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Abstract: - This study addresses a new approach to the Hardware/Software partitioning problem focused on the 
integration of communication scheduling during design space exploration. Frequently in this phase most 
communication channel features are ignored, since communications are identified with abstract channels. It is 
conceivable that once the abstract channels have been mapped into an actual communication channel (i.e. a bus) 
the area and execution time of the solution may change considerably.  A novel methodology, that schedules the 
communications taking into account the physical features of the communication channel, is presented. It has 
been integrated into a partitioning tool based on Genetic Algorithms. This methodology attempts to accomplish 
a deep study of the communication impact during the design space exploration without increasing significantly 
the complexity of the algorithm.  
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1   Introduction and Previous Work 
Communications are often a system’s performance 
bottleneck, even more when both hardware and 
software performance are improving much faster 
than communication channels do.  
Most of the work on Hardware/Software (HW/SW) 
partitioning considers that abstract channels carry 
out communications between tasks in different 
platforms. Once the partitioning has been done, the 
abstract channels have to be mapped into one or 
more physical channels. This process is called 
communication synthesis. For instance in [1] a 
methodology is presented that, once the partitioning 
has been finished, tries to choose the best bus 
bandwidth for mapping the abstract channels. In [2] 
more complex interconnection topologies are 
allowed. An algorithm is presented that, starting 
from a set of channels, (one for every 
communication), tries to cluster processes in order to 
share a communication channel. Some features like 
bit widths, number of ports of the HW resources, 
probability of access collision, cost of the arbitration 
logic, are taken into account, attempting to minimize 
both the delay owing to the access conflicts to 
busses, and the system cost. Both approaches work 
with abstract communication channels, (although 
they consider some physical features) during the 
communication synthesis process. Once obtained, 
the abstract interconnection topology generated 

should be mapped into an actual one. In [3] a useful 
tool for this mapping is presented, that generates 
automatically the drivers and a DMA controller for a 
given communication application. In [4] a design 
methodology is proposed that separates the 
communications from the system behavior. This idea 
proves to be useful for verification and simulation at 
different abstraction levels, however may be 
deceitful for automatic system synthesis. Another 
interesting work on communication synthesis can be 
found in [5]. 
All of these approaches to the HW/SW 
communication problem use abstract channels while 
they are exploring the design space so physical 
communication features are ignored.  Nevertheless 
ignoring the communication channels properties 
may lead to an inefficient design space exploration, 
since it is not possible to estimate correctly the 
communication time, or the impact of the access 
conflicts upon the communication channels.  
In [6] simple models for some communication 
platforms are presented (USB, PCI buses, packing, 
burst transmission mode). A model is also given for 
estimating the area needed for the communication 
drivers. Moreover, these models are integrated 
within the HW/SW partitioning, so communication 
synthesis timing and area trade-offs are studied 
during the design space exploration. However 
communications are not scheduled during 
partitioning, so access collisions to the system bus 



are not taking into account. 
 The approach proposed in this paper aims to:. 

 
a) Consider the physical features of the channel 

in order to accomplish accurate time 
estimations. 

 
b) Study the possibility of conflicts upon the 

communication channel 
 
c) Schedule the communications trying to 

minimize the global execution time. 
 
d) Integrate all these features into a HW/SW 

partitioning tool without increasing 
significantly the time needed for the design 
space search. 

 
 
2   Initial Specification 
The initial specification is modelled by an acyclic 
graph, where each node represents a computational 
task, and the edges correspond to dependencies 
between the nodes. Three different dependencies are 
considered: communication dependencies, internal 
dependencies, and temporal dependencies. A 
communication dependency edge (CDE) connects 
two nodes of different partitions. It represents a data 
transfer between nodes that will be carried out upon 
a communication channel. An internal dependency 
edge (IDE) connects two nodes in the same partition. 
It also represents a data transfer between the nodes, 
but in this case there is no need for using a 
communication channel. A temporal dependency 
edge (TDE) represents a dependency between two 
nodes in the same partition that has been imposed by 
the scheduler. 
Each node of the graph contains estimations for its 
execution time and HW area (if needed).  
Each CDE is tagged with the amount of data to be 
transferred, and an estimation of the communication 
time needed.  A specification graph example is 
shown in figure 1 (HW area is not included for 
readability). 
 
 
3   Cost Function Choice 
The cost function of a codesign system includes 
generally the area and the execution time of the 
solution. One of the more difficult topics for 
designing a partitioning system is to find how to mix 
rather different magnitudes into a cost function that 
should be able to lead the design space exploration 
in an optimum fashion.  

This work has been developed for a HW/SW system 
where the HW partition is assigned to a FPGA. 
Since a FPGA has constant area a straightforward 
cost function may be obtained if the area is removed, 
so the cost function can be identified with the 
execution time. The area is now considered as a 
constraint that solutions should meet. The constraint 
must take into account that only the 96% of the 
FPGA area should be used, since routings problems 
may occur when more area is used. 
Once the area has been removed and the cost 
function has been directly identified with the 
execution time, the design space exploration will try 
to find the fastest solution that meets the area 
constraint.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4    Execution Time Estimation 
Since the execution time leads the design space 
exploration, an accurate estimation is needed.  
The steps followed for estimating the execution time 
of a solution once a HW/SW partitioning is done 
are: 

 
A) Assign a weight to each node. 
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Fig. 1 Specification graph example. 
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B) Choose the execution order for the SW 
assigned nodes. 
C) Recalculate the weights taking into account 
the new dependencies. 
D) Schedule those nodes that are not waiting for 
a communication. 
E) While there is a communication waiting for 
execution do: 

E1)  Choose one communication and      
schedule it. 
E2) Schedule those nodes that are not 
waiting for a communication 

 
Step A: Assign a weight to each node 
In the first step a weight is assigned to each node of 
the partitioned graph. The node’s weight will be 
used for taking decisions that will try to minimize 
the global execution time. This will be done by 
giving priority to the nodes with heavier weights. 
For instance, if there is a node that should execute 
several communications, the order in which these 
communications are going to be executed should be 
decided. Most of the time estimation algorithms in 
literature take these decisions according to local 
considerations. In [5] the longest communication is 
scheduled first. Another local considerations for the 
same question are scheduling first the 
communication which destination node has more 
successors, or the shortest one since parallel 
execution might be improved. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2 Global weight example 

 
 
Since local considerations may lead to inefficient 
decisions in our algorithm, a global consideration 

has been selected for weighting the nodes. The 
weight chosen is the maximum distance of a node to 
the end of the execution in the initial graph. This 
distance is calculated by carrying out an ALAP 
scheduling. This scheduling should take into 
account the HW/SW communication times.  
Figure 2 shows an example where both local and 
global weights are used. The local weight used is the 
one proposed in [6], i. e. the longest communication 
is scheduled first. 
In this example node 1 must carry out two 
communications upon the same communication 
channel.  So both communications should be 
scheduled. If the decision is taken based on the local 
weight, Com2 (CDE2) would be scheduled first, so 
Com1 should wait until Com2 ends. Since Com1 is 
in the critical path of this graph, delaying it affects 
negatively the system performance.  Nevertheless, if 
the global weight described above is used, nodes in 
the critical path will be more weighted so Com1 will 
be scheduled first and no unnecessary delays will be 
introduced. 
 
Step B: Choose the execution order for the SW 
assigned nodes 
The choice of the SW execution order is the next 
decision that should be taken to estimate the 
execution time. The specification graph allows 
parallel execution between their nodes, but those 
nodes assigned to SW should be executed 
sequentially. 
The order is selected sorting the nodes by their 
weights, so the heaviest node will be executed first. 
Then the new dependencies are added as CTRE to 
the specification graph as it is showed in figure 1. 
 It is easy to prove that this SW execution order 
does not allow the new dependencies to create 
cycles in the graph. 
 
Step C: Recalculate the weights 
In order to be absolutely strict, the weights should 
be recalculated each time a decision is taken since 
this decision might create a new dependence that 
could change the critical path of the graph. 
However, since the aim of the algorithm is 
improving the precision of the estimations without 
increasing significantly the complexity, the weight 
is only recalculated once. New weights will be 
assigned to each node after selecting the SW 
execution order. These weights will be calculated in 
the same way that in step A, but considering the 
dependencies derived from the sequential execution 
of the SW partition. Table 2 shows how SW 
execution dependencies change the nodes weight of 
the graph in figure 1. 

Node1 Node 2 Node 3 Node 4  
L G L G L G L G 

G.Weight  82  33  53  15 
Tstart 0 0 41 49 49 29 87 67 
Tend 21 21 59 67 87 67 102 82 
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Table 2. Comparison between weights in steps A) and C) for 
the graph in figure 1. 
 
 
Steps D y E: Scheduling 
A heuristic has been developed for the scheduling 
process trying to minimize the global execution 
time. The heuristic decides when each node and 
each communication is going to be executed, 
assigning to it a tstart and a tend times. The aim of this 
process is to detect when communication channel 
access conflicts happen, so the execution time 
estimation will also consider the delays caused by 
these conflicts. This heuristic starts after the SW 
execution has been sorted, and the weights have 
been recalculated.  
The heuristic addressed in this paper has been 
developed for a platform with just one 
communication channel. This channel should be 
modelled at first in order to obtain accurate 
estimations of the execution time. The algorithm can 
be easily extended for systems with more than one 
communication channel if the number of channels is 
prefixed.   
The scheduling starts assigning tstart = 0, and tend=tex 
to the first node, where tex is its execution time in the 
partition where it has been assigned to. Then the 
algorithm continues scheduling the successors of the 
first node. A greedy policy is followed to schedule 
nodes while there is no need for HW/SW 
communications. When a scheduled node requests a 
HW/SW communication with another node this 
request is stored in a list. All requests are tagged 
with the time when the sender node demanded the 
communication.  
Once all the nodes without need for HW/SW 
communication have been scheduled, one of the 
requested communications is selected and 
scheduled. 
There are two criteria for selecting the 
communication from the requesting list (E1): 
 
Ø If at a given time t the communication 

channel is not carrying out any 
communication and there is just one request 
that has been made before t the 
communication channel is assigned to this 
request, so no other communication may 
use it until this one finishes.  

 
Ø Otherwise if there are more than one 

request, the one with the greater weight will 
be selected. The weight of a communication 
will be computed as the weight of the 
destination node plus the time needed to 
execute the communication. 

 
Once the selected communication has been 
scheduled the graph is examined (E2) and all the 
nodes that are able to start their execution without 
waiting for another HW/SW communication are 
also scheduled. The process is repeated until all the 
communications are scheduled.  
Figure 3, shows in detail how the example graph in 
figure 1 is scheduled. 
The scheduling heuristic has a quadratic complexity. 

 
Fig. 3 Scheduling execution example corresponding to 
the graph in figure 1. (T1,T2) represents starting and 
ending execution times. 
 
 
5   Area Estimation 
The design area is estimated as follow: 
 
(1) Area = ΣΣ n

i Ai + Adriver  + Acontrol + Astorage 
 
Ai is the area of the node i. Adriver is the area needed 
to implement the communication driver. Ai and 

Node 0 1 2 3 4 5 6 
Weight  A)  76 55 50 35 36 30 10 

Weight  C) 93 75 50 35 56 30 10 

 
Step D) Node 0 is scheduled (0,10). Com1  and 

Com2  are requested at t= 10. 
Step E) first iteration:  

E1) Com1  is schedule (10,18) since Com1 
weight > Com2 weight. 
E2) Node 1  is scheduled (18,29). Com3 is 
requested at t=29. Node 3 is scheduled (29,42). 
Com5  is requested at t= 42. 

Step E) second iteration:  
E1) Com2 is scheduled (18,34) since at t=18 
there are no more communications requested. 
E2) Node 2 is scheduled (34, 42). Com4 is 
requested in t=42.  

Step E) third iteration:  
E1) Com3 is scheduled (34,42) since at t=34 
there are no more communications requested. 
E2) Node 4  is scheduled (42,68). 

Step E) fourth iteration:  
E1) Com4  is scheduled (42, 54) since Com4 
weight>Com5 weight. 
E2) Node 5  is scheduled (68,88). 

Step E) fifth iteration:  
E1) Com5  is schedule (54,66) since at t=54 there 
are no more communications requested. 
E2) Node 6  is scheduled (88,98), so Tex=98. 



Adriver should be estimated from a core library. When 
a new core is added to the library its area can be 
estimated using an automatic synthesis tool. Acontrol 
is the area needed for the control logic that 
schedules the communications. In this approach the 
scheduling control is assumed by a state machine, so 
the area requested is estimated as a function of the 
number of communications. Astorage is the area 
needed for storing the data to transfer until a 
communication is executed. This storage space is 
computed during the communication scheduling. 
During this process a record keeps the maximum 
storage space required.  
The SW area is not taken into account since it is 
supposed that the controller has enough instructions 
and data memory for all the allocated nodes. If it is 
possible to exceed the data or the instruction 
memory, the SW area will be included as a second 
constraint that every solution should meet. 
 
 
6   Design Space Exploration 
The scheduling algorithm has been integrated into a 
partitioning tool based on genetic algorithms (GA).  
GAs have been used before for partitioning 
problems, e.g. in [8] the problem of partitioning a 
HW specification between a set of FPGAs is 
addressed. 
 Our tool creates a random initial population of valid 
solutions. A solution is said to be valid if meets the 
area constraint.  Invalid solutions are rejected in 
order to save computing time.  
The solutions consist on a HW/SW partition and a 
communication channel. All the communications 
must have time estimations for each possible 
communication channel. 
During the design space exploration solutions 
evolve by reproducing themselves, generating new 
solution’s offspring. Then worst solutions are 
deleted in order to keep the population constant. 
Reproduction is carry out by the crossover and the 
mutation operators.  If invalid solutions are created, 
these solutions are discarded. 
Rejecting invalid solutions improves the 
performance of the partitioning tool, since a quick 
evaluation of the area of a solution just involves an 
add operation, so all the time needed for the 
scheduling is saved. Furthermore, since a genetic 
algorithm is able to reach all the design space points 
through crossing and mutating the initial solutions, 
there is no danger that such decision will make the 
algorithm to fall into local minima, as it may happen 
if the exploration is performed with a 
neighbourhood algorithm.  
Experiments have been made comparing the 

execution times of the partitioning tool with a 
genetic algorithm that rejects invalid solutions and 
with a neighborhood algorithm (simulated 
annealing), showing up that in this case the genetic 
algorithm obtains better solutions in less 
computational time. 
 
 
7   Experimental Results 
The following experiment illustrates the impact of 
communication access conflicts over the global 
execution time.  
The experiment has been performed using an 
application that implements the Hough Transform 
[9] over a matrix of pixels in order to find some 
simple geometric figures like a circle or a rectangle. 
Communications in this design are a critical factor 
since nodes have to interchange large data 
structures. 
The initial specification of the design contains 
fifteen nodes. Each node has a source code written 
down both in C and VHDL.  
The target platform for this design is a XILINX 
4010 board that contains a FPGA with 400 CLBs, (i. 
e. 20.000 logic gates), an 8051microcontroller, and 
a RAM memory accessible to both of them.   
The first step of the experiment has been to design a 
communication protocol between the FPGA and the 
microcontroller, and to implement the 
communication driver.  Once the protocol was 
fixed, accurate time estimations were done for each 
possible HW/SW communication.  
The area of each node, and the execution time in 
HW, were estimated with XILINX Foundation 
implementation and verification tools. For the SW 
execution-time estimation, it was used an automatic 
assembler 8051/C translator.  
After completing the initial specification graph with 
all the needed estimations, it was passed to the 
partitioning tool. In order to obtain different 
measures the experiment was repeated with several 
area constraints (The full design implemented in 
HW used needs 384 CLBs).  
In order to explain our approach the design space 
has been searched running the partitioning tool in 
two different ways: first ignoring access conflicts 
upon the communication channel, and then 
scheduling the communications. Figure 4 shows the 
best solutions found in both cases.  The first column 
corresponds to the best execution time found by the 
partitioning tool without scheduling the 
communications. The second column shows the 
execution time of this solution once access conflicts 
are considered. The third column shows the best 



solution found when the partitioning tool schedules 
the communications. 

Fig. 4 Result comparison
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The results that emerge from this experiment 
confirm how communication access conflicts 
become a critical performance feature. It is 
remarkable how they increase execution time even 
up to three times, so ignoring them can make 
difficult to distinguish the goodness of a solution.  It 
is not surprising that better solutions will be 
obtained once access conflicts are taken into 
account during the design space exploration. In this 
experiment up to a 2.5 speed-up has been achieved 
(for Area restriction =300 there is no improvement 
since the best solution found does not present any 
access conflict).  
One of the main objectives of this work was trying 
to accomplish accurate time estimations during the 
design space exploration without increasing 
significantly the exploration time.  

Fig. 5 Desing space exploration time
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Figure 5 compares the time needed for the 

partitioning tool in both approaches. The time 
measurement shows that the increment of 
computational time due to communication 
scheduler goes from 4% to 17%.  These results 
appear to confirm that it is possible to accomplish 
more accurate time estimation without 
incrementing significantly the computational time. 
 
 
8   Conclusion 
The physical features of communication channels 
use to be one of the key factors of a codesign system 
performance. Taking into account these features are 
necessary for accurate communication time 
estimations. Moreover, even when accurate 
estimations for each communication have been 
done, access conflicts overhead must be consider, 
since the global execution time can increase 
significantly due to these conflicts. 
Experiments have shown that, scheduling the 
communications with the heuristic presented in this 
paper allows the partitioning tool to perform more 
accurate time estimations, without increasing 
significantly the computational time needed for the 
design space search. 
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