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Abstract: - In this paper, an implementation of an audio recognition system for personal computers is presented, 
combining methodologies of digital signal processing, machine perception, and statistical decision models. In 
particular, attention was given to musical tones, harmonics, and MIDI notes, that build the musical context to identify 
two musical instruments from their corresponding musical notes. Altogether nine musical instruments from electronic 
and acoustic devices have been sampled, with an 89% correct performance for single-mode identification and 67% 
correct performance for double-mode identification. 
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1 Introduction 
Perception and recognition are something everyone 
experiences but nobody completely understands. A 
practical example is the sense of hearing, with such a 
complexity, that still there is no sufficient human 
understanding to build computer systems which are 
capable of understanding music at the level of an 
average five-year-old [1].  
On the whole there are at least two different categories 
of listeners concerned with opposite modes of listening 
process. An “expert” listener who may be interested in 
particular aspects of the music, e.g. key sense, harmonic 
perception, and pitch equivalence represents the first. 
Alternatively, the “non-expert” listener (or non-
musician) is not in a position to understand the 
functional properties in musical sound and does not 
recognize common musical structures. Our interest lies 
in making the computer function like an expert. Hence, 
analyzing the structure of musical sound means 
identifying musical instruments, musical tones, MIDI 
notes, chords, pitch, and musical transcription, in a piece 
of music. 
This problem demands detailed knowledge of acoustics 
and determining a set of characteristic features that a 
recognition system is capable of analyzing. A desirable 
aim of computational auditory scene analysis [2] is to 
create computer systems that handle acoustic features 
that often betray physical properties of their sources. 
This paper presents just one specific feature set, supplied 
by the harmonics of musical instruments (and therefore 
is only applicable to melodic instruments – this excludes 
drum instruments which produce musical noise) that are 
to be identified. On the other hand, Martin [3] explores 
several additional features to be used for the purpose of 
sound source recognition. Just naming them briefly, the 
Pitch, Frequency Modulation, Spectral Envelope, 
Spectral Centroid, Intensity, Amplitude Envelope, 
Amplitude Modulation, Onset Asynchrony, and 

Inharmonicity can be observed and extracted either 
within the correlogram of sound, that explores the 
distribution of energy given a time and a frequency axis, 
or the PCM signal of sound, that represents temporal 
properties of sound waves. An understanding of DSP 
(digital signal processing), especially ADC (analogue-to-
digital conversion), PCM (pulse code modulation), FFT 
(fast fourier transform), window method, Normal 
Density Functions, and Bayes theory, is recommended. 
 
 

2 Problem Formulation 
The goal of the work described in this paper was to build 
a system to attempt the separation of simultaneous 
musical sounds and to identify the musical instruments. 
Additionally, the extraction of musical notes and MIDI 
notes in the sound signal has been realized to approach 
automatic music transcription. The necessary technique 
to obtain musical notes demands polyphonic pitch 
tracking [4]. Moorer was the first in the literature to 
attempt separation of two simultaneous musical sounds 
[5]. His system demonstrated pitch tracking, given that 
the voices do not cross, the pitches are piece-wise 
constant (i.e. no vibrato or jitter), and the fundamental 
frequencies of the tones are not in a 1:N relationship 
(unison, octave, twelfth, etc). 
The methodology introduced in this paper works directly 
from a short-time spectral analysis, and the tool 
developed could be implemented into a real-time 
recognition system. 
 
 
3 Problem Solution 
While constructing a pattern recognition system, 
knowledge in different areas is needed. It can be 
categorized into musical content analysis, DSP on audio 
signals and classification and decision systems. 
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3.1 Musical Content Analysis 
Sound is a phenomenon prescribed by the laws of nature 
emerging as fluctuations in pressure, which exists in the 
path of a sound wave. Some dictionaries explain musical 
sound as sound produced by mechanical vibrations, 
which is not wrong, but doesn’t satisfy common 
instruments like some electronic devices. A particular 
part of sound is the pure musical tone that is a plain, 
steady single note of constant pitch and intensity, or in 
other words, it is a sine wave of constant vibration[6]. 
Thus, we expect a single peak in the frequency spectrum 
indicating the frequency of specific vibration. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1 Power spectrum density of a single guitar note ’E4’ 
(sampling frequency 8192 Hz, 1024-point FFT, frequency 
range 0 – 5000 Hz, energy normalized to zero dB) 
 
Analysis of a guitar note (Fig.1) turns into a process of 
splitting a complex sound wave into its fundamental 
(lowest tone) and various overtones (harmonics). This 
property has been proved by Pythagoras (around 
570BC), a Greek philosopher and inventor of the 
Musical Pythagorean Scale, who investigated the ratios 
of a vibrating string, which are found to be inversely 
proportional to the length. This accumulation of pure 
musical tones is called a harmonic spectrum. As a rule 
we might say the overtones exhibit frequencies higher 
than integer multiples of the fundamental frequency [7], 
but often inharmonicity can be observed. Because of 
mechanical stiffness, freely vibrating strings produce 
overtones in the vicinity of the estimated pitch period 
[3]. 
To come to the point, the fundamental and its overtone 
frequencies are very characteristic features to be used by 
a recognition system. But what is the number of 
overtones musical instruments provide? James Boyk’s 
study on strings, woodwinds, brass, and percussion 
instruments shows that at least one member of these 
instrument families produces energy to 40 kHz [8]. For 
example, the ’ultrasound’ of a French horn can extend to 
above 90 kHz. Dependent on the noise in sound it 
becomes difficult to measure spectral components of 
higher frequencies, as the proportion of energy above 20 
kHz comprises only approximately 2%. 
 

3.1.1 Overlapping Harmonics 
Assuming that a piano is striking two keys at the same 
time, then the power spectrum density will show 
harmonics of both keys overlapped (Fig.2)  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 Power spectrum density of two piano keys, note C4 
at 261.6 Hz and note G4 at 392.0 Hz (sampling frequency 
8192 Hz, 1024-point FFT, frequency range 0 – 13000 Hz, 
energy normalized to zero dB) 
 
Reconsider, the harmonics belong to an integer multiple 
of the fundamental frequency. It turns out that the peak 
around 800 Hz in Fig.1 is the sum of the 2nd harmonic of 
note C4 and the 1st harmonic of note G4. When 
proceeding further the 5th harmonic of note C4 overlaps 
with the 3rd harmonic of note G4 at approximately 1568 
Hz, then the 8th harmonic with the 5th harmonic at 
approximately 2353 Hz, and so on. 
 
3.2 Pattern Recognition System & Bayes 

Classifier 
Three components are used to build a pattern recognition 
system, the transducer, a feature extractor and a 
classifier, illustrated in Fig.3.  
 
 
 
 
 
 
 
 
Fig.3 Real-time pattern recognition system for musical sound 
 
The job of the transducer is to record a sound signal in 
analogue realm and to pass it through an ADC into 
digital realm.  
The feature extractor is the next component in the 
pattern recognition chain, the starting point for pattern 
classification that is often the computation of features 
that are stored in feature vector x. There are two 
important aspects while programming the feature 
extractor. One aspect is the selection of features, which 
is responsible for performance of the classifier. Both, the 
physical interpretation and the correlation of different 
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features must be considered. The second aspect is the 
selection of feature space corresponding to the total 
number of features. 
Pattern classification entails the analysis of the 
measurement features to distinguish an input pattern 
amongst a number of ‘i’ possible pattern classes ωi. To 
identify any combination of pattern various techniques 
can be used to make judicious inferences from the 
available information. Some possibilities without careful 
attention are to explore FUZZY logic and neural 
networks. In this work a classifier using Bayes model 
and discriminant functions has been designed. Bayes 
classifier [10] will require storing the covariance 
matrices Σ, the mean vector µ, and the a priory 
probability P(ωi), by the following functions for each 
class ωi respectively 
 
(1) 
 
(2) 
 
(3) 
 
To determine the decision the discriminant function 
 
(4) 
 
must be adapted to all classes ωi of instruments 
respectively given an input feature vector x. The lowest 
value of gi(x) will indicate this particular class to 
represent the identified instrument. 

 
3.3 System Arrangement 
The complete programming work was done on two 
personal computers, a Pentium II-400 MHz and less 
powered Pentium I-75 MHz. The tool for programming 
was MATLAB including the Image Processing and a 
Signal Processing Toolbox, which support the FFT and 
Windowing. 
When developing a pattern classification system there 
are two independent steps to run until a decision can be 
made. One is the teaching phase with an objective to 
find appropriate features of musical instrument and to 
create the classifier, or in other words, the decision 
surfaces. The classification phase, i.e. the second step, 
proceeds by extracting features and classifying them into 
one of several instrument classes ωi. 
Altogether 9 musical instruments have been applied in 
the teaching phase: the class electric 4-string bass guitar, 
electric 6-string guitar, flute, harmonica and violin 
sampled with a microphone that was connected directly 
to the 16-bit soundboard of the computer; and the class 
electric piano, acoustic piano, harmonica, and pipe organ 
provided by a sampler keyboard connected to the same 
soundboard. All samples have been recorded from a 
single note of approximately 2 seconds (30,000 – 80,000 

sample values using a 22,050 Hz sampling frequency at 
8-bits). For multimode instrument identification these 
samples have been mixed via an audio software tool and 
stored separately. Furthermore, we require that pitches 
be identified with the actual note relative to the equal 
tempered scale relating to A4 being 440 Hz. This 
demands the capability of absolute pitch [6] that has 
been provided by all musical instruments. 

 
3.3.1 Extractor 
The problem is to extract feature vector x required for 
the discriminant functions (equation 1-4) of the 
classifier. The extractor is an essential part for both, the 
teaching phase and the classification/testing phase. 
However, this particular component seems to be very 
tricky to realize and demands different skills and a lot of 
experience, especially if the signal contains more than 
one musical instrument. 
The presented implementation implies the windowing, 
N-point FFT, calculation of absolute magnitude, and 
normalization (based on normalizing the largest 
coefficient to zero dB) to be applied to the discrete audio 
signal. Subsequently the data obtained passes some 
numeric maximum functions that deliver the peaks in the 
power spectrum, i.e. the harmonics of the sound signal. 
Dependent on the instrument type and whether the note 
is low or high (which determines the richness of 
harmonics) the extractor normally returned between 3 
and 40 peaks. 
It goes without saying that the number of sample values 
taken from a digitized music signal must be the same as 
the number of samples applied to the N-point FFT, i.e. N 
values. Two difficulties may arise when N is not chosen 
correctly. Side-band leakage [9] can cause errors, which 
affects the extraction of the fundamental frequency if the 
integer value N was chosen too small. The lower the 
fundamental frequency the larger value N must be 
chosen to minimize the leakage. The second aspect upon 
selection of N is the envelope of the sound signal itself. 
It makes no sense to extract the power spectral density of 
a deterministic signal if the signal is changing its spectral 
properties over time (i.e. non-stationary). Rather it is 
meaningful to extract a steady-state portion of sound, 
supported in a short sequence of data. As shown in Fig.4 
the loudness of a piano note is not constant for all three 
sections (see envelope), therefore it is necessary to set N 
to quite a small value. In practice the best results were 
achieved for N=8192, giving a portion of sound within 
∆t seconds. 
 
(5) 
 

Given this selection of value N the boundary for the 
spectral leakage is set to be 
 
(6) 
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Spectral leakage plays a prominent role for the detection 
of the fundamental frequencies. The difference in 
frequency of two adjacent semi-tones ∆f must satisfy the 
boundary of spectral leakage to serve correct 
identification of musical notes or MIDI notes, hence   
∆B < ∆f must be provided. Adapting these results the 
lowest note that can be identified without inclination to 
errors is given by 
 

N = 8192: Note Gb1 = 46.24930 Hz  
Note G1 = 48.99943 Hz  
∆f  = 2.75013 Hz, ∆B = 2.6917 Hz 
Å Lowest musical note is G1 

3.3.2 Classifier & Teaching phase 
In the teaching phase 68 files of sampled tones were 
used to build the classifiers. 
 
 
 
 
 
 
 
 
Fig.4 Sampled piano tone. When building the classifier all 
three sections per sampled note with 4096 or 8192 discrete 
values must be considered. 
 
The envelope characterizes the energy for short-time 
segments of sound as illustrated in Fig.4. In musical 
context this envelope is divided into attack, decay, 
release, and sustain. Only a few musical instruments like 
violin and harmonica do not show sustain varying, i.e. 
the envelope over a long-time period is almost constant. 
But since the properties change with time the harmonics 
and hence the feature values also change. Better results 
for classification can be achieved when samples in the 
teaching phase were partitioned into three sections. Each 
section includes the signal that is to be extracted, relating 
to three sets of features per sampled note. Consequently 
the extracted data contained 204 different feature vectors 
of 9 different musical instruments within a 3-section 
classifier (3 sections x 68 samples in the teaching phase). 
An 8-section classifier was also tested, using 544 feature 
vectors. Given these feature vectors the covariance 
matrices Σ and mean vectors µ have been calculated for 
each instrument class using equations (1) to (3). 
To become more familiar with statistical distribution of 
harmonics Fig.5 a) illustrates the univariate density 
function for the 4th harmonic of all piano samples given 
the mean by µ = -26.60 dB and the standard deviation σ 
by the square root of variance c = 58.90.  Plot b) shows 
the distribution of the 4th harmonic given all sampled 
piano sounds. On closer inspection some equivalence in 
the shape of both plots can be seen. To obtain a more 

homogeneous shape of plot b) in comparison to plot a) 
more samples of the piano would be required.  
 
 
 
 
 
 
 
 
 
Fig.5 Piano samples: a) gaussian distribution of 4th 
harmonic given the values of mean and variance; b) real 
distribution of 4th harmonic 
 
The reason why the system is expected to distinguish 
between the instruments provided can be observed in the 
next plot. It seems very clear that properties of the 5th 
harmonic dictate different mean values and slightly 
changing standard deviations. Statistical analysis would 
detect different decision boundaries for this peaky 
feature. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6 Mean and Standard Deviation plots of 5th harmonic 
given the musical instruments electric piano, acoustic piano, 
harmonica, and pipe organ. 
 
3.3.3 Single Mode Identification 
Firstly the classifier has been tested in single mode. 
Single notes corresponding to instruments playing in 
isolation are sampled and input to the feature extractor 
and then the classifier. The sampling rate is dictated by 
the maximum bandwidth of signal that we need to 
analyze. Considering the highest musical note we wish 
to represent in the system (i.e. C6), with a frequency 
value 1047 Hz, and the 9th harmonic – i.e. the 10th 
feature – is 10,470 Hz, at most 10 harmonic features 
would be used within the decision model. A sample rate 
of 22,050 Hz was chosen to satisfy the Nyquist rate [9], 
resulting in a spectral range from 0 Hz to 11,025 Hz.  
In using the discriminant functions, a mandatory rule 
must be obeyed, which says that absolute magnitude of 
covariance matrix |Σ| is zero and multivariate normal 
density function p(x) is degenerate if sample vectors 
drawn from a normal population are confident to a linear 
subspace [10]. This happens, for example, when one 
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component of feature vector x has zero variance, or when 
two components are identical. After normalization of 
the power spectral density data it turns out that the 
fundamental of the electric bass guitar yields always the 
energy of zero dB, thus the fundamental frequency 
cannot be used as a feature because of its zero variance.  
Feature numbers 2–10 correspond to the first nine 
harmonics, hence define the feature vector of the 
classification system given by 
 

(7)   x={ 1st harmonic, 2nd harmonic, ... , 9th harmonic } 
 

 
 
 
 
 
 
 
 
 
 
 
Fig.7 Extracted features of violin note C5 (523 Hz); a) 
power spectral density, b) representation of features skipping 
the fundamental (feature 1) but appending 9 successive 
harmonics (pointed out in feature 2 to 10) 
 
Since the 68 samples served in the teaching phase do not 
include extrinsic musical sounds, 28 additional samples 
delivered by the sampler keyboard have been added, 
giving the electric Bass_1 (8-bit), electric Bass_2 (8-bit), 
and violin (16-bit). It is also possible to re-use the 
samples employed in the teaching phase for 
classification if a different section within the same 
sample is used. 
The first system tested was the 3-section classifier, 
which operated on 4 separate sections per sample giving 
a total of 96 samples. Each section comprised 8192 
samples offset at sampling positions 111; 4,444; 8,888; 
and 20,000 into the PCM sound signal. Regarding these 
instrument samples that do support the covariance 
matrices the identification rate of musical notes and 
instruments reaches mostly 90 to 100 percent, excepting 
harmonica and violin with 70% and 75% respectively. 
Concerning the samples that do not support the 
covariance matrices, the classifier assigned 85% of 
electric Bass_1 samples to the class ‘electric piano’ or 
'acoustic piano'. Electric Bass_2 samples have been 
assigned to class ‘electric bass’ 73% correctly, violin 16-
bit samples have been assigned to the ‘violin’ class 88% 
correctly. We may summarize the harmonics of electric 
Bass_1 – at least the first nine – indicate similar 
behavior comparing the harmonics of electric or acoustic 
piano. When this instrument was excluded in the 
classification, the overall identification rate rose to 
89.3%, otherwise it showed 82.9%. The 8-section 

classifier returned an overall identification rate of 85.3% 
given an advantage of only 2.4%. 
Figure 8 shows a scatter of the distribution of two 
particular features, for a harmonica and a piano, given by 
the fourth and fifth harmonic. It clarifies two distinct 
clusters, and a statistical decision boundary can be drawn 
(approximately) into this plot to indicate the operation of 
the classifier. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 Scatter diagram for two features, i.e. 4th and 5th 
harmonic, of a harmonica and a piano inherited from various 
samples of different musical notes 
 
3.3.4 Double Mode Identification 
Given the theory on musical acoustics introduced in 
section 3.1.1 we know that overlapping harmonics are 
not permitted to be loaded into the classifier. Hence, a 
pre-selection of harmonics (features) must be applied to 
the sound samples we want to categorize. 
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 Feature No. 
Interval --- 1 2 3 4 5 6 7 8 9 
+ 1 o x x x x x x x x x 
 - 1 o x x x x x x x x x 
+ 2 o x x x x x x    
 - 2 o x x x x x    x 
+ 3 o x x x x   x x x 
 - 3 o x x x   x x x x 
+ 4 o x x x  x x x   
 - 4 o x x  x x   x x 

 
Table 1. Sample of overlapping harmonics for two 
simultaneous musical notes. Left column represents upwards 
and downwards intervals of semi-tones (MIDI code). A cross 
indicates this particular harmonic does not overlap while an 
empty field means the opposite. The fundamental, represented 
by circles, is not used. 
 

Unfortunately, present covariance matrices and mean 
vectors used for single-mode identification cannot be 
used for double-mode identification, excepting for some 
special cases. As a result several different classifiers 
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must be built that will operate on specially selected 
harmonics. The selection of harmonics comes from 
Table 1, which indicates the valid harmonics for all 
intervals between first and third. Assuming that a given 
musical sound includes a large variety of intervals, Table 
1 must be extended to include these intervals.  
The extraction procedure before classification is very 
significant and works as follows: After obtaining the 
lowest fundamental frequency the first nine successive 
harmonics can be extracted. If the sound sample includes 
a second musical note that is not an interval of unison or 
multiple octave a different harmonic/fundamental should 
be detected in between the harmonics/fundamental of the 
lower note. Utilizing this particular feature leads back to 
the fundamental of the second musical note. The 
required musical note and MIDI note can be read out 
from tables given both fundamental frequencies. The 
expected MIDI code contains integer values starting 
from 0 up to 119; the difference in MIDI code for both 
fundamentals represents the musical interval. 
Figure 9 illustrates the power spectral density of two 
simultaneous piano keys, sorting out the overlapping 
harmonics indicated as –80 dB bars. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9 Feature extraction of two simultaneously sounding 
piano notes C4 (261 Hz) and E4 (329 Hz); a) power spectrum 
of note C4 (0-2,871 Hz), b) power spectrum of note E4 (0-
3,619 Hz), c) extracted features of note C4, d) extracted 
features of note E4 
 
The testing procedure operated in a similar way as for 
single-mode identification given mixed instrument 
samples. The hits for correct identification of two 
musical notes, two MIDI notes, and two musical 
instruments proved to be 61.7% for 12 samples including 
2 or even 3 musical tones, and 67.5% for 11 samples of 
two simultaneous stroked piano keys. Wrong decisions 
could be observed to have two key causes. First, the 
selection of features was sometimes incorrect, second the 
number of features, which depends on the interval 
between both fundamentals, caused a wrong decision if 
it was too small. 

4 Conclusion 
In respect to real-time systems, short-time spectral 
analysis provides several harmonics of melodic 
instruments that can be used to categorize instruments 
and their musical notes in a piece of music. Musical 
theory and methodologies on DSP supply a dominant 
point of view for musical signal extraction that here 
supported 9 harmonic frequencies adapted to the feature 
space. The classification obeying a statistical decision 
model returned at maximum two correct identifications 
of musical sound even if the sound included three 
different sources. Identification of two instruments 
within approximately 65% correct performance 
confirmed the idea that correct separation of harmonics 
is a potential investment for multiple instrument 
identification. 
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