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Abstract: - This paper presents our system for transcription of polyphonic piano music – SONIC. SONIC takes 
an audio signal of a piano performance and tries to determine which notes were played by the performer, thus 
producing a list of notes and note onset times approximately matching the performance. SONIC is composed of 
three main parts: partial extractor, onset detector and note recognizer. We present these parts in more detail 
below, as well as some results obtained by using the system on recordings of piano music.  
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1   Introduction  
Music transcription could be defined as an act of 
listening to a piece of music and writing down music 
notation for the piece. For each note its starting time, 
duration and loudness (dynamics) need to be 
determined.  
     Music transcription is a difficult cognitive task. It 
can be to some extent performed by trained humans, 
but it is a very difficult problem for current computer 
systems to solve. We could in a way compare it to 
speech recognition, where we convert an audio 
signal to phonemes, syllables and finally words; 
music transcription converts an audio signal into 
notes, their starting times, duration and loudness.      
     Many current transcription systems use some kind 
of a time-frequency transform and peak-picking 
algorithm to extract partial tracks from the audio 
signal and then use statistical methods to group these 
tracks into notes. Some systems (i.e. [6]) first 
calculate sound source models of instruments and 
then try to transcribe music performed by these same 
instruments. Others use no such models.     
     SONIC uses several types of neural networks to 
perform partial track extraction, onset detection and 
note recognition. The following sections present 
these tasks in more detail and also present some 
results obtained by using the system on recordings of 
piano music. 
 
2   SONIC 
SONIC attempts to correctly determine notes, their 
starting times, lengths and loudness in a polyphonic 
piano performance. It is composed of three main 
stages, depicted in figure 1 and described below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1   Structure of the system 

 
2.1   Partial extraction  
The first stage of SONIC extracts partial tracks from 
the input audio signal. We chose a novel technique 
that uses a gammatone filterbank for splitting the 
signal into time-frequency tracks and adaptive 
oscillator networks for extraction of partials.  
     The audio signal is first fed through a commonly 
used auditory model, emulating the functionality of 
human cochlea. The model first uses a gammatone 
filterbank to split the signal into several frequency 
channels. The filterbank consists of an array of 
bandpass filters with near constant-Q bandwidth in 
middle and high frequencies. Center frequencies of 
filters are spaced logarithmically from 70 to 6000 
Hz. We are using the filter implementation based on 

 
  onsets and  
amp. envelopes 

   audio signal of a piano performance

Note recognition with 
time-delay  

neural networks 

Partial extraction with 
networks of adaptive oscillators 

Gammatone filterbank 

Meddis’ hair cell model 

notes and  their onset times 

TF channels 

 

amplitude 
envelopes 

Onset 
detection 

partial tracks 



the model suggested by Patterson [5] and 
implemented by Slaney [7].  
     Subsequently, the output of each gammatone 
filter is processed by Meddis’ model of hair cell 
transduction [4]. The hair cell model converts each 
gammatone filter output into a probabilistic 
representation of firing activity in the auditory nerve, 
incorporating well-known effects such as saturation 
and adaptation. 
     To successfully extract partial tracks from the 
resulting frequency channels, we first need to 
calculate a more accurate estimate of the dominating 
frequency in each channel. We could calculate more 
accurate frequency estimates with a correlogram and 
then extract partial tracks with some kind of a peak-
picking algorithm, but we opted to use a different 
algorithm that implicitly produces partial tracks as its 
result.  
      Our model is based on networks of coupled 
adaptive oscillators. Adaptive oscillators are a class 
of oscillators that adapt their phase and frequency in 
response to external input. When a periodic signal is 
passed through an adaptive oscillator, it tries to 
synchronize to the signal by adjusting its phase and 
period to that of the input signal. By observing the 
frequency of a synced oscillator, we can make a 
more accurate estimate of the frequency of the 
driving input signal. Oscillators used in SONIC are a 
simplified version of the Large-Kolen adaptive 
oscillator model [1].  
     An oscillator has three variables that change with 
time: phase, frequency and output. It constantly 
oscillates through time according to its frequency 
and phase. If a periodic signal is presented to an 
oscillator, it tries to adjust its phase and frequency to 
match that of the input signal. The output value of an 
oscillator indicates how well it managed to sync to 
the input signal. If the oscillator fails to sync, it 
keeps oscillating, but its output value is low. 
     Each oscillator also has its so-called preferred 
frequency. This is the oscillator’s initial frequency 
and an oscillator in our model is only allowed to 
sync to frequencies that are up to one semitone 
higher or lower than its preferred frequency. This 
prevents oscillators to drift away and sync to 
arbitrary input frequencies.  
     Each oscillator in SONIC gets its driving signal 
from one of the hair cell model’s output channels. If 
a particular frequency (partial) appears in the audio 
signal, the output of the gammatone filter and 
consequently the hair cell model with center 
frequency near that frequency is quasi-periodic and 
the oscillator connected to the output syncs to that 

particular frequency. A synced oscillator therefore 
represents one of the partials in the audio signal. The 
oscillator’s frequency is an approximation of the 
partial’s frequency. Because oscillators are adaptive, 
they can also adapt to changes in frequency of their 
driving signal and stay in sync in cases of frequency 
modulations or beating in the input signal.  
     We took the model one step further and coupled 
harmonically related oscillators to form oscillator 
networks representing groups of partials. Each 
network consists of up to ten oscillators. The 
preferred frequency of the first oscillator in the 
network is tuned to frequency of one of the 88 piano 
notes (A0-C8). Preferred frequencies of other 
oscillators in the network are integer multiples the 
first oscillator’s frequency (i.e. 220Hz, 440Hz, 
660Hz, 880Hz,...). See also figure 2. Each oscillator 
in a network is internally coupled to all other 
oscillators to accelerate synchronization of 
oscillators in the network.  

Fig. 2   A network of coupled oscillators estimating the 
strength of a group of partials at frequencies f, 2f, 3f, 

 
     The output of a network represents how 
successfully oscillators within the network synced to 
their input signals. The output is higher when more 
oscillators sync successfully (more partials are 
found). Such output therefore represents the strength 
(number of partials found) of a group of 
harmonically related partials. We are using 88 
oscillator networks, each calculating the partial 
group strength of one piano note.  
     The final output of the partial extraction stage of 
SONIC (at any given time) is a set of 88 strengths of 
partial groups, one for each piano note. Because 
partial group strengths do not include amplitude 
information, we also extract amplitude envelopes 
from outputs of the gammatone filterbank and 
include them in the output. An example of such 
output can be seen in figure 3. 
 
2.2   Onset Detection 
The second stage of SONIC is the onset detector. 
Even though piano is an instrument with well-
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pronounced onsets, a reliable onset detector is not 
easy to implement. After much experimentation, we 
chose to use an algorithm based on a combination of 
a network of integrate-and-fire neurons and a feed 
forward neural network.  
     SONIC first uses outputs of the gammatone 
filterbank and sums them into 22 overlapping bands, 
each covering half and octave. Two sets of amplitude 
envelopes are then calculated for each band, one 
using a 6 ms smoothing filter and the other using an 
18 ms smoothing filter. The two sets are subtracted 
and the result passed through a network of integrate-
and-fire neurons. Each neuron in the network 
integrates envelope differences in one of the 
frequency bands through time. When differences 
exceed a certain threshold in a period of time, the 
neuron fires and produces an indication of an onset 
within that channel. Neurons are connected to each 
other via excitatory connections that increase 
internal activations of all neurons, when one of the 
neurons in the network fires. This increases the 
prominence of weak onsets and brings onset 
activations across different bands closer together, 
thus improving onset detection. 
    Outputs of all neurons and amplitude differences 
are fed into a standard feed forward neural network, 
which has been trained previously on onset examples 
from various piano performances. The network has 
only one output, indicating whether an onset has 
occurred or not. The algorithm works quite well, 
most problems occur in very fast passages such as 
fast arpeggios (notes less than 50 ms apart) or thrills, 
where in our opinion a higher level cognitive 
mechanism would be needed to correctly extract all 
onsets. 
 
2.3   Note Recognition 
The part of the system that actually performs 
transcription consists of a set of 76 neural networks – 
one network for each piano note (we are currently 
ignoring the lowest octave from A0-Ab1). We tested 

several neural network models and finally settled for 
time-delay neural networks, which slightly 
outperformed standard feedforward networks in our 
tests.  
     The first half of inputs of each network consists 
of several time frames of outputs of oscillator 
networks, smoothed with an IIR filter with 25 ms 
time constant. The other half consists of smoothed 
amplitude envelopes (see left and center images in 
figure 3).  
     Each network is trained to recognize the 
occurrence of a single note in its input. Therefore, it 
only has one output: a high output value means that 
the target note is present in the input, a low output 
value means, that the note is not present.  
     Networks have been trained on a large database 
of piano pieces and chords. To obtain a set of 
segmented piano pieces that could be used for 
network training, we took a collection of over 100 
midi files of piano songs, which we rendered with 
over twenty different piano samples obtained from 
commercially available piano sample CD-ROMs. 
We chose songs of various styles including classical 
from several periods, ragtime, jazz, blues and pop. 
Because very low and high notes were not frequent 
enough in the chosen pieces, we complemented the 
song set with a set of chords, ranging in polyphony 
from one to six and rendered with the same piano 
samples as songs.  
     The trained networks find a large percentage of 
notes, but produce quite a lot of additional notes, not 
present in the input, most of them octave errors. We 
therefore added a feedback mechanism, providing 
inhibition from the output of the note recognition 
stage to its input. When a network finds a note, this 
triggers inhibition that inhibits the found note’s 
partials in the input of the recognition stage. The 
feedback decreases the number of octave errors 
made by note recognition networks, but also has a 
small negative effect on the number of correctly 
found notes. 

Fig. 3  Output of oscillator networks from transcription of Bach’s French Suite No. 1 (BWV812): 
partial group strengths (left), amplitude envelopes (middle) and combined information (right). 
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2.4   Estimation of note lengths and dynamics 
The note recognition stage yields a list of notes and 
their starting times. To produce the desired output, a 
midi file of the piano performance, note lengths and 
strengths also need to be determined. SONIC 
estimates the length of a note from the duration of 
positive activations of the note’s neural network. The 
strength of a note is approximately calculated from 
the amplitude envelope at onset time. 
 
3   Results 
We tested the system by transcribing several solo 
piano performances. To make evaluation easier, we 
obtained the performances by rendering several midi 
files with piano samples different from those used to 
train the note recognition networks. The pieces 
ranged from very simple pieces, such as Bach’s 
Two-part Inventions to more complex ones, such as 
excerpts from Tchaikovsky’s Nutcracker Suite. 
     Transcription results obtained on some of the 
pieces are given in table 1. Results are given for 
transcriptions of five pieces: J.S. Bach’s 
Contrapunctus 12 from Art of the Fugue, Partita No. 
1 (BWV825), French Suite No. 1 (BWV812), 
Tchaikovsky’s Nutcracker Suite Miniature Overture 
and Waltz of the Flowers. The second and third 
columns of table 1 represent the average and 
maximum polyphony of transcribed pieces. The 
fourth column (notes found) represents the 
percentage of notes in each piece that were correctly 
transcribed. The fifth column (extra notes) represents 
the number of additional notes that were found, but 
were not present in the input.  
 

 
piano piece 

avg. 
poly 

max. 
poly 

notes 
found 

extra 
notes 

Contrap. 12 1.8 5 95% 13% 
Partita No. 1 2.6 6 94% 15% 
French Suite 3 6 91% 14% 
Nutcr. ovr. 3.1 6 90% 15% 
Nutcr. waltz 5 15 81% 25% 

Table 1   Transcription results 
 
Most of the errors (either missing notes or extra 
notes) - over 50% - are octave or similar errors. The 
other most common source of errors are very short 
notes (less than 100 ms) or notes played very quickly 
one after another.  
     We also tested the performance of SONIC on 
several hand segmented commercial recordings of 
classical piano performances. As expected, results 
obtained on real recordings are not as good as those 
on rendered midi files, but are overall not bad. When 

analyzing Bach’s Prelude from English suite no. 5 
(BWV810) performed by Murray Perahia (Sony 
Classical SK 60277), SONIC correctly transcribed 
over 90 percent of all notes and produced 15 percent 
of extra notes with half of all the errors being octave 
errors. The performance decreases when polyphony 
increases; in Schumman’s Traumerei performed by 
Cyprien Katsaris (TELDEC 75863), SONIC 
correctly found 78 percent of all notes and produced 
around 20 percent of extra notes; half of all errors 
were again octave errors. 
 
4   Summary and Future Work 
SONIC performs quite well on synthesized as well 
as real performances. Further work will be directed 
towards reducing the number of errors made by the 
system, especially the number of extra notes found. 
Most extra notes currently fall into one of the three 
categories; octave errors, repeated notes and 
misplaced notes. We are planning to add an extra 
postprocessing stage to the system, which would 
handle such errors by reexamining the found notes, 
detected onsets, amplitude envelope changes and 
some other features, such as common partial onsets. 
This stage would then remove some of the found 
notes or  reassign them to new onset times. 
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