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Abstract – The simulation procedure represents an important tool to understand clearly the baker’s yeast 
fermentation process. This work compares two different strategies to solve a mathematical model in order to 
predict the behaviour of the concentration of the state variables over a 20 h time period, in a well-mixed reactor. 
Mass balances written for all the components constitute a system of initial value problem. Considering the kinetics 
and the gas transfer rates relations, algebraic equations, as part of the differential system, a differential-algebraic 
system is defined. Two FORTRAN90-based simulators were employed for studies concerning the baker’s yeast 
fed-batch fermentation. Both the simulation packages were seen to be an efficient tool for the simulation and tests 
of the non-linear process. 
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1 Introduction 
The building and use of mathematical models based 
on observed data is for long accepted as a basic 
scientific methodology. Models may be of a more or 
less formal character, but they have the basic feature 
that they attempt to link observations together into 
some pattern [1]. With the progress in digital 
technology, and thinking of bringing the theory into 
practice, computational modelling and model-based 
applications have emerged and are recognized as areas 
of great priority [2].  

The conventional approach for process modelling is 
based on the balance equations for mass, energy, and, 
if necessary, momentum and population. This form of 
modelling requires further knowledge about reaction 
kinetics, thermodynamic, transport and physical 
properties.  

Real processes in the chemical, biochemical and 
food industry are in their vast majority non-linear 
MIMO systems (Multiple Input Multiple Output). 
Their dynamics and control are difficult to study both 
for theoretical and practical reasons. In many instances 
experiments with real industrial processes are not 
carried out for reasons of economy and safety. Often 
on-line measurements are not available or simply they 
are too expensive. The simulation procedure 
represents an important tool to understand clearly the 
baker’s yeast fermentation process. 

The simulation consists on the integration of a set of 
non-linear differential equations, in order to the state 

variables, by considering or not as part of the system, 
algebraic equations, concerning mass transfer relations 
and kinetics laws.  

The different methods of integration used are listed 
in the literature [3, 4]. In this article two different 
strategies are compared. 

 
 

2 Baker’s yeast fermentation - 
Modelling approach 

The simulation model consists of a set of algebraic 
equations, related to the kinetic models of baker’s 
yeast growth and a set of five differential equations, in 
order to the state variables. The latter results from a 
mass balance of the fermenter. For more details, see 
[5]. 

Next sections describe the models implemented in 
the simulation programs.  
 
 
2.1. Kinetic model 
Yeast growth is characterized by three metabolic 
pathways 
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(respiratory growth on glucose) (1) 
 

[ ] OHjCOiHhCONOHgCNHgNXOHC NXOXHXl
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(fermentative growth on glucose)  (2) 



 

[ ] OnHmCONOHlCNHlNXkOOHC NXOXHXl

O
E

223262 ++→++ µ  
(respiratory growth on ethanol) (3) 

 
where S represents glucose; O oxygen; X biomass; E 

ethanol; C carbon dioxide and O
Sµ , r

Sµ , O
Eµ : specific 

growth rates for the three pathways. In the sequel X, S, 
E, O, C mean concentrations. 

The metabolic pathways of fermentative growth on 
glucose and oxidative growth on ethanol are 
competitive. This competition is governed by the 
respiratory capacity of the cells. If the instantaneous 
oxygen uptake capacity exceeds the oxygen need for 
total respiratory glucose uptake, then, all sugar 
uptakes follows the respiratory pathway (1) with the 
remaining oxygen being spent on ethanol respiratory 
uptake (3). Otherwise, if the instantaneous oxygen 
uptake capacity is not enough, then, part of glucose 
uptake follows the respiratory pathway (1) while the 
remaining follows the fermentative pathway (2). 

The kinetics equations for baker’s yeast growth, 
considered as Monod equations, are determined as 
follows. 

The total specific growth rate, µt, is the sum of the 
growth rates for the three pathways  

 O
E

r
S

O
St µµµµ ++= . (4) 

The specific growth rates, iµ , can be related to the 

corresponding substrate fluxes, q, and yield 
coefficients (Table 1), Y, by 
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SXt qYqYqY ++=µ  (5) 

where O
SXY  and r

SXY represent the yield coefficients 

of biomass in glucose in the oxidative and 

fermentative phases, respectively; OE
EXY  is the yield 

coefficient of biomass in ethanol in the oxidative 
phase in ethanol. 

As ethanol uptake is influenced by the priority of 
glucose uptake, which functions as an inhibitor, the 
specific growth rate on ethanol can be described as  

i

i

E
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++
= maxµµ  (6) 

where max
Eµ is the maximal specific growth rate, Ki is 

the inhibition parameter and KE is the saturation 
parameter. 

However, this equation holds true only if there is an 
available respiratory capacity of the cells. 

Table 1. Yield coefficient values (proposed by [6]) 
 

Coefficient  Value 

O
SXY  0.49 g biomass/g 

glucose 
r

SXY  0.05 g biomass/g 
glucose 

r
EXY  0.10 g biomass/g 

ethanol 
OE

EXY  0.72 g biomass/g 
ethanol 

O
OXY  1.20 g biomass/g 

oxygen 
OE

CXY  0.64 g biomass/g 
oxygen 

O
CXY  0.81 g biomass/g 

carbon dioxide 
r

CXY  0.11 g biomass/g 
carbon dioxide 

OE
CXY  1.11 biomass/g carbon 

dioxide 
 
  

The glucose uptake, qS, is slightly different because 
it follows two metabolic pathways: oxidative and 
fermentative 

r
S

O
SS qqq += . (7) 

The glucose, qS, and oxygen, qO, uptake follow a 
Monod kinetics, respectively 

S
SS KS

S
qq

+
= max  (8) 

O
OO KO

O
qq

+
= max  (9) 

where max
Sq is the maximal specific glucose uptake 

rate, KS and KO are saturation parameters and max
Oq is 

the maximal specific oxygen uptake rate. 
By (1), it can be seen that the oxidative glucose 

uptake depends on the availability of dissolved 
oxygen, and may be defined as 

a

q
q

O
OO

S =  (10) 

where a is the stoichiometric coefficient of the oxygen 

in the respiratory pathway of glucose and O
Oq is the 

oxygen uptake on glucose. 
Two situations may occur: excess of oxygen that 



 

implies no fermentative growth of biomass; lack of 
oxygen and consequently excess of glucose that 
implies no respiratory growth on ethanol. 

Table 2 resumes mathematically what has been said; 
only two of the three metabolic pathways coexist. 

 

Table 2. Baker’s yeast kinetics 
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Two auxiliary equations, (17) and (18), must be 
added to the equations listed in Table 2, for the 
estimation of the specific growth rate on ethanol, 
defined as: 
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 (17) 

and  

( )SOOE
EX

OE
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E aqq
Y

Y
−=0

2
µ . (18) 

The relevant kinetic data were taken from 
Sonnleitner and Käppeli [7] (Table 3). 

 

Table 3. Kinetic parameters 

Parameter  Value 

max
Sq  3.5 g gluc-1 g biom-1h-1 

max
Oq  0.256 g O2-1 g biom-1h-1 

max
Eµ  0.17 h-1 

KE 0.1 gl-1 

Ki 0.1 gl-1 

Ks 0.2 gl-1 

Ko 0.1 mgl-1 

 

2.2. Mechanistic model 
The mechanistic model for the fed-batch fermentation 
is obtained from mass balances for all components, 
considering that the reactor is well mixed.  

Furthermore it is assumed that the yield coefficients 
(Y’s) are constant and the dynamics of the gas phase 
can be neglected. 

Then the set of differential model equations is: 
⋅ mass balance for the biomass 

( )XD
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dX O
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r
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O
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⋅ mass balance for the sugar 
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where Sf  is the substrate concentration in the feed, 

⋅ mass balance for the ethanol 
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⋅ mass balance for the oxygen 
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⋅ mass balance for the carbon dioxide 
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The accumulation of the working volume during the 
fed-batch process is represented by 

d V

d t
D V= .  (24) 

The dilution rate (ratio feed rate/volume), D, is 
defined by 

 
V

F
D = . (25) 

The gas transfer rates are given by -  

( )OOa KOTR O
L −= ∗  (26) 

( )∗−= CCa KCTR C
L  (27) 



 

where aK i
L  are overall mass transfer coefficients for 

oxygen and carbon dioxide and O* and C* are the 
corresponding equilibrium concentrations. 
 
 

3 Numerical methods for integration 
The set of model equations that describes the 

mechanistic for the fed-batch fermentation, differential 
equations (19-24) plus the algebraic equations (11-16, 
25-27), forms a system of differential-algebraic 
equations. Differential-algebraic (DAE) systems are 
different from ordinary differential (ODE) systems in 
that, while they include ODE systems as a special 
case, they also include problems that are quite 
different from ODEs, [3]. Some of these systems can 
cause severe difficulties for numerical methods. 
Consequently, the numerical solution of these systems 
is a very active area of research.  

The index of a DAE system is a measure of its 
degree of singularity. Roughly speaking, ODE 
systems, ( )ytfy ,'= , have index zero. Differential 
equations coupled with algebraic equations, 

( )zyfy ,'= , ( )zyg ,0 = , have index one if 0=g , 

can be solved for z given y (that is, if zg ∂∂  is non-
singular) and otherwise have an index higher than one. 
The system in study is of index one so, the higher 
order index system would not be here discussed. The 
initial conditions for the DAE system in contrast to the 
ODE system, must be consistent, in the sense that they 
must satisfy the constraints of the system and possibly 
also some of the derivatives of the constraints. DASSL 
is a package freely available on the Internet via 
NetLib. DASSL uses a fixed-leading-coefficient BDF 
methods for index-one DAEs, and treats the linear 
systems as full or banded, but in various details it 
addresses the issues of DAE problems directly. More 
details on the algorithm are described in [3]. The error 
tolerances, ATOL and RTOL (absolute and relative 
error tolerances, respectively), were taken to be 10-4. 
This value was obtained after several simulation runs 
where no significant differences were found in the 
final results. 

When considering baker’s yeast growth model as an 
ODE system, the algebraic equations are calculated 
prior to the set of differential equations. The method 
employed is a variable step algorithm, based on 
embedded Sarafayan method, involving the Butcher´s 
formulas of 4th and 5th order [4], SINTEG routine. The 
truncation error is forced to be less than a limit defined 
by the user [8]. 

All computations reported were performed in double 

precision on a Pentium 500 MHz computer. 
 
 

4 Simulation procedure 
The simulation programs of baker's yeast production 
were developed in FORTRAN90 workspace.  

Figure 1 describes, in a schematic form, the MAIN 
program developed for the fed-batch fermentation. 
The procedures inside the block dashed line, depend 
on the strategy used: DAE/ODE systems. 

The only difference in the ODE based integration 
method is that, as already referred, the algebraic 
equations are calculated before the definition of the 
five differential equations routine, FN. FUN routine 
defines  the differential-algebraic system. 

 
 

Input initial 
conditions 

Input initial  
parameters and coefficients 

t=tend 

No 

 

Print / Save 
results 

End 

Call 
SINTEG 

FN 

ODE system 

Call 
DASSL 

FUN 

BNECK 

DAE system 

 
Figure 1. Flowchart of the MAIN program routine. 

 
 

Figures 2 and 3 present, respectively, the flowcharts 
for the routine where the differential and algebraic 
system equations are defined, FUN, and the routine 
where the switch between the respirative and the 
respiro-fermentative models is verified, BNECK. 
DASSL integrator automatically calls these two 
routines, defined by the user. 

The runs were taken at the same conditions, namely- 
Initial values: 
 X(0)=0.3 g/l, S(0)=1.3 g/l, E(0)=0.8 g/l 
 O(0)=.0066 g/l, C(0)=0.002 g/l, V(0)=2 g/l,  

Yes 



 

 Sf=30 g/l 
Final volume: 5 l 
Manipulated variable: Constant Glucose feed-rate, 

F=0.12 l/h. 
 
 

 

Call BNECK 

“R” ? No 

Algebraic 
equations 

(14), (15), (16), 
(26), (27) 

Yes 

Algebraic 
equations 

(11), (12), (13), 
(26), (27) 

Differential 
equations 
(19 – 24) 

 

Figure 2. Flowchart of the FUN routine where the 
differential algebraic system is defined. “R” refers to 

the respirative regime. 
 
 

 

O > O* 

No

qS       (8) 

q0       (9) 

Respiro-Fermentative 
Regime, “F” 

C > C* 

O = O* 
Yes 

C = C* 

No

 a qS ≤ q0 
Respirative 
Regime, “R” 

Yes 

Yes 

No 

 

Figure 3. Flowchart of the BNECK routine 
 

 
 
 

5 Results 
The state variables, biomass, X, sugar, S, ethanol, E, 
oxygen, O, and carbon dioxide, C, concentration 
profiles, during a 20 hours run, do not differ 
significantly for both different strategies. Figures 4 
and 5 show, respectively, the X, S and E, and O 
concentration profiles. These results regard to the 
DAE-based system. The carbon dioxide was kept 
constant during all runs. 

Nevertheless the ODE-based method shows some 
small oscillations, particularly in biomass, X, and 
oxygen, O, profiles, possibly due to numerical 
problems. These oscillations are reflected on the 
relative error behaviour. 
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Figure 4. Biomass, X, sugar, S, and ethanol, E, 

concentration profiles on a 20h simulation run, under 
the defined initial conditions 
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Figure 5. Oxygen, O, concentration profile on a 20h 
simulation run, under the defined initial conditions 

 
 

Figures 6 and 7 present the relative errors (defined, 
in percentage, as the difference between the values 



 

obtained in DAE-based method and the ODE-based 
procedure, divided by the first) for the four state 
variables.  

Both oxygen, O, and sugar, S, have small 
concentration values. However, the oxygen has higher 
relative error, namely after 8 h run; small variations in 
small concentration values increase the relative errors. 
This is also the reason for the behaviour for the 
ethanol, E, relative error after 18 h run. This behaviour 
indicates that one of the integrator is more sensitive to 
describes the decay of the concentration during the 
time period. 
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Figure 6. Relative error (%) between the two model 
strategies for the biomass and ethanol concentrations 
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Figure 7. Relative error (%) between the two model 
strategies for the sugar and oxygen concentrations 

 
 
 

6 Conclusions 
Two simulators were developed and compared for 
studies of fed-batch baker’s yeast fermentation.  

The process was implemented in open-loop mode at 

constant feed rate of glucose substrate (F=0.12 l/h).  
For the same initial conditions, both strategies seem 

to characterize the case study. 
In the DAE-based method, the initial state should be 

consistent and well defined. 
The differences in the final results obtained by using 

the two methods were measured in terms of 
concentrations relative error (%). Some differences 
could be found, namely for some values of run time 
period where small concentrations of the state 
variables were obtained. The DAE based method 
seems to be more robust and less sensitive to 
numerical problems. 
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