  0f model parameter. Now suppose that based on the second-

ate implicitly provides the statisti&},;, 2 8<ﬁ[nT]ﬁH[nT]> c o_rder_statlstlcz_‘m(e ) our problem is to find the nominal
N.xN direction of arrival,¢, given the collected daten..|; Vn..,

E E L _
Cy , whereh(n, ] hln.] = & (hn,]) = hln;]. For  ynere true-valued parameter vecty € R**! in the con-
taklng an incoherently distributed channel into account, the sidered model can be defined by

second-order statistic of a certain incoming ray yields [3]

7 21T
5<7nP [nT]fy:,;P [ﬁT]> = 0—35np iy 5”T7ﬁT (4) 0¢ - [¢ O¢p P Un] . (lOa)
0, = [w 0w P U,ﬂ (10b)
whered, o signifies the Konecker delta function and?

is the power due to any path. Over spatial continuum of for the physical and spatial frequency models, respectively.
incoming rays, it can be approximated as Let us introduce the matrix trace, derivative with respect
to scalar and Kinecker product operator a4 |, A(x) =
2 A(x) and®. Under the central limit theorem, the snap-
~ .52 H Ox ’
2un(p, ¢,04) P/f(5¢\07%)a(¢+5¢)“ (@+09)dds SRt datais also of Gaussianity witfn.,.| ~ N, (0; X,.,0).

(5) To estlmate the exac¥ .., the sample covariance matrix
wherep £ N, aV signifies the cluster power due to all paths 5. eCy Ny %

Ne s given by
andf(04]0; %) denotes the conditional PDF for random de-
viation ¢, given a priori knowledge of the angular spread 1 Ny
o4. In instead of such physical anglesando 4, the spatial Y = — z[n, ]z [n,]. (11)
frequency response is preferable due to the better accuracy Ny np=1
of approximating the first-order Taylor series around the ar-
ray broadside [3]. In general, the spatial frequen@nd its 3. SEPARABLE PARAMETERIZATIONS

associating standard deviatiepy are provided by

) In this section, the column-stacking vectorization operator
w(¢) = kd sin(9) 6a)  ».()is performed torepresedit = € (x*[n,] @ z[n,]) =
0u(9,04) = kd, cos(¢)og. (6b) . (2,.)eCNe*! in a certain parameterization.



3.1. Nominal Direction Parameterization

Let us defineB(p, 0,,,02) £ pB(o,) + 021 € RN “Ne

This exhibits a separable parametierc R(Vs +1)X1 as
A 1T
9£w nl] (12)

wheren,, e RNz %1 is the first column vector i (p, o, o2).
Such a parameterization results in

E.I,(ﬂw) = ‘Qw(w)nw (13)

where full- rank matrix$2,, (w) : [~kd,, kd,] — (CNEXN
is 2, (w) = 45 «(w)E& with full-rank binary selection ma-

trix = e By N correspondlng to the Toeplitz structure of

B(p7 aw,an) and nominal frequency parameterization ma-
2 2
trix &(w) 2 DH(w)@Du(w) : [~kd,, kd,] — Cp5 "=

It was mentioned in [5] that based on the extended invari-
ance principle the reparameterization betwégnand 9,
yields the same performance.

3.2. Joint Parameterization of Nominal Direction and
Angular Spread

Assume that we wish to joint estimate bathando,,. We
must definen,, , €R***asn,,, = [p oa] sothat

£m(0w) = Qw-ﬁw (w7gw)nw,au (14)

Whaenwﬁwm)a):[—kdwkdﬂ><Rf1 c? i
2 [ve (Da(w)B(0,) D" (w)) UJDy

Qw,ow (w7 Uw

4. DECOUPLED AML ESTIMATOR

. . — N2xN?
If we designate the nonparametric estimiite, e C,” “as
-~ AT P . .
v, 2 Y . ® X4, then the AML nuisance estimate be-
comes [4]

@71

o) QMW ELE,
d,) =

Ve(Zaa(t)) = 2(¢)17am(t)

() = (") (15)

Plugging the incompletejay (¢) into &, (
we obtain

2()n,

(16)

A

where X, (1) £ X,.(c, Aam(t)) is the concentrated co-
variance for AML estimate. Then, the AML estimator of
the parameter of interest can be written as

LamL = arg min AAI\IATL] (¢) (17a)

@) =2 ) F ] + [T, (A7b)

Now the question is implicitly imposed in what the param-
eter of interest, should be. The following procedure en-
ables us to an obvious answer for decoupled estimation of
nominal directiony and its underlying angular spreag.

a3 [N, ](w)

= WamL= arg min LaniL (18)

L=w
w

-]

Searching the minimum solution farw and{é,, }amLac-
cording to two successive one-dimensional searches, we im-
mediately obtain physical angle estimates via (6).

] (14) {JW}AML—argmlnﬁ,[;M,_](wAML, 0,)-(19)

w

5. NUMERICAL EXAMPLES

To demonstrate the impact of the proposed estimator, we

commonly employ the ULA with half-wavelength separa-

tion to receive a QPSKglaternaryphaseshift keying) sig-

nal whose strength are controllable with respect to noise
2

variance bySNR £ 10log ("—3) All significant param-

eters are set up, unless otherwise a variation on the param-

eter of interest will be specified individually in each figure,

as the following table:

®o
0°,10°

SNR
10

N,

P

100

0—450
50

NE
8

0.01 1,000

Practically, the pseudo random number satisfied the Lapla-
cian PDFf, (6,0, 1) can be modified from,, = \1[ In (2?’)
[6] with any two independent uniform distributiong, ~ ’
Uulo, 1] and5¢U ~ U[0,1]. Our empirical standard deviation

is to average RMSE from a large number of independent
runs (V).

Recently, it is shown that the AML estimator outper-
forms the WLS in non-asymptotic region [4]. Therefore,
we shall investigate only the effect of decoupled estimation
based on AML approach.

In Fig. 1, the joint AML estimator slightly outperforms
the decoupled AML for small number of temporal snapshot.
As shown in asymptotic performance assessment, both es-
timators achieve the CRB as the number of temporal snap-
shots tends to infinity.

For estimating the angular spread in Fig. 2, the decou-
pled AML estimator more deviates from the CRB than that
shown in Fig. 1. This is because the second step for estimat-
ing the angular spread has imposed the uncertainty in nom-
inal direction estimation. However, this effect will be grad-
ually vanished when the nominal direction estimate is more
accurate. In Fig. 2, it can be observed that both joint and
decoupled AML estimations yields the same RMSE perfor-
mance from large number of temporal snapshots.
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Fig. 2. Laplacian angle deviations : empirical and theoret-

6. CONCLUSION

A decoupled approach with two steps has been proposed for
estimating the nominal direction and its underlying angular
spread. It is intended to provide more numerical flexibility
than the joint estimation in a certain applicatiang, the
situation where the angular spread might be not of inter-
est in a while. Numerical simulation was also conducted to
validate the asymptotic efficiency with respect to the joint
estimation and the CRB. The numerical results are verified
that the decoupled estimation can attains the CRB as same
as in the joint estimation when employing a large number of
temporal sanpshots.
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