
ASSET: A Testbed for Teleoperation Systems

NANCY RODRIGUEZ, JEAN-PIERRE JESSEL, PATRICE TORGUET
Institute de Recherche en Informatique de Toulouse

University Paul Sabatier,
 118 route de Narbonne, 31062 Toulouse

 FRANCE

Abstract: - Development of a teleoperation system means development of several subsystems, such as control devices
modules, communications and graphic user interface. Each one of these components is studied, conceived, and built
generally in an independent way with particular software and methods. The complexity of the system can involve a
very expensive development and integration of components to complete the system. In this case an environment of
evaluation very easily configurable and domain-adaptable is a useful tool. In this article, we propose ASSET, a
reusable framework for the development of systems of teleoperation. Our system allows to test simulation models, 3D
scenes, behaviors of autonomous entities and new devices. This system was used with modules of behavioral
simulation developed in the laboratory to study the assistance of autonomous robots within the framework of a
teleoperation mission.

Key-Words: - teleoperation testbed, robotics, simulation, interaction devices, frameworks, virtual reality

1 Introduction
A teleoperation system makes possible to an operator to
execute a task, without being at the same place than the
machines are. Since the operator is not physically on the
site of task execution, the teleoperation eliminates the
risks associated with jobs such as space exploration,
toxic substances handling, etc. At the same time, in order
for the operator to work efficiently, it is necessary to
give her all the information that she will need to carry
out her task, considering also that the communication
between the user and the system of teleoperation must be
fluid, with easy to interpret information. To achieve
these requirements, a teleoperation system is a complex
system, formed by several subsystems such as
interaction devices, acting devices, control modules,
event handling, communications, graphics user
interfaces and computer facilities to support
computations. Each of these subsystems is a subject of
research, design, development and testing, and for this
reason, teleoperation system construction requires
considerable effort and resources. It is quite the same if
there exist some tools to help in the development
because these tools are domain specific and not
compatible between them, each researcher works in a
different environment that affects the integration process
later. On the other side, if adequate tools do not exist, the
researcher must build them and he can not only focus on
his particular problem of study because he must solve
other problems, for example, a researcher who builds a
device driver does not need to spent his time on building
a graphical user interface.

Our proposed solution to reduce some of this difficulties,
is to develop a general testbed for teleoperation systems,
easily adaptable to different contexts. This system, called
ASSET (Architecture for Systems of Simulation and
Training in Teleoperation), is a modular system that
abstracts mechanisms presented in all teleoperation
applications such as network communications, graphics
user interface, communications between user and
simulation, etc. These mechanisms are provided as a set
of reusable components, easily configurable, at which it
is possible to add or change modules in a dynamic way.
This allows to use the system as a testbed for evaluation
of 3d scenes, IA behaviors, new devices or interactions
techniques. These features enables us to say that ASSET
may be useful to a wide range of research.

2 Background
For the most part, teleoperation systems are still in the
domain of research products, developed to solve a
specific problem of teleoperation domains such as
devices control, user interfaces and simulation. It also
exists an interest in the development of more flexible
systems, to meet the specific needs of new projects.
Coupled Layer Architecture for Robotic Autonomy
(CLARAty) [1], joined the efforts of NASA’s precedents
works like the Telerobot Testbed Demonstration System
of Jet Propulsion Laboratory [2], a system conceived to
be used to develop, implement, and evaluate the
performance of advanced concepts in autonomous, tele-
autonomous, and teleoperated control of robotic
manipulators. CLARAty’s goal is to develop and

implement a comprehensive control architecture for
multiple, disparate, interacting, planetary rovers. The
control of these systems will use the architecture to
implement artificial intelligence techniques for
autonomous sequence planning, error handling, and
recovery during surface operations in an unknown
terrain. A very important and explicit objective of this
system is to have the resultant architecture exported to
other NASA rover systems, providing a common
software environment. Up to now, the prototyping and
implementation of the CLARAty architecture is still in
its early stages. Obviously, in order to address the needs
of space telerobotics research, very expensive,
sophisticated and high performance computing systems
are required. For this reason, several projects for
building economical and acceptable platforms for
teleoperation research have been developed. For
example, as part of the research in teleoperator control
interface design, a WindowsNT/PC-based teleoperation
system prototype was developed in the Mississippi State
University[3]. This system links a virtual environment
manipulator interface to a PUMA robot, to study human
factor issues in the development of teleoperator
interfaces. This experience shows that near real-time
teleoperator control can be achieved using low-cost
common PC hardware. With the same interest, Ghiasi et
al have proposed a reusable framework designed to
enable the manipulation of devices via the World Wide
Web for web-based teleoperation that made use of open
source products and simple APIS as Java and Python[4].
This framework attempts to reduce the level of skill
required to successfully develop a teleoperation device
providing mechanisms to interact with, and providing
tools that allow to build different GUIs and to make
extensions or modifications to existing functionalities.
The system flexibility allows its use as a higher level
tool, as in the work described by Balcisoy [5]. This work
presents a framework for testing the design of objects in
an augmented reality context. The definition of modeling
object geometry is extended with modeling object
behavior to allow users to experiment with a large set of
possibilities without having extensive knowledge on the
underlying simulation system. This approach shows that
users can decrease the time spent on prototype
evaluation and have a realistic testing environment.

Another important axis in teleoperation research is
simulation, because it allows researchers, designers and
users to construct robots and task environments in a
quick and inexpensive way, compared to real systems
cost, and it allows the study of geometries, kinematics,
dynamics and motion planning. In his dissertation
Anderson [6] described and compared in a detailed
manner the most used robotics simulators: ARS
MAGNA is an abstract robot simulator that provides an

abstract world in which a planner controls a mobile
robot. Experiments may be controlled by varying global
world parameters, such as perceptual noise, as well as
building specific environments in order to exercise
particular planning features. However it proves that it is
inadequate when an attempt is made to adapt them to a
new domain or to a new type of agent. The Michigan
Intelligent Coordination Experiment (MICE) testbed is a
tool for experimenting with coordination between
intelligent systems under a variety of conditions. MICE
simulates a two-dimensional grid-world in which agents
may move, communicate, and affect their environment.
MICE is essentially a discrete-event simulator that helps
to control the domain and a graphical representation, but
it provides relatively few constraints on the form of the
domain and on the agent’s abilities. RSIM is a SGI-
based graphical robot simulator from the University of
Melbourne, it makes discrete time simulation of an
arbitrary linked robot arm, with full kinematics and
dynamics. There is a discrete-time controller and a
standard C interface so that users can create and test
different controlling algorithms. This robot simulator
currently works only on SGI machines.

Research in virtual environments (VE) has included
research in VE construction toolkits, VE software
architectures and VE training projects such as NPSNET
[7] which is a multi-user distributed virtual environment
used to recreate complex military missions. The
Distributed Interactive Virtual Environment (DIVE) is a
virtual reality system allowing many users to explore the
3D space and interact with each other [8]. VIPER, a
system developed in our team [9] is also a generic,
multi-user distributed virtual reality platform that is able
to run on heterogeneous physical architectures. Minimal
Reality Toolkit (MRToolkit) is a set of software tools for
the production of virtual reality systems and other forms
of three dimensional user interfaces, it includes device
drivers, support programs and a language for describing
geometry and behavior [10]. Bamboo is a component
framework enabling the development of virtual
environments, that dynamically loads language-specific
plugins into and out of memory [11]. Each plugin is part
of a “module,” which is a directory structure that can
also contain any data files used by itself (i.e. geometry,
texture, sound). Typically, modules are archived and
subsequently downloaded at runtime via HTTP from one
or more developer-specified web servers over the
Internet.

In our system, we are interested in providing a tool for
helping development of teleoperation systems. This
system unifies the advantages of the different system
revised: a modular design to easily make extensions and
modifications, the ability to separate process from the

domain, virtual environments as a graphic user interface,
simulation, built with commonly available tools. Our
system is highly configurable allows to reuse already
built components and facilitates the integration phase
because the functional interface of each module remains
constant. An additional objective in the ASSET
implementation is to have a low cost, light weight,
object-oriented system developed with open source
products. For this reason, we have choosen Java and
Java3d to develop our system, so that it can run on any
platform without further changes. Java3d additionally
offers a high-level API for designing 3D systems.

3 ASSET System
ASSET (Architecture for Systems of Simulation and
Training in Teleoperation) is a set of reusable Java
components which offers to the programmers the
services related to teleoperation missions, providing a
testbed for experimenting with behaviors, simulation
models and devices. Asset is designed to facilitate the
research and development of teleoperation applications
by allowing dynamic integration of modules and by
providing simulation for facilitates experimentation and
distribution techniques as dead-reckoning for
minimizing the network bandwidth use.

3.1 Architecture

Fig.1

As shown in Fig.1, the ASSET’s architecture consists of
three modules:

User Interface Manager: the User Interface Manager
(UIManager) is responsible for the communication
between the system and the user, it handles the local
simulation and the interaction devices. Communication
between this module and the others modules of the
system is managed by the Communications and Events
component.

Real System Manager: It is the module which controls
the real system. It is very similar to the UIManager, but
it controls the sensors and effectors. Real System
Manager (RSManager) executes the commands and
manages coherence between the real state and the
simulated state in order to update the user’s simulations.

Administrator: The administrator coordinates the
interactions between the participating entities, users and
robots. It has a Communications and Events component
to transmit the commands to effectors and the
information from the real system to the users, and a
Coordination component to solve conflicts raised by
different orders.

3.2 Mechanisms
One key feature in ASSET is the management abstract of
the application basic components (i.e. devices,
communications, state). This is the reason why, in
addition to the architecture, ASSET defines the
mechanisms which allow the interaction between the
different modules and the different components of each
module:

3.2.1 Data space and Event Handling
To set the communication between the various
components of a module, we have defined a data space
which maintains device information, commands, and
network messages. The data space notifies occurrences
of a written event (when a component adds a message)
allowing devices, simulation objects or communication
units to recover and to process it. This capability allows
to have a domain and devices independence.

3.2.2 Simulation
Simulation facilitates experimentation because it allows
to evaluate a system in inaccessible environments or to
face rare events. Indeed, by replicating simulation and
models in every host participant, we have rapid feedback
and filtration of invalid commands. In ASSET, there is a
simulation in each UIManager as in the RSManager. The
simulator in the UIManager makes possible to give
feedback to the user without delay while simulator in the

RSManager avoids the transmission of data at the end of
each interval of simulation. The RSManager compares
after a simulation update if the real system state is
different from the simulation state, and in this case, it
sends the accurate value in order to update the
simulation of the UIManager. The simulation component
in ASSET offers the following services: 3D
visualization, collision detection and Java3D or
VRML2.0 models loading. One very interesting feature
in ASSET simulation is the possibility to define the
behavior for each simulation object. This allows having
entities with different degrees of autonomy in the
simulation.

3.2.3 State
To know if the real state and the simulated state are
different, ASSET uses conditions defined by the user for
his application. The user defines the set of variables that
constitute the state of the system and, for each variable,
he defines the maximum error value. If there are one or
more variables that have reached their maximum error
value, simulation must be updated. Because the state of
the system and the acceptable difference between two
states are defined by means of a configuration file, it is
possible to easily calibrate the system. On the other side,
the type of the variables and the concept of distance can
be modified by the user because the system instantiates
dynamically the classes developed by the user to manage
his variables.

3.2.4 Devices management
In ASSET we have defined virtual devices which offer a
set of common services that can be implemented with
various physical devices. The virtual device is a
mediator between the real device and the system
ensuring the independence between the application and
the specific devices.

With the architecture and mechanisms defined in the
ASSET system, we have achieved important
requirements like extensibility, adaptability and a highly
configurable system that can integrate available
resources. For example, for testing behaviors, the
developer only needs to provide a geometric model and a
control class for the entity. In order to test a new device,
the developer only needs to implement the basic services
defined in the virtual device. This feature allows
reducing the time of development and letting the
developer to focus on optimizing his work.

4 A Demonstration Scenario
To present our idea we worked on EVIPRO, a system for
facilitating cooperative teleoperation research. An
autonomous or teleautonomous robot can participate in

order to help the user to accomplish teleoperated tasks,
an. Assistance robots complement human faculties and
allow the system to take advantage of the computer’s
capacities to realize repetitive tasks and also physically
hard work, and to use as better as possible the expert
dexterity to look and to react at the right time [12]. In the
EVIPRO project, we are studying man-machine
cooperation to carry out teleoperated missions in a
system using virtual reality and adaptative tools where
drawbacks are compensated with an autonomous robotic
system [13]. The goal for the human users and the
autonomous robots is to achieve a common task in the
virtual environment. The EVIPRO system consists of a
reactive system (ASSET) that understands the events of
the dynamic environment, and a system of behavioral
simulation called A3 which control the autonomous
robots whose mission is to help the user. The scenario it
is the following:

Fig.2

Fig.2 shows the EVIPRO system with an user who
cooperates with an autonomous robot. The user
addresses commands to Khepera robot 1 by means of an
interaction device (spacemouse, joystick) and the user
interface (UIManager). These commands are first sent to
the local simulator to produce user feedback. If the result
of that action triggers the simulation to another valid
state, the commands are sent to the control module of the
real system by the way of the Administrator. The

RSManager updates the simulation allowing behavioral
unit to know the state of each simulation object, and to
react as well as possible to the new environment. This
unit filters information to obtain the needed data for
making a choice of behavior and update his state.
Finally, the two Khepera robots execute their commands.
It is important to note that the autonomous robot is only
controlled by the behavioral unit associated with the
simulator of the RSManager, allowing the A3 system to
only work with valid global data. The unit in UIManager
just feeds visual simulation (Fig. 3).

The construction of this system allows us to verify the
architecture and the ideas stated in ASSET. Thanks to
the Reflection package of Java, it is possible to
dynamically load classes to our system, it allows to
integrate new classes and models without modifying the
system. Nevertheless, some difficulties have arised, the
most important being collision detection. In fact, in
Java3D it is possible to know when collision is produced
but it is very difficult to determine collision information.
At the moment we are using a simple algorithm of

collision detection based on bunding spheres while we
work in the development of a new collision detector.

5 Conclusion
We have developed ASSET, a support environment that
serves as a testbed for teleoperation systems
development. In this experimental environment, the
developer can test new simulation models, behaviors and
devices. This feature facilitates the utilization of ASSET
in the creation of new systems and in making rapid tests
and prototypes. Furthermore, to achieve platform
independence, the implementation of ASSET is based on
Java and Java3D. We have used our system in the
building of a sample application, and we have been able
to demonstrate the benefits of its flexibility, in particular
for the dynamic integration of behaviors in the
simulation and for the construction of applications
independent of specific devices.

Future work will cover several aspects. At the current
time, the most promising directions appear to include:

Fig.3. Simulation in ASSET system

testing heterogeneous objects with different levels of
autonomy, studying interaction devices and techniques
(spacemouse, joysticks, gloves, stereoscopic display),
and allowing multiusers interaction for training. Finally,
improvements on the collision detection engine are
pursued. Another valuable feature to be integrated will
be task planning in order to allow the operator to use the
result of his experiences in simulation and to execute a
task in the real system without permanent control.

References:
[1] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, H.
Das, The CLARAty Architecture for Robotic Autonomy
Proceedings of the 2001 IEEE Aerospace Conference,
Montana, USA, 2001

[2] JPL Telerobot Testbed-Lessons Learned,
http://robotics.jpl.nasa.gov/tasks/testbed/accomplishment
s/lessons/testbed-lessons.html

[3] D. Kaber, R. Zhou, D. Song, Design and Prototyping
of an Economical Teleoperation Testbed for Human
Factors Research: Cost, Resource Requirements and
Capability Assessment, Proceedings of the 25th
International Conference on Computers & Industrial
Engineering, New Orleans, USA, 1999

[4] S. Ghiasi, M. Seidl, B. Zorn, A Generic Web-based
Teleoperations Architecture: Details and Experience,
SPIE/Telemanipulator and Telepresence Technologies
VII, Boston, USA, 1999

[5] S. Balcisoy, M. Kallmann, P. Fua, D. Thalmann, A
framework for rapid evaluation of prototypes with
Augmented Reality, ACM VRST 2000 - Symposium on
Virtual Reality Software and Technology , Seoul, Korea,
2000

[6] J. Anderson, Constraint-Directed Improvisation For
Everyday Activities, Department of Computer Science,
University of Manitoba, Canada

[7] M. Macedonia, D. Brutzman, M. Zyda, D. Pratt, P.
Barham, NPSNET: A Multiplayer 3D Virtual
Environment over the Internet, Proceedings of the AM-
1995 Symposium on Interactive 3D Graphics, 1995

[8] O. Hagsan, Interactive Multiuser VEs in the DIVE
System, IEEE Multimedia Magazine, Vol. 3, No. 1, 1996

[9] P. Torguet, O. Balet, JP. Jessel , E. Gobetti, J.
Duchon, E. Bouvier, CAVALCADE a system for
collaborative virtual prototyping, Journal of Design and

Innovation Research - Special Virtual Prototyping, Vol.
2, No. 1, 2000

[10] MR Toolkit,
 http://www.cs.ualberta.ca/~graphics/MRToolkit.html

[11] K. Watsen, M. Zyda, Bamboo - A Portable System
for Dynamically Extensible, Real-time, Networked,
Virtual Environments, VRAIS'98 - IEEE Virtual Reality
Annual International Symposium, Atlanta, USA 1998

[12] H. Arai, T. Takubo, Y. Hayashibara, K. Tanie,
Human-Robot Cooperative Manipulation Using a
Virtual Nonholonomic Constraint. Proceedings 2000
IEEE International Conference on Robotics and
Automation. 2000

[13] O. Heguy, N. Rodriguez, JP. Jessel, Y. Duthen, H.
Luga, Virtual Environment for Cooperative Assistance
in Teleoperation, WSCG'2001 - International
Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision, Plzen, Czech
Republic, 2001

[14] N. Smith, C. Egert, E. Cuddihy, D. Walters.
Implementing Virtual Robots in Java3D using a
Subsumption Architecture, WebNet 1999 - World
Conference on the WWW and Internet, Hawaii, USA,
1999

