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ABSTRACT

The problem of estimating the nominal direction and its un-
derlying angular spread is considered herein. As encoun-
tered in spatially distributed source localization, the compu-
tation of these directional parameters might be regarded as
two consecutive tasks. In this paper, we propose anasymptotic
maximuml ikelihood (AML) approach to successively esti-
mate both of them. The first advantage of estimation in this
way is that it requires only two successive1-dimensional
searches rather than joint2-dimensional optimization as uti-
lized in theasymptoticmaximuml ikelihood (AML) esti-
mator. Therefore, the decoupled estimation in this way pro-
vides more numerical flexibility. Since it belongs to a large-
sample approximation of the exact ML method, numerical
simulation is conducted in order to validate its asymptotic
efficiency producible with respect to Cramér-Rao bound.
Although its non-asymptotic performance is inferior to that
provided by the joint AML approach, it appeared that, in the
region of large number of temporal snapshot, the proposed
AML estimator for decoupled estimation is the same as the
AML criterion which employed the joint2-dimensions.

1. INTRODUCTION

Most works involved direction finding problem were based
on maximum l ikelihood (ML) estimation due to its pro-
ducible optimality [1]. To arrive at extremal quantity, an op-
timization search of the likelihood function seems to be in-
evitable in a complex model. In general, the physical model
with well-described characterization would requires large
number of model parameters. As a consequence, the larger
the number of model parameters, the larger the dimension
of optimization over parameter space. Unfortunately, this
might allow the ML estimator to be unsuitable for being in-
corporated into real-word applications. This is because of
suffering from implementation aspects, for instance, com-
putational complexity and memory consumption.

In the presence of local scattering around the vicinity
of source, most classical point source models will suffer
from the lack of identifiability in the presence of large num-
ber of directions. To deviate from the given problem, it is

reasonable to assume that a number of multipaths should
be large enough so that their path gains can be character-
ized, under the central limit theorem, by a Gaussian ran-
dom variable whose associated directions are also random
[2]–[3]. With a priori knowledge of angle probability dis-
tribution, it appeared in general possible to govern all de-
viated angles into a parametric model as well. As a matter
of course, an incoming source signal immediately consists
itself of three individual arrival parameters, such as, nom-
inal direction, angular spread and power observed by the
sensor array. Since the exact likelihood function with all
4 parameters, which also include the spatially uncorrelated
noise variance, can not be concentrated on explicitly [2],
it is therefore conflictive to account for implementations as
indicated before. Recently, a large-sample approximation
of the exact ML is proposed in [4]. It requires joint 2-
dimensional search and yields lower in error variances than
the WLS (weightedl eastsquares) estimator in [2]. Further-
more, relying on these restrictions, the reducible computa-
tion might be admitted by two successive one-dimensional
WLS searches [5] for estimating the nominal direction and
angular spread.

Here we propose anasymptoticmaximum l ikelihood
(AML) approach to successively estimate both of them. The
first advantage of estimation in this way is that it requires
only two successive1-dimensional searches instead of joint
2-dimensional optimization as utilized in the AML estima-
tor [4]. Since it belongs to a large-sample approximation of
the exact ML method, numerical simulation is conducted in
order to validate its asymptotic efficiency producible with
respect to Craḿer-Rao bound. Although its non-asymptotic
performance is inferior to that provided by the AML ap-
proach, it appeared that the proposed AML estimator for
decoupled estimation still keeps the asymptotic efficiency.

2. SPATIALLY DISTRIBUTED SOURCE MODEL

Restrict our attention to a signal transmitting through a chan-
nel and then impinging on theuniform l ineararray (ULA).
With phase reference at the first element, orf irst element
reference (FER), the array response vectoraaa(φ) : [−π

2 , π
2 ] 7→



CN
E
×1 can be, in general, written ideally as
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wherek = 2π
λ designates the wave number with associat-

ing wavelengthλ andN
E

is the number of sensor elements.
As previously developed, most local scattering models as-
sume that the nominal angleφ is deterministic while angular
deviationδφ and associating path gainγ are considered as
stochastic quantities. According to linear regression analy-
sis, the array output at time instantnT can be characterized
in a flat fading channel by the snapshotxxx[n

T
] ∈ CN

E
×1.

Mathematically speaking, it can be represented as [3, p. 25]
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whereN
P

denotes the number of scattering paths andnnn[n
T
]∈

CN
E
×1 designates the additive noise at sensor array. For a

large number of rays, the channel vector

hhh[nT ] ,
N
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n
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γn
P

[nT ]aaa(φ + δφn
P

[nT ]) (3)

seemed, under the central limit theorem, plausible to hold
a circularly-symmetric complex-valued Gaussian process,
i.e., hhh[nT ] ∼ NC (0 ;Σhh,OOO). This NE -dimensional vari-
ate implicitly provides the statisticΣhh , E〈

h̃̃h̃h[nT ]h̃̃h̃hH[nT ]
〉∈
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E
×N

E

H , whereh̃̃h̃h[nT ] , hhh[nT ]− E 〈hhh[nT ]〉 = hhh[nT ]. For
taking an incoherently distributed channel into account, the
second-order statistic of a certain incoming ray yields [3]
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whereδ•,• signifies the Kr̈onecker delta function andσ2
γ

is the power due to any path. Over spatial continuum of
incoming rays, it can be approximated as

Σhh(ρ, φ, σφ) ≈ ρ

∫
f(δφ|0; σ2

φ)aaa(φ + δφ)aaaH(φ + δφ)dδφ

(5)
whereρ , N

P
σ2

γ signifies the cluster power due to all paths
andf(δφ|0;σ2

φ) denotes the conditional PDF for random de-
viation δφ given a priori knowledge of the angular spread
σφ. In instead of such physical anglesφ andσφ, the spatial
frequency response is preferable due to the better accuracy
of approximating the first-order Taylor series around the ar-
ray broadside [3]. In general, the spatial frequencyω and its
associating standard deviationσω are provided by

ω(φ) = kdE sin(φ) (6a)

σω(φ, σφ) = kdE cos(φ)σφ. (6b)

Accounting for small angular spread, the so-calledspatial
frequencyapproximation results in a separable form as

Σhh(ρ, ω, σω) ' ρDDDa(ω)BBB(σω)DDDH
a (ω) (7)

whereDDDa(ω) : [−kdE , kdE ] 7→ CN
E
×N

E

D,U is diagonal and
unitary matrix parameterized by nominal angle andBBB(σω) :
R1×1

+ 7→ RN
E
×N

E

S,T is symmetric Toeplitz matrix parameter-
ized by angular spread. Their(n

E
, ń

E
)-th elements can be

expressed by [3, p. 22])
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E
)σω|0, 1) (8b)

whence characteristic functionfF (t|, 0, 1) , F(f(δω|, 0, 1))
is equivalent to the Fourier transformF(·) of the associat-
ing random variable whose PDF holds zero-mean and unit
variance. If additive noise assumed is spatially uncorrelated
noise and absolutely uncorrelated from channels, it results
in

Σxx[nT ] = p[nT ]DDDa(ω)BBB(σω)DDDH
a (ω) + σ2

n III (9)

wherep[nT ] , ρ|s[nT ]|2 stands for the total power ob-
served at the sensor array. In what follows, we shall con-
sider only the deterministic signal with constant modulus so
thatΣxx[n

T
] = Σxx(θ◦) ; ∀n

T
, whereθ◦ is the true value

of model parameter. Now suppose that based on the second-
order statisticΣxx(θ◦) our problem is to find the nominal
direction of arrival,φ, given the collected dataxxx[nT ]; ∀nT ,
where true-valued parameter vectorθ◦ ∈ R4×1 in the con-
sidered model can be defined by

θφ ,
[
φ σφ p σ2

n

]T
(10a)

θω ,
[
ω σω p σ2

n
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for the physical and spatial frequency models, respectively.
Let us introduce the matrix trace, derivative with respect
to scalar and Kr̈onecker product operator asdAc, Ȧ(x) ,
∂
∂xA(x) and⊗. Under the central limit theorem, the snap-
shot data is also of Gaussianity withxxx[n

T
] ∼ NC (0 ;Σxx,OOO).

To estimate the exactΣxx, the sample covariance matrix

Σ̂xx∈CN
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×N

E

H is given by
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3. SEPARABLE PARAMETERIZATIONS

In this section, the column-stacking vectorization operator
υc (·) is performed to representξx , E 〈xxx∗[n

T
]⊗ xxx[n

T
]〉 =

υc (Σxx)∈CN2
E
×1 in a certain parameterization.



3.1. Nominal Direction Parameterization

Let us defineB̃̃B̃B(p, σω, σ2
n) , pBBB(σω) + σ2

n III ∈ RN
E
×N

E

S,T .

This exhibits a separable parameterϑω∈R(N
E

+1)×1 as
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whereηω∈RN
E
×1 is the first column vector iñB̃B̃B(p, σω, σ2

n).
Such a parameterization results in

ξx(ϑω) = Ωω(ω)ηω (13)

where full-rank matrixΩω(ω) : [−kdE , kdE ] 7→ C
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is Ωω(ω) , Φa(ω)Ξ with full-rank binary selection ma-
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F corresponding to the Toeplitz structure of
B̃̃B̃B(p, σω, σ2

n) and nominal frequency parameterization ma-

trix Φa(ω) , DDDH
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D,U .
It was mentioned in [5] that based on the extended invari-
ance principle the reparameterization betweenθω andϑω

yields the same performance.

3.2. Joint Parameterization of Nominal Direction and
Angular Spread

Assume that we wish to joint estimate bothω andσω. We
must defineηω,σω

∈R2×1 asηω,σω
,

[
p σ2

n

]
so that
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whereΩω,σω (ω, σω) : [−kdE , kdE ] × R1×1
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4. DECOUPLED AML ESTIMATOR

If we designate the nonparametric estimateΨ̂xx∈C
N2

E
×N2

E

H as

Ψ̂xx , Σ̂
T

xx ⊗ Σ̂xx, then the AML nuisance estimate be-
comes [4]

η̂AML(ι) =
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ΩH(ι)Ψ̂
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xx Ω(ι)
)−1

ΩH(ι)Ψ̂
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xx ξ̂x. (15)

Plugging the incompletêηAML(ι) into ξx(ϑω) = Ω(ι)η,
we obtain

υc(Σ̂xx(ι)) = Ω(ι)η̂AML(ι) (16)

whereΣ̂xx(ι) , Σxx(ι, η̂AML(ι)) is the concentrated co-
variance for AML estimate. Then, the AML estimator of
the parameter of interest can be written as

ι̂AML = arg min
ι

`
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T
]

AML (ι) (17a)

`
[N

T
]

AML (ι) = dΣ̂−1

xx (ι)Σ̂xxc+ ln |Σ̂xx(ι)|. (17b)

Now the question is implicitly imposed in what the param-
eter of interest,ι, should be. The following procedure en-
ables us to an obvious answer for decoupled estimation of
nominal directionφ and its underlying angular spreadσφ.

ι = ω
(13)⇒ ω̂AML = arg min

ω
`
[N

T
]

AML (ω) (18)

ι =
[

ω
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]
(14)⇒ {σ̂ω}AML = arg min

σω
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AML (ω̂AML, σω).(19)

Searching the minimum solution for̂ωAML and{σ̂ω}AML ac-
cording to two successive one-dimensional searches, we im-
mediately obtain physical angle estimates via (6).

5. NUMERICAL EXAMPLES

To demonstrate the impact of the proposed estimator, we
commonly employ the ULA with half-wavelength separa-
tion to receive a QPSK (quaternaryphaseshift keying) sig-
nal whose strength are controllable with respect to noise

variance bySNR , 10 log
(

σ2
s

σ2
n

)
. All significant param-

eters are set up, unless otherwise a variation on the param-
eter of interest will be specified individually in each figure,
as the following table:

φ◦ σφ◦ σ2
γ SNR NP NE NR

0◦, 10◦ 5◦ 0.01 10 100 8 1, 000

Practically, the pseudo random number satisfied the Lapla-

cian PDFfL(δφ|0, 1) can be modified fromδφL = 1√
2

ln
(

δφU

δ́φU

)

[6] with any two independent uniform distributionsδφU ∼
U [0, 1] andδ́φU∼ U [0, 1]. Our empirical standard deviation
is to average RMSE from a large number of independent
runs (N

R
).

Recently, it is shown that the AML estimator outper-
forms the WLS in non-asymptotic region [4]. Therefore,
we shall investigate only the effect of decoupled estimation
based on AML approach.

In Fig. 1, the joint AML estimator slightly outperforms
the decoupled AML for small number of temporal snapshot.
As shown in asymptotic performance assessment, both es-
timators achieve the CRB as the number of temporal snap-
shots tends to infinity.

For estimating the angular spread in Fig. 2, the decou-
pled AML estimator more deviates from the CRB than that
shown in Fig. 1. This is because the second step for estimat-
ing the angular spread has imposed the uncertainty in nom-
inal direction estimation. However, this effect will be grad-
ually vanished when the nominal direction estimate is more
accurate. In Fig. 2, it can be observed that both joint and
decoupled AML estimations yields the same RMSE perfor-
mance from large number of temporal snapshots.
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Fig. 1. Laplacian angle deviations : empirical and theoret-
ical standard deviations of the error due to estimating the
nominal directionφ as a function of number of snapshots
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Fig. 2. Laplacian angle deviations : empirical and theoret-
ical standard deviations of the error due to estimating the
angular spreadσφ as a function of number of snapshotsNT .

6. CONCLUSION

A decoupled approach with two steps has been proposed for
estimating the nominal direction and its underlying angular
spread. It is intended to provide more numerical flexibility
than the joint estimation in a certain application,e.g., the
situation where the angular spread might be not of inter-
est in a while. Numerical simulation was also conducted to
validate the asymptotic efficiency with respect to the joint
estimation and the CRB. The numerical results are verified
that the decoupled estimation can attains the CRB as same
as in the joint estimation when employing a large number of
temporal sanpshots.
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