
A New Approach to Execution Time Estimations in a
Hardware/Software Codesign Environment

JAVIER RESANO, ELENA PEREZ, DANIEL MOZOS, HORTENSIA MECHA, JULIO SEPTIÉN

Departamento de Arquitectura de Computadores y Automática
Universidad Complutense de Madrid

Ciudad Universitaria CP. 28040
SPAIN

Abstract: - This study addresses a new approach to the Hardware/Software partitioning problem focused on the
integration of communication scheduling during design space exploration. Frequently in this phase most
communication channel features are ignored, since communications are identified with abstract channels. It is
conceivable that once the abstract channels have been mapped into an actual communication channel (i.e. a bus)
the area and execution time of the solution may change considerably. A novel methodology, that schedules the
communications taking into account the physical features of the communication channel, is presented. It has
been integrated into a partitioning tool based on Genetic Algorithms. This methodology attempts to accomplish
a deep study of the communication impact during the design space exploration without increasing significantly
the complexity of the algorithm.

Key-Words: - Hardware/Software codesign, Computer-Aided Design, partitioning, communications scheduling,
time estimations, FPGAs.

1 Introduction and Previous Work
Communications are often a system’s performance
bottleneck, even more when both hardware and
software performance are improving much faster
than communication channels do.
Most of the work on Hardware/Software (HW/SW)
partitioning considers that abstract channels carry
out communications between tasks in different
platforms. Once the partitioning has been done, the
abstract channels have to be mapped into one or
more physical channels. This process is called
communication synthesis. For instance in [1] a
methodology is presented that, once the partitioning
has been finished, tries to choose the best bus
bandwidth for mapping the abstract channels. In [2]
more complex interconnection topologies are
allowed. An algorithm is presented that, starting
from a set of channels, (one for every
communication), tries to cluster processes in order to
share a communication channel. Some features like
bit widths, number of ports of the HW resources,
probability of access collision, cost of the arbitration
logic, are taken into account, attempting to minimize
both the delay owing to the access conflicts to
busses, and the system cost. Both approaches work
with abstract communication channels, (although
they consider some physical features) during the
communication synthesis process. Once obtained,
the abstract interconnection topology generated

should be mapped into an actual one. In [3] a useful
tool for this mapping is presented, that generates
automatically the drivers and a DMA controller for a
given communication application. In [4] a design
methodology is proposed that separates the
communications from the system behavior. This idea
proves to be useful for verification and simulation at
different abstraction levels, however may be
deceitful for automatic system synthesis. Another
interesting work on communication synthesis can be
found in [5].
All of these approaches to the HW/SW
communication problem use abstract channels while
they are exploring the design space so physical
communication features are ignored. Nevertheless
ignoring the communication channels properties
may lead to an inefficient design space exploration,
since it is not possible to estimate correctly the
communication time, or the impact of the access
conflicts upon the communication channels.
In [6] simple models for some communication
platforms are presented (USB, PCI buses, packing,
burst transmission mode). A model is also given for
estimating the area needed for the communication
drivers. Moreover, these models are integrated
within the HW/SW partitioning, so communication
synthesis timing and area trade-offs are studied
during the design space exploration. However
communications are not scheduled during
partitioning, so access collisions to the system bus

are not taking into account.
 The approach proposed in this paper aims to:.

a) Consider the physical features of the channel

in order to accomplish accurate time
estimations.

b) Study the possibility of conflicts upon the

communication channel

c) Schedule the communications trying to

minimize the global execution time.

d) Integrate all these features into a HW/SW

partitioning tool without increasing
significantly the time needed for the design
space search.

2 Initial Specification
The initial specification is modelled by an acyclic
graph, where each node represents a computational
task, and the edges correspond to dependencies
between the nodes. Three different dependencies are
considered: communication dependencies, internal
dependencies, and temporal dependencies. A
communication dependency edge (CDE) connects
two nodes of different partitions. It represents a data
transfer between nodes that will be carried out upon
a communication channel. An internal dependency
edge (IDE) connects two nodes in the same partition.
It also represents a data transfer between the nodes,
but in this case there is no need for using a
communication channel. A temporal dependency
edge (TDE) represents a dependency between two
nodes in the same partition that has been imposed by
the scheduler.
Each node of the graph contains estimations for its
execution time and HW area (if needed).
Each CDE is tagged with the amount of data to be
transferred, and an estimation of the communication
time needed. A specification graph example is
shown in figure 1 (HW area is not included for
readability).

3 Cost Function Choice
The cost function of a codesign system includes
generally the area and the execution time of the
solution. One of the more difficult topics for
designing a partitioning system is to find how to mix
rather different magnitudes into a cost function that
should be able to lead the design space exploration
in an optimum fashion.

This work has been developed for a HW/SW system
where the HW partition is assigned to a FPGA.
Since a FPGA has constant area a straightforward
cost function may be obtained if the area is removed,
so the cost function can be identified with the
execution time. The area is now considered as a
constraint that solutions should meet. The constraint
must take into account that only the 96% of the
FPGA area should be used, since routings problems
may occur when more area is used.
Once the area has been removed and the cost
function has been directly identified with the
execution time, the design space exploration will try
to find the fastest solution that meets the area
constraint.

4 Execution Time Estimation
Since the execution time leads the design space
exploration, an accurate estimation is needed.
The steps followed for estimating the execution time
of a solution once a HW/SW partitioning is done
are:

A) Assign a weight to each node.

0
tex 10

2
tex 8

1
tex 11

4
tex 26

Com2
tcom = 16

Com 1
tcom = 8

5
tex 20

3
tex 13

6
tex 10

Com4
tcom = 12

Com3
tcom = 8

Com5
tcom = 12

TDE

CDE

Fig. 1 Specification graph example.

IDE

 SW

HW

B) Choose the execution order for the SW
assigned nodes.
C) Recalculate the weights taking into account
the new dependencies.
D) Schedule those nodes that are not waiting for
a communication.
E) While there is a communication waiting for
execution do:

E1) Choose one communication and
schedule it.
E2) Schedule those nodes that are not
waiting for a communication

Step A: Assign a weight to each node
In the first step a weight is assigned to each node of
the partitioned graph. The node’s weight will be
used for taking decisions that will try to minimize
the global execution time. This will be done by
giving priority to the nodes with heavier weights.
For instance, if there is a node that should execute
several communications, the order in which these
communications are going to be executed should be
decided. Most of the time estimation algorithms in
literature take these decisions according to local
considerations. In [5] the longest communication is
scheduled first. Another local considerations for the
same question are scheduling first the
communication which destination node has more
successors, or the shortest one since parallel
execution might be improved.

Fig. 2 Global weight example

Since local considerations may lead to inefficient
decisions in our algorithm, a global consideration

has been selected for weighting the nodes. The
weight chosen is the maximum distance of a node to
the end of the execution in the initial graph. This
distance is calculated by carrying out an ALAP
scheduling. This scheduling should take into
account the HW/SW communication times.
Figure 2 shows an example where both local and
global weights are used. The local weight used is the
one proposed in [6], i. e. the longest communication
is scheduled first.
In this example node 1 must carry out two
communications upon the same communication
channel. So both communications should be
scheduled. If the decision is taken based on the local
weight, Com2 (CDE2) would be scheduled first, so
Com1 should wait until Com2 ends. Since Com1 is
in the critical path of this graph, delaying it affects
negatively the system performance. Nevertheless, if
the global weight described above is used, nodes in
the critical path will be more weighted so Com1 will
be scheduled first and no unnecessary delays will be
introduced.

Step B: Choose the execution order for the SW
assigned nodes
The choice of the SW execution order is the next
decision that should be taken to estimate the
execution time. The specification graph allows
parallel execution between their nodes, but those
nodes assigned to SW should be executed
sequentially.
The order is selected sorting the nodes by their
weights, so the heaviest node will be executed first.
Then the new dependencies are added as CTRE to
the specification graph as it is showed in figure 1.
 It is easy to prove that this SW execution order
does not allow the new dependencies to create
cycles in the graph.

Step C: Recalculate the weights
In order to be absolutely strict, the weights should
be recalculated each time a decision is taken since
this decision might create a new dependence that
could change the critical path of the graph.
However, since the aim of the algorithm is
improving the precision of the estimations without
increasing significantly the complexity, the weight
is only recalculated once. New weights will be
assigned to each node after selecting the SW
execution order. These weights will be calculated in
the same way that in step A, but considering the
dependencies derived from the sequential execution
of the SW partition. Table 2 shows how SW
execution dependencies change the nodes weight of
the graph in figure 1.

Node1 Node 2 Node 3 Node 4
L G L G L G L G

G.Weight 82 33 53 15
Tstart 0 0 41 49 49 29 87 67
Tend 21 21 59 67 87 67 102 82

1
tex 21

3
tex 38

2
tex 18

4
tex 15

CDE 1
tcom = 8

CDE 2
tcom = 20

IDE IDE

Table 2. Comparison between weights in steps A) and C) for
the graph in figure 1.

Steps D y E: Scheduling
A heuristic has been developed for the scheduling
process trying to minimize the global execution
time. The heuristic decides when each node and
each communication is going to be executed,
assigning to it a tstart and a tend times. The aim of this
process is to detect when communication channel
access conflicts happen, so the execution time
estimation will also consider the delays caused by
these conflicts. This heuristic starts after the SW
execution has been sorted, and the weights have
been recalculated.
The heuristic addressed in this paper has been
developed for a platform with just one
communication channel. This channel should be
modelled at first in order to obtain accurate
estimations of the execution time. The algorithm can
be easily extended for systems with more than one
communication channel if the number of channels is
prefixed.
The scheduling starts assigning tstart = 0, and tend=tex
to the first node, where tex is its execution time in the
partition where it has been assigned to. Then the
algorithm continues scheduling the successors of the
first node. A greedy policy is followed to schedule
nodes while there is no need for HW/SW
communications. When a scheduled node requests a
HW/SW communication with another node this
request is stored in a list. All requests are tagged
with the time when the sender node demanded the
communication.
Once all the nodes without need for HW/SW
communication have been scheduled, one of the
requested communications is selected and
scheduled.
There are two criteria for selecting the
communication from the requesting list (E1):

Ø If at a given time t the communication

channel is not carrying out any
communication and there is just one request
that has been made before t the
communication channel is assigned to this
request, so no other communication may
use it until this one finishes.

Ø Otherwise if there are more than one

request, the one with the greater weight will
be selected. The weight of a communication
will be computed as the weight of the
destination node plus the time needed to
execute the communication.

Once the selected communication has been
scheduled the graph is examined (E2) and all the
nodes that are able to start their execution without
waiting for another HW/SW communication are
also scheduled. The process is repeated until all the
communications are scheduled.
Figure 3, shows in detail how the example graph in
figure 1 is scheduled.
The scheduling heuristic has a quadratic complexity.

Fig. 3 Scheduling execution example corresponding to
the graph in figure 1. (T1,T2) represents starting and
ending execution times.

5 Area Estimation
The design area is estimated as follow:

(1) Area = ΣΣ n

i Ai + Adriver + Acontrol + Astorage

Ai is the area of the node i. Adriver is the area needed
to implement the communication driver. Ai and

Node 0 1 2 3 4 5 6
Weight A) 76 55 50 35 36 30 10

Weight C) 93 75 50 35 56 30 10

Step D) Node 0 is scheduled (0,10). Com1 and

Com2 are requested at t= 10.
Step E) first iteration:

E1) Com1 is schedule (10,18) since Com1
weight > Com2 weight.
E2) Node 1 is scheduled (18,29). Com3 is
requested at t=29. Node 3 is scheduled (29,42).
Com5 is requested at t= 42.

Step E) second iteration:
E1) Com2 is scheduled (18,34) since at t=18
there are no more communications requested.
E2) Node 2 is scheduled (34, 42). Com4 is
requested in t=42.

Step E) third iteration:
E1) Com3 is scheduled (34,42) since at t=34
there are no more communications requested.
E2) Node 4 is scheduled (42,68).

Step E) fourth iteration:
E1) Com4 is scheduled (42, 54) since Com4
weight>Com5 weight.
E2) Node 5 is scheduled (68,88).

Step E) fifth iteration:
E1) Com5 is schedule (54,66) since at t=54 there
are no more communications requested.
E2) Node 6 is scheduled (88,98), so Tex=98.

Adriver should be estimated from a core library. When
a new core is added to the library its area can be
estimated using an automatic synthesis tool. Acontrol
is the area needed for the control logic that
schedules the communications. In this approach the
scheduling control is assumed by a state machine, so
the area requested is estimated as a function of the
number of communications. Astorage is the area
needed for storing the data to transfer until a
communication is executed. This storage space is
computed during the communication scheduling.
During this process a record keeps the maximum
storage space required.
The SW area is not taken into account since it is
supposed that the controller has enough instructions
and data memory for all the allocated nodes. If it is
possible to exceed the data or the instruction
memory, the SW area will be included as a second
constraint that every solution should meet.

6 Design Space Exploration
The scheduling algorithm has been integrated into a
partitioning tool based on genetic algorithms (GA).
GAs have been used before for partitioning
problems, e.g. in [8] the problem of partitioning a
HW specification between a set of FPGAs is
addressed.
 Our tool creates a random initial population of valid
solutions. A solution is said to be valid if meets the
area constraint. Invalid solutions are rejected in
order to save computing time.
The solutions consist on a HW/SW partition and a
communication channel. All the communications
must have time estimations for each possible
communication channel.
During the design space exploration solutions
evolve by reproducing themselves, generating new
solution’s offspring. Then worst solutions are
deleted in order to keep the population constant.
Reproduction is carry out by the crossover and the
mutation operators. If invalid solutions are created,
these solutions are discarded.
Rejecting invalid solutions improves the
performance of the partitioning tool, since a quick
evaluation of the area of a solution just involves an
add operation, so all the time needed for the
scheduling is saved. Furthermore, since a genetic
algorithm is able to reach all the design space points
through crossing and mutating the initial solutions,
there is no danger that such decision will make the
algorithm to fall into local minima, as it may happen
if the exploration is performed with a
neighbourhood algorithm.
Experiments have been made comparing the

execution times of the partitioning tool with a
genetic algorithm that rejects invalid solutions and
with a neighborhood algorithm (simulated
annealing), showing up that in this case the genetic
algorithm obtains better solutions in less
computational time.

7 Experimental Results
The following experiment illustrates the impact of
communication access conflicts over the global
execution time.
The experiment has been performed using an
application that implements the Hough Transform
[9] over a matrix of pixels in order to find some
simple geometric figures like a circle or a rectangle.
Communications in this design are a critical factor
since nodes have to interchange large data
structures.
The initial specification of the design contains
fifteen nodes. Each node has a source code written
down both in C and VHDL.
The target platform for this design is a XILINX
4010 board that contains a FPGA with 400 CLBs, (i.
e. 20.000 logic gates), an 8051microcontroller, and
a RAM memory accessible to both of them.
The first step of the experiment has been to design a
communication protocol between the FPGA and the
microcontroller, and to implement the
communication driver. Once the protocol was
fixed, accurate time estimations were done for each
possible HW/SW communication.
The area of each node, and the execution time in
HW, were estimated with XILINX Foundation
implementation and verification tools. For the SW
execution-time estimation, it was used an automatic
assembler 8051/C translator.
After completing the initial specification graph with
all the needed estimations, it was passed to the
partitioning tool. In order to obtain different
measures the experiment was repeated with several
area constraints (The full design implemented in
HW used needs 384 CLBs).
In order to explain our approach the design space
has been searched running the partitioning tool in
two different ways: first ignoring access conflicts
upon the communication channel, and then
scheduling the communications. Figure 4 shows the
best solutions found in both cases. The first column
corresponds to the best execution time found by the
partitioning tool without scheduling the
communications. The second column shows the
execution time of this solution once access conflicts
are considered. The third column shows the best

solution found when the partitioning tool schedules
the communications.

Fig. 4 Result comparison

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

200 225 250 275 300
Area Restriction

T
im

e
(c

yc
le

s)

Best solution found without scheduling. Execution time
estimation does not consider access conflicts
Best solution found without scheduling, once access
conflicts are considered
Best solution found with scheduling

The results that emerge from this experiment
confirm how communication access conflicts
become a critical performance feature. It is
remarkable how they increase execution time even
up to three times, so ignoring them can make
difficult to distinguish the goodness of a solution. It
is not surprising that better solutions will be
obtained once access conflicts are taken into
account during the design space exploration. In this
experiment up to a 2.5 speed-up has been achieved
(for Area restriction =300 there is no improvement
since the best solution found does not present any
access conflict).
One of the main objectives of this work was trying
to accomplish accurate time estimations during the
design space exploration without increasing
significantly the exploration time.

Fig. 5 Desing space exploration time

0

10

20

30
40

50

60

70

80

90

100

200 225 250 275 300

Area Restriction

 T
im

e
(s

)

Scheduling Not scheduling

Figure 5 compares the time needed for the

partitioning tool in both approaches. The time
measurement shows that the increment of
computational time due to communication
scheduler goes from 4% to 17%. These results
appear to confirm that it is possible to accomplish
more accurate time estimation without
incrementing significantly the computational time.

8 Conclusion
The physical features of communication channels
use to be one of the key factors of a codesign system
performance. Taking into account these features are
necessary for accurate communication time
estimations. Moreover, even when accurate
estimations for each communication have been
done, access conflicts overhead must be consider,
since the global execution time can increase
significantly due to these conflicts.
Experiments have shown that, scheduling the
communications with the heuristic presented in this
paper allows the partitioning tool to perform more
accurate time estimations, without increasing
significantly the computational time needed for the
design space search.

References:
[1] S. Narayan and D. Gajski. “Syntesis of System Level
Bus Interfaces”, Proc. of European Design&Test
Conference 94, pp. 395-399, Feb. 1994.
[2] M. Gasteier, M. Munich, M. Glesner. “Generation of
Interconnect Topologies for Comunication Synthesis”,
DATE’98, pp. 36-42, Feb. 1998.
[3] M. O’Nils, A. Jantsch. “Device Driver and DMA
Controller Synthesis from HW/SW Comunication
Protocol Specifications”, Design Automation for
Embedded Systems, 6, pp. 177-205. 2001.
[4] J.A. Rowson and A. Sangiovanni-Vicentelli.
“Interface-Based Design”, DAC’97, pp. 178-183, 1997.
 [5] R. Ortega, G. Borriello “Communication Synthesis
for embedded Systems with Global considerations” Proc.
CODES/CACHE’97, pp. 69—73, March, 1997.
 [6] P. V. Knudsen and J. Madsen. “Integrating
Communication Protocol Selection with Partitioning in
HW/SW” Trans. on CAD, pp. 1077-1095. 1999.
[7] . G. Gogniat, M Auguin, L. Bianco, A. Pegatoquet.
“Communication synthesis and HW/SW integration for
Embedded System Design”, CODES/CASHE’98. pp. 49-
53. March 1998.
 [8] J.I. Hidalgo, J. Lanchares, R. Hermida. “Partitioning
and Placement for Multi-FPGA systems using Genetic
algorithms”. Proc. of the 26th EUROMICRO
conference, IEEE Press. pp. 204-5-7 2000
[9] F. Thomson Leighton. “Introduction to Parallel
Algorithms and Architectures”, pp. 210-213. Morgan
Kaufmann Publishers 1992.

