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Abstract: - This work is concerned with pitch* determination in vocal music monophonic signals. The proposed 
Pitch Detection Algorithm (PDA) is based on the autocorrelation function, one of the most explored fundamental 
frequency detection methods. However, a new approach to the estimation process is developed. This new 
strategy consists in the introduction of a new logic processing interaction unit that enhances the co-operation 
between the central extractor and postprocessor blocks (two of the three blocks that characterise most PDAs), in 
order to avoid erroneous pitch estimates. 
 
Key-Words: - Pitch, Detection, Singing, Autocorrelation, FFT, MIDI.  
 

                                                           
* Although there is a psychoacoustical distinction between “pitch” as a perceived quantity and “fundamental frequency” as a 

physical quantity, in this paper, these terms are used indistinctly in reference to the fundamental frequency of voice and the 

measurement unity used is Hz.   

1   Introduction 
Although the massive investigation effort in the 
development of PDA’s (Pitch Detection Algorithms) 
has been made mostly by the speech scientific 
community, an automatic singing voice pitch 
detector has an extraordinary and misspended 
potential as the basis of several interesting and useful 
computer-based systems for the music community 
such as real-time performance, voice control of MIDI 
devices, resynthesis of singing voice, automatic score 
transcription, analysis of microtonal non-Western 
music, computer-assisted singing and ear-training, 
etc. 
     The overall goal of this work is to develop a PDA 
capable of being the basis of a PC-based multimedia 
system, capable of automatically extracting the 
fundamental frequency of the singing voice, and 
implement one or several of its potential applications 
(generally described above). 
 
 

2   Research 
The first step of this work was to collect references 
and study two main issues related to the object of this 
work – the singing voice: 
o The Musical Sound Signal: there was the need 

to understand the physical and psychological 
properties of sound (in its musical state). We 
also overviewed several temperament systems, 
and the musical notation.  

o The Human Voice Production System: It was 
made a comprehensive study on this item, in 

order to reference the main characteristics of 
human voice (speech and singing). The main 
differences of vocal music signals, in 
comparison to speech signals, were also 
referenced (the wider range of fundamental 
frequency, from ≈82.4Hz to ≈987.7Hz, and the 
enormous variations in timbre, and therefore in 
spectral content that a singer can produce in a 
single piece of music). 

     The research work allowed us to consolidate the 
fundamental knowledge needed to refine the search 
of pitch detection algorithms that best suited the goal 
of this work, and to develop an accurate and reliable 
method of extracting the fundamental frequency of 
vocal musical signals. 
 
 

3   Implementation 
3.1 The Pitch Extracting Method 
The chosen method was one of the most time-
honoured methods of detecting pitch: the ACF 
(Auto-Correlation Function). It was chosen among 
several other methods, mainly because of its 
attractive advantages/disadvantages binomial, 
regarding the kind of signals that our system is 
intended to study. 
     There are several reasons why autocorrelation 
methods have generally met with good success. 
Among other virtues, the autocorrelation 
computation can be easily implemented and quickly 
calculated with FFT (Fast Fourier Transform), and, 
above all, it is phase insensitive. The use of a zero 



phase method is particularly promising for the study 
of musical signals, since this means that 
contributions from all of the harmonics occur at the 
period of the fundamental, and any problem of a non-
existent or weak fundamental is thus circumvented. 
     However, there are several problems associated 
with the use of this method.  
     Although the autocorrelation function of a voiced 
section of a vocal piece generally displays a 
prominent and isolated peak at the pitch period, there 
are also often present peaks due to the detailed 
formant structure of the waveform. Another problem 
is the required use of a window for computing the 
short-time autocorrelation function. This exigency 
comprises three difficulties. First there is the problem 
of choosing an appropriate window. Second, no 
matter which window is selected, it will taper the 
autocorrelation function smoothly to 0, an effect 
known as linear tapering. This effect tends to 
compound the difficulty mentioned above in which 
formant peaks in the autocorrelation function (which 
occur at lower indices than the period peak) tend to 
be of greater amplitude than those due to the 
fundamental. A final difficulty is the problem of 
choosing an appropriate analysis window size. The 
ideal analysis frame should contain from two 
(necessary) to three (preferred) complete pitch 
periods. Thus, for male voices (low pitch), the 
analysis frame should be long, whereas for female 
voices (high pitch) it should be kept short. Finally, 
the autocorrelation function has a variable pitch 
resolution, which is one important problem regarding 
the study of musical signals, and should be a non-
neglected issue in the development of a musical-
oriented PDA. 
 
3.2 The Proposed System 
Most of the PDAs are characterised by the following 
blocks: the preprocessor, the central extractor and the 
postprocessor [1]. The central extractor performs the 
main task: it converts the input signal into a series of 
pitch estimates. The task of the preprocessor is data 
reduction and enhancement in order to facilitate the 
operation of the central extractor, which outputs the 
pitch estimates. The postprocessor operates in a more 
application-oriented way. Some of its typical tasks 
are error correction, smoothing the pitch contour and 
refining the pitch estimation. 
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Fig. 1. Block Diagram of the Proposed PDA 

     In our work, we propose a different structure that 
tries to surpass the problems referenced to the typical 
PDA structure, as well as problems directly related to 
the use of the ACF as the pitch extractor method. Our 
system includes a logic processing interaction unit, 
an intermediary processing step between the central 
extractor and the postprocessor. The goal of this 
interaction unit is to prevent erroneous estimation of 
pitch, in opposition to typical PDA analysis, for 
which the burden of correcting estimation errors 
produced by the central extractor is exclusively 
imputed to the postprocessor. This new interaction 
processing step implements a logic based on a four-
state model, capable of dealing with the 
characteristics of different-nature segments of 
musical voice signals.   
 
3.2.1 Preprocessor 
The goal of the preprocessor is to eliminate, or at 
least reduce the problems of the autocorrelation 
method as a voice pitch estimator. 
     Our preprocessor is composed of four blocks. 
The first one implements the adaptive segmentation 
of the voice signal, which allows the use of 
appropriate values for the analysis frame size and 
reduces the computational cost of the 
autocorrelation computation. The default analysis 
frame size is 30.8 ms, the maximum size required to 
cope with pitch values corresponding to the low end 
of the fundamental frequency voice range 
(≈65.4Hz). After five consecutive voiced segments, 
the window size is altered to the triple of the 
average of the pitch periods of these five segments. 
The factor of 3 allows up to a 50 percent variation in 
pitch period from the estimated average pitch 
period, and still ensures that at least two complete 
pitch periods are contained within each analysis 
frame. The second block distinguishes between 
silent or final transient segments and other type of 
segments. The silence level threshold is set to 1/15 
of the magnitude of the maximum peak in the whole 
voice signal. A final transient segment is defined as 
one for which its maximum peak is below ½  of the 
peak magnitude of the previous segment. The third 
block function is to whiten or spectrally flatten the 
signal, with a time domain non-linear distortion 
method, based on previous works [2]. The analysed 
frame is centre and peak clipped, resulting in a 
signal which can assume one of three possible 
values: -1, 0 or 1. The last block deals with the 
computation of the autocorrelation function. The 
autocorrelation function (which is equivalent to the 
inverse Fourier Transform of the power spectrum 
[5]) is calculated with the use of FFT techniques, in 
order to decrease its processing time. Then, it is 



normalised to unity at origin (lag 0). Finally, the 
effect of linear tapering is corrected with its inverse 
transformation.  
 
3.2.1 Central Extractor and Postprocessor 
As mentioned above, these two blocks collaborate 
within the logic processing interaction unit, which is 
based in a four-state model, depicted in fig. 2. 
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Fig. 2 Four–state analysis model 

     There are four separate logic paths (or states), 
each of which are selected, based on two control 
variables (voicing and trans). These two variables 
can assume two values: on or off. The first one 
regards the voiced or unvoiced classification of the 
last segment. The second one indicates if there were 
detected evidences of a possible voicing onset or 
offset transition. 
     The goal of the transition analysis states (Voiced-
Unvoiced or Unvoiced-Voiced) is to ascertain the 
veracity of the voicing transition hypothesis, raised 
by their corresponding continuous analysis state 
(Voiced or Unvoiced). These logic paths implement 
a more cautious processing, given the ambiguous 
nature of the segments they analyse. This is 
achieved, for example, with the use of higher 
constraints for threshold parameters.  
     The pitch estimation is made basically with an 
inspection of the maximum of the autocorrelation 
function (detected by the central extractor), and 
comparison with predefined thresholds, empirically 
obtained from the analysis of several musical 
phrases from different singers. Whenever the last 
segment (n-1) analysis exhibited a prominent peak, 
its position is used in order to restrict the range of 
acceptable autocorrelation peaks for the nth. 
segment, since there are obvious physical 
limitations to voice fundamental frequency 
variability in adjacent frames. This pitch tracking 
strategy reduces both computational effort and pitch 
error estimation likelihood. 
     One of the major drawbacks of the 

autocorrelation function, its proneness to harmonic 
or subharmonic detection, is due to the fact that the 
function is itself periodic in the true pitch period [1]. 
The harmonic detection likeliness is reduced by the 
linear tapering correction routine in the 
preprocessor. The subharmonic detection impairs 
drastically the prospect of success for the overall 
pitch detection, since both the adaptive 
segmentation and the logic processing unit are very 
susceptible to gross pitch errors. This problem is 
circumvented with the introduction of an algorithm 
that checks the autocorrelation samples 
corresponding to the sub-multiple positions of its 
maximum peak, and chooses the lowest order peak 
whose magnitude exceeds 80% of the original peak 
magnitude. Since the subharmonic detection 
probability attains its maximum at the onset of 
voicing (for high-pitched singers), the correction 
algorithm mentioned above is activated for the 
states U and UV. 
     Finally, in order to surpass one of the main 
drawbacks of the ACF as a musical pitch detector 
(variable pitch resolution), it was implemented a 
frequency-domain method of interpolation, which 
refines the pitch estimation to an user-defined 
resolution (in our case, 20 cents). 
 
      

4   Performance Analysis 
4.1 Results 
One main aspect for the development of a PDA is its 
evaluation through standard databases. 
Unfortunately, such databases exist only for speech 
signals. This is a fact that constitutes one of the main 
difficulties in developing a musical PDA. In order to 
surpass this problem, we developed a database 
composed of synthesized[13], sampled[14] and real 
singing voice signals. The three types of signals 
allow us to analyse the performance of our PDA on a 
increasing difficulty logic. The use of synthesized 
voice signals allows the objective measurement of 
PDA accuracy, but does not faithfully represent the 
characteristics and peculiarities of the human singing 
voice. Since the samples may have vibrato, we don’t 
have exact information on their fundamental 
frequency. Nevertheless, this kind of signals allow us 
to evaluate the PDA in a global way, since we can 
reproduce rather fast and complex melodies (with a 
great degree of certainty concerning the pitch), 
representing all kinds of human voices (from the bass 
to the soprano). Although the human nature of voice 
impedes an absolute control over the produced 
fundamental frequency, thus turning the evaluation 
process in some kind of a subjective measurement, 



the real signals allow the analysis of the overall 
performance and robustness of the PDA, for the 
situations for which it was created.  
 
4.1.1 Synthesized Signal 
 

Synthesized Signal Results 
Begin 
Time 
(ms) 

Note Frequenc
y (Hz) 

Obtained1 
Frequency 

(Hz) 

Unvoiced 
Frames 

Voiced 
Frames 

Voiced 
Estimates 
Average 

112,1 E1 82,410 82,645 1 20 82,645 

354,1 F1 87,310 86,957 0 23 86,957 

607,1 F#1 92,500 92,593 0 23 92,593 

855,5 G1 98,000 98,039 0 22 98,039 

1100,3 G#1 103,830 104,167 0 23 104,167 

1359,5 A1 110,000 109,890 0 23 109,890 

1605,2 A#1 116,540 116,279 0 22 116,279 

1854,6 B1 123,470 123,457 0 23 123,457 

2105,7 C2 130,810 131,579 0 23 131,579 

2356,5 C#2 138,590 138,889 0 22 138,889 

2601,3 D2 146,830 147,059 0 23 147,059 

2852,9 D#2 155,560 156,250 0 23 156,250 

3102,5 E2 164,810 163,934 0 23 163,934 

3352,6 F2 174,610 175,439 0 23 175,439 

3603,4 F#2 185,000 185,185 0 23 185,185 

3851,8 G2 196,000 196,078 0 23 196,078 

4101,7 G#2 207,650 208,333 0 23 208,333 

4351,3 A2 220,000 222,222 0 23 222,222 

4603,3 A#2 233,080 232,558 0 23 232,558 

4852,7 B2 246,940 250,000 0 23 250,000 

5100,7 C3 261,630 263,158 0 23 263,158 

5351,5 C#3 277,180 277,778 0 24 277,778 

5603,5 D3 293,660 294,118 0 24 294,118 

5851,7 D#3 311,130 312,500 0 25 312,500 

Table 1. Synthesized Signal Analysis 

 

Fig. 3 Chromatic Scale (2 octaves) 

The results obtained with the analysis of the 
synthesized signal were very satisfactory, as we can 
see by Table 1. The only error reported was a 
voiced-unvoiced decision, made by our PDA at the 

                                                           
1 The Obtained Frequency of the signal refers to the real frequency of 

the synthesized signal, due to the discrete nature of the voice 

synthesizer. 

beginning of the first note. All other results allowed 
us to verify the accuracy of our PDA, since the pitch 
estimates coincided (with a precision of 0.0005Hz) 
with the synthesized signal (obtained) frequency.  
     For the results shown in Table 1, it were not 
included the pitch estimates corresponding to 
different note overlapping frames. 
 
4.1.2 Samples 
 

 

Fig. 4 Bass sample, E Maj scale(2 octaves) 

 

Fig. 5 Soprano sample, B Maj scale(2 octaves) 

The major contribution of the samples analysis was 
the ability to evaluate the PDA performance with 
different kinds of voices. As we can see by fig. 4 and 
fig. 5, the PDA proved its ability to analyse the full 
human voice fundamental frequency range. Once 
more, it were detected erroneous voiced-unvoiced 
decisions at the voicing onset.   
 



4.1.3 Real Signals 
 
     The analysis of the real signals demonstrated the 
robustness of the PDA, namely with the analysis of a 
vocal excerpt with (fig. 6) and without lyrics (fig. 7), 
that introduce uncharacteristic aperiodicities on the 
signal, thus raising difficulties to the good 
performance of the PDA. 
     The fine detail of our PDA was also demonstrated 
with the detection of some musical occurrences 
characterised by minor frequency variations: vibrato, 
portamento and minor untunings. 
 

 

Fig. 6 "Old MacDonald had a farm" - Male voice 

 

Fig. 7 "Old MacDonald had a farm" - Male voice (with lyrics) 

 
4.2 Applications 
In order to demonstrate our PDA’s potential, it was 
also developed a pitch-to-MIDI converter. This tool 
allowed us to convert to MIDI the pitch signals 
obtained with the analysis of real singing voice 
signals. In fig.8 we can see the musical 
representation of the real signal of fig.6. First, we 
extracted the pitch information with our PDA, next 
we converted that pitch information to MIDI and 

obtained the musical stave with a commercial 
musical notation software. 
 

 

Fig. 8 Musical Stave obtained with our PDA and MIDI 
converter 
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