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Abstract: In this paper, a new method for perceptual 
video quality evaluation is proposed. The method is 
based on multi-feature of visual perception and various 
coding artifacts. A radial basis function neural network 
is used to give discrimination. The proposed method 
has been tested using full set of 50 Hz VQEG test data, 
and the results show that a good correlation coefficient 
of more than 0.90 with the subjective mean opinion 
score (MOS) is achieved. 
  
1. Introduction 
 
  With the development of video coding technologies 
and establishment of international coding standards, 
the evaluation of video quality becomes an important 
issue. This is because video coding at low bit rate 
inevitably results in visible artifacts due to coarse 
quantization. To achieve a high performance coding, 
i.e. good visual quality with low bit rate, it is necessary 
to investigate human visual perception to the coding 
artifacts or to build computational models to simulate 
the Human Visual System (HVS) for predicating 
image quality. Such a model can be applied to 
optimize the performance of digital imaging system 
with respect to the capture, display, storage, 
compression and transmission of visual information. 
Peak Signal-to-Noise Ratio (PSNR) and mean square 
error (MSE) are widely used as objective quality 
metrics. However, they are pixel based fidelity 
metrics, which do not always match well with the 
perceived picture quality. In the past decades, many 
objective quality metrics for measuring video 
impairment have been investigated [1-3]. Most of 
them used perceptual models to simulate the human 
visual system and weight the impairments according to 
their visibility. Unfortunately, the HVS is so complex 
that existed perceptual models could not match to the 
real HVS well, and thus could not provide accurate 
rating of video quality. Another approach tried to 
exploit the properties of known artifacts, such as 
blocking artifacts, using feature extraction and model 
parameterization [4-6]. This class of measure method 
focuses on the particular type of artifacts so it is 
normally more accurate than perceptual model based 
metrics. However, it does not possess universality. In 
this work, we propose a new method for the evaluation 

of subjective video quality, which uses multi-feature 
extraction of perceptual properties and coding 
artifacts. A radial basis function neural network (RBF-
NN) is employed to give classification and 
discrimination. The objective performance of the 
proposed method has been tested using the 50Hz 
VQEG test sequences. Good results have been 
obtained in terms of Pearson line correlation 
coefficient (PLCC) and Spearman rank-order 
correlation coefficient (SRCC) between the objective 
quality rating and the subjective Mean Opinion Score 
(MOS).  
     
2. The Multi-Feature Extraction and RBF-NN 
Based Video Quality Metrics (MFENN-VQM) 
 
   The proposed MFENN-VQM is illustrated in Fig. 1. 
The inputs to the metric are the original and distorted 
successive frames. Since human eyes are more 
sensitive to the luminance component than chromatic 
components we only use Y components in this work. 
The differences between two inputs are decomposed 
into multi-resolution and multi-orientation bands for 
extracting energy features. Other features are extracted 
from frequency masking, luminance masking, 
blockness measure and blurring measure. All the 
features are forwarded to a neural network for 
discrimination. The neural network is trained using 
subjective test data provided by the Video Quality 
Experts Group (VQEG). In the following sub-sections 
we describe the various components of this metric in 
details. 
 
2.1 Multi-channel visual decomposition 
 
   It is well known that the visual system processes 
information in a manner of multi-channel tuned to 
different temporal frequencies, spatial frequencies and 
orientations. Digital filter banks can simulate this 
multi-channel system. In this work, we adopt the 
steerable pyramid transform introduced by Simoncelli 
et al [8]. The transform decomposes the image into 
several spatial frequency levels within which each 
level is further divided into a set of orientation bands. 
The transform has the property of  
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Fig. 1. Block diagrame of the proposed FENN-VQM metric 

 
 

locally rotationally invariant and self-inverting. The 
block diagram for the decomposition (both analysis 
and synthesis) is show in  in Fig. 2. Initially, the image 
is separated into low and high pass subbands, using 
filters L0 and H0. The lowpass subband is then 
divided into a set of oriented bandpass subbands and a 
lower pass subband. This lower-pass subband is then 
sampled by a factor of 2 in row and clown directions. 
The recursive construction of a pyramid is achieved by 
inserting a copy of the shaded portion of the diagram 
at the location of the solid circle.  
 

 
 

Fig. 2. Streeable pyramid transform 
 
   The multi-channel transform generates a set of 
coefficient values for the input frame. Refer to 
Fig. 1, the difference between two inputs is 
represented by e , which 
is then decomposed into four levels with four 
orientations bands, where r  and  are 

original frame and distorted frame, respectively. Total 
sixteen sub-bands are obtained. These coefficients are 
squared to form sixteen energy features of the 
orientation and spatial frequency components, 
which can be written as follows. 
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Where, C  represent the coefficients of steerable 
transform at each band. Further,  is averaged and 
normalized at each level. 
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2.1 Frequency masking 
 
     Masking is a very important visual phenomenon. 
Masking explains why similar coding artifacts are 
disturbing in certain regions such as flat regions of an 
image while they are hardly noticeable elsewhere such 
as edges and text regions. Obviously, masking 
measures, including frequency or activity masking and 
luminance masking are important features that have 
been considered in this metric. Due to the effect of 
masking, a surrounding spatial region of limited extent 
will affect the visibility of the coding artifacts, 
especially in the vicinity of edges. In order to 
incorporate the effects of masking effectively, the 
block activity of surrounding background should be 
calculated for every pixel, which would be 
computationally expensive. For saving computation 



cost, we consider masking to be localized to 4 by 4 
pixels block. The Surrounding Spatial Region Block 
(SSRB) with 8 by 8 pixels is used to compute the 
activity masking. The weighted activity is given as 
follows: 
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where, is the amplitude of DCT coefficients of 
the SSRB and Th is the visually threshold 
function of Watson’ model  [9]. As an example, figure 
4 (a) and (b) show the first frames of original 
“Calendar and mobile” image sequence and distorted 
frame, respectively. Fig. 4 (c) illustrates the visually 
threshold function. 
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Fig. 3 (a) Original first frame of “Calendar and 
mobile” image sequence (b) Distorted frame 
(src10_hrc16) of fig. 3(a) 
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Fig. 3(c) Visually threshold function 

 
 

Fig.  4. Frequency masking map 
 
 Fig. 4 gives the corresponding activity masking map 
and weighted error image, respectively. The 
frequency-masking feature is then given by the 
average of weighted error image. 
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2.3.  Luminance Masking 
 
   Luminance masking occurs when the coding artifacts 
fall in brighter or darker region. Girod suggested that 
distortion are most noticeable where the luminance 
value is between 70 and 90 (centered) approximately 
on 81) in 8-bit gray-scale images. Luminance-masking 
weighting function can be calculated by the 
following equations [7]: 
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ω  and σ are the mean and standard deviation of the 
SSRB. Figure 6 shows the luminance-masking map.  

 
Fig. 5. Luminance-masking map 

 
    The brightness-masking feature is thus given by 
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2.4 Blocking Distortion 
 
     The blocking effects, and its propagation through 
reconstructed video sequences, are the most significant 
of all coding artifacts. The blocking effect is also a 
source of a number of other types of reconstruction 
artifacts, such as stationary area granular noise. 
Several forms of quantitative quality metrics, or 
distortion measures, used in image and video coding 
research, have been developed in recent years, for 
instance, [5,6]. Given an image { }

ccNcc fff L21=f , 

where  is the jth column of the image array and 

is the width of the image, we can calculate the 
mean square sum of the pixel difference between each 
of the horizontal block (vertical edge artifacts) 
boundaries by the following equation, in which 8

cjf

cN

×8 
pixel blocks are assumed as commonly used in video 
coding standards.  
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Similarly, we can obtain the mean square sum of the 
pixel difference between each of the vertical block 
(horizontal edge artifacts) boundaries B . Then, the 
blockness feature is given by 

v
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2.5 Blurring Distortion 
 
    In order to evaluate burring image, we adopt spatial 
correlation coefficient as the feature to mark this kind 
of distortion. To quantify the degree to which a 
residual image e is correlated with an original 
image , we use the magnitude of the 
correlation coefficient between them  
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Where, Cov refers to covariance, eσ  and rσ  are the 
standard deviation of images e  and , 
respectively. By using an absolute value in the 
numerator, we ensure that 0
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1≤≤ erC , with 0 
indicating no correlation and 1 indicating linear 
correlation. The covariance is defined as 

)])([(],[ re reEreCov µµ −−= , in which eµ and rµ  

denote the average values of e  and , 
respectively. The correlation coefficient is used as the 
feature to measure blurring, i.e. 
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3. Metric Performance Evaluation 
 
   Performance of the objective models was evaluated 
with respect to three aspects of their ability to estimate 
subjective assessment of video quality [10]: 
• Prediction accuracy – the ability to predict the 
subjective quality ratings with low error 
• Prediction monotonicity – the degree to which the 
model’s predictions agree with the relative magnitudes 
of subjective quality ratings and  
• Prediction consistency – the degree to which the 
model maintains prediction accuracy over the range of 
video test sequences, i.e., that its response is robust 
with respect to a variety of video impairments. 
 



4. Experimental Results 
 
   The experiments are conducted in two main steps: 1) 
training the proposed MFENN-VQM with subjective 
mean opinion scores (MOS) data of VQEG test 
sequences. 2) predicting the video quality using test 
sequences that are both inside and outside training 
sets. Pearson linear correlation coefficients and 
Spearman rank-order correlation coefficients between 
subjective and objective metric output are used to 
evaluate the performance of the MFENN-VQM. 
 
4.1 Training and Test Sequences 
   107 sequences are used from VQEG test data. These 
test sequences are 50Hz, with resolution of 576×720 
pixels. 16 test conditions (Hypothetical Reference 
Circuits or HRCs) are covered in the test sequence, in 
which 9 HRCs represent a low bit rate range of 768 
kb/s-4.5Mb/s (HRCs 8-16) and 9 HRCs represent a 
high bit rate range of 3Mb/s-50 Mb/s (HRCs 1-9).   
 
4.2 Training of the MFENN-VQM 
   A radial basis function neural network with two-
layer structure is adopted for nonlinear approximation. 
The inputs to the network are 20 feature values. The 
difference between the subjective data and output of 
the network is used to tune the weighting function of 
the connection between layers. Training set is 
composed of those sequences that are selected from 
the whole test sequences in a manner of random 
distribution. Remaining sequences are used for testing. 
Figure 8 (a) illustrates scatter plot showing the training 
results. For comparison, the scatter plot of PSNR 
versus MOS is given in fig. 8 (b). The Pearson 
correlation between the output of the neural network 
and the subjective DMOS is 0.9713. 
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Fig. 6. (a) Scatter plot of the output of neural network 
versus subjective DMOS; (b) scatter plot of PSNR 
versus subjective DMOS 

 
4.3 Test of the MFENN-VQM 
   Test of the proposed metric is conducted in three 
cases. Whole 107 sequences are divided into two parts, 
one is training set, in which N sequences are randomly 
selected, and another is test set. First case is to set 
N=87, remaining 20 sequences are used for test. 
Second case is to set N=97, then 10 sequences are used 
for test. In third case, we circularly select 106 
sequences for training, and let remaining one sequence 
be used for test. Table 1 lists the experimental results 
in terms of Person Linear Correlation Coefficients 
(PLCC) and Spearman Rank-order Correlation 
Coefficients (SRCC), in which MFENN-VQM-20 is 
case one, MFENN-VQM-10 is case 2 and MFENN-
VQM-1 indicates case 3. The PSNR, PDM [Stefan’s 
model] (from VQEG final report) are listed in table 2 
for comparison. From the experimental results we see 
that the proposed MFENN-VQM model can give more 
accuracy prediction for evaluating video quality, 
compared with PSNR and PDM metrics. 

 
 
 

Table 1. MFENN-VQM Correlations 

Metrics PLCC SRCC 
MFENN-VQM-20 0.943 0.901 
MFENN-VQM-10 0.977 0.964 
MFENN-VQM-1 0.903 0.867 



Table 2 Correlation results from VQEG report  
 

 
5. Conclusions 
 
   In this work we have presented a new video quality 
metric that is based on multi-feature extraction and 
radial neural network. The extracted features can 
reflect some important visual properties such as 
frequency masking and luminance masking as well as 
the measurement of coding artifacts. It has been 
demonstrated that the proposed video quality metrics 
can achieve high correlations with subjective rating. 
The further work should focus on the selection of more 
accuracy features that are related to the human visual 
system and more other features including color, 
texture and motion.    
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