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Abstract: - Noises are one of the key obstacles in applying continuous monitoring and computer-assisted 
analysis of respiratory sounds in operating rooms. This paper introduces a new methodology for extracting 
authentic lung sounds from a noisy environment. This methodology utilizes the unique feature of time-split 
stages in breathing sounds, rather than frequency separation or statistical independence. By employing a multi-
sensor system, the method performs time-shared blind identification and noise cancellation with recursion from 
cycle to cycle. Since no frequency separation or signal/noise independence is required, this method can 
potentially provide a robust and reliable capability of noise reduction, and complement traditional filtering and 
whitening techniques. Its utility is evaluated by simulation and demonstrated by an application to monitoring of 
endotracheal tube positions using Human Patient Simulators. 
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1   Introduction 
This paper introduces a new method for blind 
identification of transmission channels in lung sound 
extraction problems. The method is derived on the 
basis of the unique nature of breathing sounds and can 
be used effectively in attenuating noise effects in lung 
sounds. When applied to anesthesia respiratory 
monitoring, the method can potentially enable 
computerized sound analysis in real clinical 
environment and enhance significantly accuracy and 
robustness in anesthesia diagnosis. 
 
1.1   Motivation 
Continuous monitoring of lung sounds is of essential 
importance in medical diagnosis for patients with lung 
diseases and detection of critical conditions in 
operating rooms. To obtain quantitative and reliable 
diagnosis and detection, it is critically important that 
respiratory auscultation retains sounds of high clarity. 
Clinical acoustic environment imposes great 
challenges for lung sound acquisition. Unlike acoustic 
labs in which noise levels can be artificially controlled 
and reduced, and lung sounds can be processed off-
line, operating rooms are very noisy due to surgical 
devices, ventilation machines, conversations, alarms, 
etc. The unpredictable and broadband natures of such 
noises make operating rooms a very difficult acoustic 

environment. This paper introduces a new blind 
identification method that is unique to lung sound 
extraction from noisy environments. The system will 
consist of several lung sound sensors (special 
microphones, electronic stethoscopes, etc.) and a 
noise reference sensor. Our method conducts blind 
channel identification during the pausing intervals in 
breathing cycles and performs noise cancellation 
during inhale and exhale. Its application in 
anesthesiology is studied by some cases involving 
detection of endotracheal tube misplacements. 
Importance of noise attenuation in diagnosis accuracy 
in these cases will be illustrated.  
 
1.2   Background 
Noises are well known to be a fundamental challenge 
in developing automated lung sound analysis  
Traditionally, studies of heart and lung sounds have 
concentrated on filtering techniques. To further 
enhance the performance of the filtering process, FFT, 
power spectrum density, bi-spectrum analysis, 
wavelet analysis, high-order statistics, and stochastic 
averaging have been investigated extensively for their 
effectiveness in noise filtering and sound separation 
[1,2,3,4,10]. Frequency-domain filtering is applicable 
for reducing off-band noise (those with frequencies 
outside the signal frequency band). Another class of 
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noise cancellation methodologies relies on stochastic 
independence [5,6,7,16]. Consider a respiratory sound 
measurement system in Figure 1. The main ideas of 
stochastic whitening are: (1) First generate from y1 
and y2 the signals w1 and w2 that are statistically as 
independent as possible.  (2) Then, w1 is viewed as an 
estimate of the sound y.  This method is effective only 
for independence noises and  cannot capture any gains 
or nonlinear static mapping in the transmission media. 
 
 
 
 
 
 

 
Fig.1:  Sound Channels 

 
We will develop an innovative noise reduction 
methodology that is uniquely designed to overcome 
the above key difficulties. Since our method does not 
rely on frequency band separation or statistical 
independence between lung sounds and noises, it can 
provide a more robust noise cancellation in this 
application. We should emphasize that application of 
our method does not exclude filtering or whitening 
methods. In other words, one may elect to apply target 
filtering by using both frequency filters and white 
noise separation after employing our method.  
 
2   Method 
For lung sound extraction problems, the noise 
transmission channels must be identified. Since noises 
cannot be measured at source, it is a blind 
identification problem. 
 
2.1   Time-Split Blind Channel Identification 
Our idea is to introduce a virtual noise framework and 
to use a time-split method to identify the system and 
to achieve noise cancellation. The noise reference 
sensor, which is placed in vicinity to the lung sensors, 
receives noises from all sources just like the lung 
sensors, but does not receive lung sounds. If we view 
y2 as a virtual noise source, we may replace 
distributed noise sources in a lumped noise source y2, 
as shown in Fig. 2. Noise cancellation is now reduced 
to identification of the virtual noise channel G (in Fig. 
1, G is the inverse of C3 followed by C2). Indeed, 
given estimated G, the noise-free lung sound y can be 
approximately extracted as y = y1 – G y2.  

Identification of G remains a difficult problem since y 
and y2 may be correlated. Without a direct output 
measurement of the channel G, all existing 
identification methods fail to apply. Our approach in 
resolving this central issue is based on a simple 
observation: Ventilation or breathing cycles undergo 
the stages of inhale, exhale, and transitional pause. In 
between  exhale and inhale, there is a pausing interval 
in which lung sounds are very small. Consequently, 
the measured y1 is actually the output of the noise 
channel G in that interval. As a result, we can use 
input/output pair (y2 and y1) to identify G in the 
interval. This will not require any assumption on 
independence or frequency separation. This idea leads 
to the following lung sound/noise separation 
algorithms. 

 
Fig.2: Virtual Noise Formulation 

 
2.2   Lung Sound/Noise Separation  
For signal processing, a ventilation or breathing cycle 
is divided into three stages: Inhale (Ti), exhale (Te), 
and transitional pause (T-Ti-Te). They are identified 
(1) by ventilator variables, e.g., airway pressure 
cycles (positive-negative-neutral) in ventilated 
patients; or (2) by smoothed breathing wave profiles 
in natural breath.  For the virtual noise configuration 
shown in Fig. 2, let G be parametrized by a parameter 
vector θ, denoted by G(θ). Most commonly used 
parametrization is the ARMAX model (auto-
regression, moving average, external input). The 
parameter vector θ  is to be identified. The algorithm 
can be described as follows.  
Initial Channel Identification:  
During a pause stage, the measured y2 (virtual input) 
and y1 (output) are used to identify the noise channel 
G(θ), using a recursive algorithm, that will be detailed 
later.  The estimated model will be denoted by G(θ0). 
Step 1: Inhale and Exhale Stages 

At the k-th breathing cycle (k=0,1,2, …), during the 
Ti (inhale) and Te (exhale) stages, the estimated 
noise channel model G(θk) is used to extract the 
original lung sound via y = y1 – G(θk) y2.  

Step 2: Transitional Pause Stage 
During the pause stage of the k-th breathing cycle, 
the estimated noise channel model is updated by 



 
 

 

using the new data from measured y2 (virtual input) 
and y1 (output). The channel model G(θk) is used as 
the initial condition and the model is updated by  a 
recursive algorithm, leading to an updated model 
G(θk+1).  

Recursive Steps  
In the (k+1)-th breathing cycle, go to Step 1 with 
the newly updated channel model G(θk+1). These 
steps are then repeated from cycle to cycle. 

This cycle-to-cycle recursion will be computationally 
very efficient since models are updated by using only 
new measurements and no past data need to be 
remembered.  
 
2.3   Recursive Identification Algorithms 
We now provide some details on recursive algorithms. 
There are many possible choices. The following four 
are most commonly used in applications and have 
been tested by the authors in anesthesia applications. 
Consider an ARMAX model for G 
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The following recursive algorithms can be used to 
update the parameter vector θ. 
Adaptive Filtering:  
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Theoretical properties of these algorithms have been 
extensively studied, especially their convergence and 
convergence rates. We refer the reader to [9] for 
further theoretical details. 
 

3   Illustrative Examples 
This section presents some illustrated examples that 
demonstrate the utility of the method introduced in 
this paper. To provide flexibility in evaluating our 
method, extensive simulation has been performed. 
The system includes several noise sources with 
different characterizations (such as waveforms, 
frequency centers, and bandwidth), waveforms 
collected from real environment, as well as computer 
generated random noises. Noise sources pass through 
several different transmission channels to influence 
the lung-sound sensor and reference sensor. The 
structure and parameter values of these channels are 
not known to the identification algorithms.The system 
identification takes a black-box approach in which a 
discretized channel model with  the regression 
representation (1) is used.  These simulation studies 
include variations in noise types, frequency shifting, 
waveforms, and magnitudes.  
 
3.1  Noise Impact on Sound Characteristics 
 
We shall start with an illustration of noise impact on 
lung sound patterns. Fig. 3(a) illustrates a typical 
normal breathing sound and an expirational wheeze 
(these are from the public respiratory sound database 
of Music Department of McGill University). For this 
example, the wheeze can be clearly characterized by a 
substantial narrowing of spectrum, shifting of center 
frequency (towards low pitch in this example), and 
power imbalance of inspiration and expiration. For 
this example, sounds are obviously very clean with 
minimum noise corruption. Sound patterns are 
significantly altered when noise artifacts are 
considered.  Fig. 3(b) shows the corrupted wheeze, 
both in its time-domain waveforms and frequency-
domain spectrum. It is clear that in a noisy 
environment, the time-domain waveforms of a wheeze 
are distorted to the point that it is no longer possible 
to recognize sound patterns. 
 
3.2   Channel Identification 
Here, we consider “natural breathing” patients in 
which the phases of “inhale,” “exhale,” and “pause” 
are mainly reflected in the sound power or averaged 
magnitude profiles. Hence, switching between 
“identification” and “noise cancellation” will be 
derived from lung sound signals. 
 
 
 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Uncorrupted Lung Sounds 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Noise Impact on the Wheeze 

Figure 3   A Normal Sound and  a Wheeze, and 
Noise Impact on Sound Patterns 

 
Figure 4 presents a typical simulation result. The 
original lung sound is a typical normal breathing 
waveform (the top plot in (a)). The environment noise 
is, after passing through an unknown transmission 
channel, measured by the reference sensor (the 2nd 
plot in (a)). The lung sound sensor is corrupted by 
environment noises with its signal denoted by the 3rd 
plot in (a). While the lung sound is significantly 
corrupted by the noise, its envelope profile still retains 
an indication of its “inhale,” “exhale,” and “pause” 
stages. This profile information is used to divide each 
breathing cycle into the phases for identification or 
noise cancellation. In this simulation, a 30-th order 
moving average regression model is used in 
identification. During the identification phase, a 
recursive least-squares identification algorithm is used 
to update the parameters in the regression model. 

During the noise-cancellation phase, the estimated 
regression model is used to derive the noise estimate 
which is then subtracted from the signal measured by 
the lung sensor. The process is then repeated in the 
next breathing cycle.  The bottom plot is the estimated 
lung sound. We just want to comment that there are 
some studies on time-domain sound patterns 
[8,11,12].  The noise corruption in this simulation 
alters the sound waveforms significantly so that the 
time-domain wave patterns of the original lung sound 
are no longer apparent.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(a) Time-Domain Features 

(b) Frequency-Domain Features 
Figure 4  Channel Identification and Noise 

Cancellation 
 
A better understanding of the effectiveness of our 
method is depicted in the frequency-domain 
comparison in Fig. 4(b). The noise spectrum overlaps 
with the lung sound spectrum. The estimated lung 
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sound restores the power spectrum of the lung sound 
The bottom plot of (b) shows effectiveness of noise 
reduction. In terms of power levels, the lung sound 
measurements contain 15-25% noises, which are 
largely removed via this method. 
 
4   Monitoring of Endotracheal Tube 
Positions 
Unlike the class of “natural breathing” cases, if a 
patient is ventilated in anesthesia the breath pattern 
switching from “inhale” to “exhale” and then to 
“pause” is controlled by a ventilator. Consequently, 
switching between “identification” and “noise 
cancellation” can be directly derived from ventilation 
variables, such as airflow pressure changes. Lung 
sounds can be used to monitor endotracheal tube 
positions. A proper intubation will have the tube 
positioned in tracheal. As a result, oxygen will be 
ventilated into both lungs. This implies that breathing 
sounds from both lungs should be present. When the 
tube is either misplaced or drifted into one side of the 
lungs, bronchial intubation occurs. In bronchial 
intubation, only one side of the lungs is properly 
ventilated, while the other receives no oxygen supply. 
Bronchial intubation has dire clinical consequences 
and must be promptly detected. 
 
Bronchial intubation is reflected by imbalanced sound 
intensities between the left and right lungs. Fig. 5 
shows a case study involving noise-corrupted lung 
sounds in a patient (20-year-old healthy soldier 
simulated on the Human Patient Simulator from 
METI, Inc.).  

Figure 5: Monitoring of Bronchial Intubation 

 
In this study, artificially-created right bronchial 
intubation with different degrees of reduced lung 
sounds is used. The simulation setting contains two 
lung sensors, one for the left lung and one for the right 
lung, as well as a noise reference sensor. All sensors 
are electronic stethoscopes in this study.  
 
Without noise corruption, one may simply observe the 
sound powers from both lung sounds and compare 
their relative intensities, as shown in the bottom-left 
plot of Fig. 5. When power or intensity imbalance 
reaches a pre-designed threshold, a diagnosis of 
bronchial intubation may be prescribed. However, 
noises will have a detrimental impact on this 
approach. When high noise levels are experienced, the 
difference in power spectrum densities diminish, as 
shown in the right-bottom plot of Fig. 5.   
 
Table 1 summarizes some typical power levels of lung 
sounds for bronchial intubation monitoring in a 
patient simulation, in which left bronchial intubation 
was introduced. The power of the left lung sound, that 
always receives oxygen and is not affected by the tube 
migration, is normalized at 100%. Then the relative 
power level of the right lung sound reflects the 
severity of tube migration. The lower the percentage 
shift, the lower the oxygen ventilation level to the 
right lung. If the lung sounds are not corrupted by 
noise, one can select a detection threshold, say, 65% 
for detecting bronchial intubation. The following table 
is one result from the simulations. The 2nd and 3rd 
columns indicate the power levels of left and right 
lung sounds under noise-free environment. 

Table 1.  Power Levels of Lung Sounds 

The last two columns of the table show changes in 
power levels when noises are added. Due to severe 
noise corruption, this detection problem becomes 

uch more difficult. For example, if the detection 
threshold is set at, say,  65%, then noise artifacts will 

ake the detection algorithm miss even the complete 
right-lung bronchial intubation. It should be 
emphasized that since this is a stochastic detection 
problem, reliability and accuracy of bronchial 
intubation detection can be assessed by the 



 
 

 

probabilities of “false alarm” and “missed detection,” 
both must be small. Consequently, shifting threshold 
for alarm will simply increase one probability and 
reduce the other. Hence, it will not enhance overall 
detection accuracy. Also, unlike standard statistics in 
which the sample size can be used in reducing impact 
from randomness, detection accuracy in this 
application cannot be improved by using more 
breathing cycles. This is due to the persistent nature of 
noises. It seems that the only remedy for detection 
accuracy is to reduce noise effects by signal 
processing methods.   
 
5   Concluding Remarks 
This paper introduces a new noise cancellation 
method for extracting authentic lung sounds from 
noisy auscultation environments. The method is 
unique in its utility of the breathing pause period for 
system identification and inhale/exhale phases for 
noise cancellation. As such it resolves a daunting 
challenge in this blind identification problem: noises 
may have similar frequency bands as the lung sounds 
and may not be statistically independent to the lung 
sounds. This approach opens the opportunity of 
extending computer-aided lung sound analysis from 
acoustic lab settings to real clinical applications. 
There are many possible issues that can be studied in 
this direction. These include its effectiveness in 
nonlinear noise transmission channels, sensor location 
selections, sensor configuration, impact of modeling 
distributed noises by lumped noises, etc. Also, 
combination of this method with regular filtering (for 
eliminating off-band noise) and whitening (removing 
independent noises) can be studied. However, the key 
foundation of this method seems to be sound in this 
application.     
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