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Abstract : Osteoporosis is a bone pathology inducing an increased fragility of the skeleton. With the
lengthening of the duration of life, this pathology is going to concern an increasing population. A
better knowledge of the quality of the bone structure can help a best prevention of the fracture risk.
The bone mineral density is not the unique factor to determine the quality of the bone structure. The
trabecular bone structure play an important role on the strength of the bone. The ultimate objective of
the planned work is to propose a way for the characterization of the bone texture from the analysis of
CT-Scan images. This would allow an assistance to the diagnosis in the discrimination of healthy
from pathologic patients. This paper emphasizes a preliminary study concerning the selection of some
characterization tools of the bone texture. The selectivity is lead by the analysis of respective
sensitivities of considered methods.
We are going to study here several methods of texture analysis. These methods are based on the
fractal geometry whose application to the analysis of texture is recent. We also give examples of
results on healthy and pathological patients.

Keywords: Bone texture,  CT-Scan images, Fractal method.

1. INTRODUCTION
Osteoporosis is a bone pathology

inducing an increased fragility of the
skeleton. Its appears more frequently by
women for hormonal reasons
(menopause). It is also linked to the
advancing age: indeed, at the age of 70,
the density of the skeleton has decreased
by 1/3. With the lengthening of the
duration of life, this pathology is going to
concern an increasing population. It often
entails fractures of the wrist and of the
femur neck (55000 fractures per year in
France, which causes death in 25% of the
cases).

A better knowledge of the quality of the
bone structure can help a best prevention
of the fracture risk. Indeed, a healthy

person owns large and long bone
frameworks which characterize the quality
of the bone structure. At the opposite, the
patient bearing bone pathology shows an
altered fractured bone structure. Among
currently proposed methods, the needle
biopsy remains traumatic and therefore is
rarely practices.

The ultimate purpose of the planned
work is to give the means of characterizing
the bone texture from the analysis of CT-
Scan images. This would allow assistance
to the diagnosis in the discrimination of
healthy from pathologic patients. This
paper emphasizes a preliminary study
concerning the selection of some
characterization tools of the bone texture.
There are generally 3 classes of analysis
related to the texture characterization in
images: (i) the statistical, (ii) structural (iii)
and the fractal analysis.



Statistical parameters account for local
properties of the image. Structural
parameters inform on both the physical
limits of the objects framing the image and
the homogeneity of the surface of these
objects. Finally the fractal geometry gives
a measurement of the complexity and the
global irregularity of the bone texture.
The distal radius is an usual site of
osteoporotic fractures, rich in trabecualr
bone. We have studied this site. The study
will be done for the first time to our
knowledge on images coming from CT-
Scan slices of the inferior extremity of the
radius. 8 contiguous slices will be selected
for each patient: 4 axial and 4 frontal slices
(Figures 1 and 2). The thickness of slices
is  l mm; the images  are of size 512*512
pixels; each pixel having been quantized to
4096 or 256 Grey levels. The voxel size is
0,2mm x 0,2mm x 1mm. The whole
process is runned on a manually selected
region of interest (R.O.I.) located so that it
only contains trabecular bone. This square-
shaped region is size varying according to
the patient morphology and contains a
thirty of grey levels.

Figures 1and 2 : Frontal and axial slices.

A distinction may be made between two
approaches for texture analysis: the
statistical and the structural approach. In
statistical approaches, texture is quantified

on the basis of the (local) spatial
distribution of the grey-values parameters
[1][2][3][4] [5][6][7].

In structural techniques, the image is
described in terms of textural elements and
their spatial relationships. Most of the
texture-analysis algorithms described in
the literature have been used for
classifying rather dissimilar textures. Since
the visually perceived differences in bone
texture in radiographs are subtle, the
texture-analysis method has to be rather
sensitive. Various statistical methods of
texture analysis were applied in order to
translate the differences in bone structure
into a set of textural. Current research is
focused on morphological texture
parameters and on comparing the
usefulness of the different techniques in
distinguishing patients with clinical
osteoporosis from their healthy
contemporaries [8][9][10][11].

We will study here two methods of
texture analysis. The first one is based on
the fractal geometry whose application to
the analysis of texture is recent. After a
brief recall on this geometry in section 2,
we examine 3 methods for calculation of
the fractal dimension: the method of
boxes, the method of variations and the
method of morphological covering in
section 3. We expose their implementation
and the  results obtained on synthetic
images in section 4. The second method of
analysis retained is an original one. Called
the ’method of the three-dimensional
relief", it is related to the structural
analysis and is based on the study of
primitives. After a general description of
this method in section 5, we present the
tools used in the different processing steps
then its implementation on CT-Scan
images. We expose their implementation
and the  results obtained on real images.
Finally, in section 6 the conclusion and the
prospects.



2. FRACTALS
The bone structure is relatively good for

fractal geometry because of its
complicated and un-regular character. The
fractals used for the bone structure
analysis come from the fact that one of
these fractal characteristics (the fractal
dimension) varies with the structure
alteration of the trabecular bone (specially
in osteoporosis) and so with the thinning
down of the trabeculation. The fractal
dimension is given by :

Df = −  
Log (N(ε))

Log ε (1)

where N(ε) represent a size (surface,
volume,...) characterizing the object when
searching for its fractal dimension. ε
represents the resolution with wich the size
is calculated. Hausdorff [12] Minkowski
[13] and presented the fractal dimension of
the object in the beginning of this century.

- The Hausdorff dimension
This calculation method of the fractal

dimension uses a circular covering element
whose diameter is ε. The following figure
(Figure 3) gives an example of covering of
a C curve by circular connected elements.
We name N(ε) the minimum number of
the covering elements which allowed the
curve description. Then, we obtain then
the fractal dimension according to
Hausdorff:

Df =  Lim
ε →0

 
Log N(ε)

Log (
1
ε)

(2)

Figures 3 and 4 : Hausdorff and
Minkowski dimension.

- The Minkowski dimension:
In the same way as the Hausdorff

dimension calculation, we have a circular
covering element of diameter ε. Unlike the
previous method, every point of the C
curve is considered. That is to say that
each point of this curve must be the center
of a covering element. Therefore the set of
these covering elements forms a case
around the C curve. The surface S(ε) of
this case can then be computed (Figure 4).
Minkowski defines then the fractal
dimension in this way:

Df = Lim
ε →0

( 2 − 
Log S(ε)

Logε  ) (3)

For this example the topologic dimension
of the investigated curve is equal to 1. The
fractal dimension of this curve will lie
between [l;2]. We see that the fractal
dimension will vary between the topologic
dimension value and the topologic
dimension plus 1. An object having a
fractal dimension equal to the topologic
dimension will be very regular (for
example a plane, a straight line). At the
opposite, an object that has a higher fractal
dimension will be a more complex one.

3. The calculation methods of the
fractal dimension

As we have seen, the fractal dimension
calculation lays on the parameter variation



characterization, as the perimeter, the
surface or the volume; it depends on the
size of the covered element. There are a lot
of methods for fractal analysis like the
methods of the boxes, the method of
variations and the morphological covering
method. For these methods, the fractal
considered object is a 3D representation of
the trabecular bone. Indeed, we can
consider that the component (z) represents
the Grey level value of our picture. In each
pixel will have a third component which is
the Gray level of the pixel (i,j).

3.1. The method of the boxes

It constitutes the reference method. The
fractal dimension calculated uses the
Hausdorff definition. To cover the
considered fractal volume, we use a cube
with a side ε. Let N(ε) is the number of
cubes of a given size (ε) that covers the
whole object. If plotting the evolution of
the Log curve N(ε) in function of ε, we
obtain then the curve figure 5. The fractal
dimension is given by the slope Log N(ε)
= f (Logε).

  Figure. 5: Evolution of the Log curve N(ε)
in function of ε.

Application of the method
In order to put this method, we have to

cut our image into squares of size ε. These
squares are labeled εi. We search the
maximum value of Grey levels
(Max_NdG) of each square. These
maximum values will be enable us to

determine the boxes numbers to pile on the
εi  surface in order to recover our volume.

εε
NdGMax

BoiteNb
_

_ = (4)

where 
ε

NdGMax _
 takes the higher

integer value. The total number of boxes
will be given by:

∑=
i

BoiteNbN εε _)( (5).

We find then the fractal dimension from
the slope Log N(ε) =f(Log ε).

3.2. Method of variations

This method allows to determine the
fractal dimension at Minkowski’ s
meaning. [6] exposed this method for the
fractal dimension calculation of the curve.
We have realized an extension of this
method in order to adapt it at the
characterization of our surface. Like the
Minkowski definition given previously,
this method searches to define the
covering case. In our situation the initial
object is a surface, our case will then be a
volume one. This case will be determined
from the maximum variation of the Grey
level, upon a window (size ε), for every
surface point. The window will have to be
moved on the whole S surface. The
maximum variations are represented by the
extreme values of the gray level, in fact the
minimum and maximum upon a same
window. This variation will change
according to dispersion of the Grey level,
the higher will be the element size, and the
more important will be the potential
maximum variation.

Application of the method
Let T be the side value of our squared

picture I, each pixel of this picture will be
referenced by its co-ordinates (i,j). For
each of these points, we are going to
determine the maximum and the minimum
value of the Grey level upon the
neighborhood selected by the window



(sized ε). We obtain:

Max_fenε (x,y) =    max    I(i,j)
(6)

x-ε/2 ≤i≤x+ε/2
y-ε/2≤j≤y+ε/2

where the couple (x,y) represents the co-
ordinates of the windows center. In a same
way we define:

Min_fenε (x,y) =    min    I(i,j)
(7)

x-ε/2 ≤i≤x+ε/2
y-ε/2≤j≤y+ε/2

After obtaining the set of the minimum
and maximum values for our picture, we
can calculate the volume case G_V:
G_V (ε)
=

yx
∑∑ Max_fen(x,y)−Min_fen(x,y).  (8)

So we calculate the volume cases for
different sizes of the window, these
windows are always applied to the original
picture and not in a recursive way.
However the convolution between a T size
square picture of and a ε size window,
gives us a resulting square picture of size:

T − 2 × INT (
ε
2 ) (9)

This size of the resulting picture depends
on our ε window size. For two different
windows which are respectively the size ε
and ε’, the resulting picture will not have
the same dimension. This difference  of
the dimension will generate a graphical
representation of volume cases in function
of the ε size, which will be non-linear. In
this process, we must keep the picture size
constant. For this purpose, we arbitrary
decided to stop the calculation of the
volume case for a maximum window size
equal to the half size of original picture.
We obtain the cases calculated by ε= 3 at
ε=T/2.The set of the values of the volume
cases value gives us the curve: Log G_V(ε
) = f(Log ε )

To reach at the fractal dimension, we
calculate the linear regression of this
curve. We then obtain the slope, which
will be noted:

 [ 
Log G_V(ε)

Log ε  ]’

The fractal dimension is determined as
follow way:

Df = 3 − [ 
Log G_V(ε)

Log ε  ]’ (10)

Upon this equation we have the constant 3
due to the calculation of the fractal
dimension by the volume (topologic
dimension equal 3). We define another
parameter, which is the fractal signature.
The fractal signature represents the
average of the local slopes that is to say
the slope between two consecutive values
ε. We have then:

local_slope = 
Log V(ε) − Log V(ε−2)

Log ε− Log (ε−2)
(11)

sign_f = 3 −average(local_slope) (12)

3.3. Method of the morphological
covers

[14] suggested this method. It consists
in the calculation of the area covering the
surface to be characterized. In order to
determine the covering surface, we must
define a lower surface and an upper
surface. Both surfaces make then a
covering of the original surface. Grey level
erosion and dilation of the original picture
respectively determine the lower and upper
surfaces. The differences (between the
erosion and dilation) are summed on each
pixel. It will give the volume V(ε)
covering the surface of the picture. Let Dε
and Eε be the results of the dilatation and
erosion of the central point (i,j) of the
window convolution with ε size, we have:

V(ε) =
ji

∑∑  ( Dε(i,j) − Eε(i,j) ) (13)

In this volume we’re going to look for a



surface. In order to obtain the covering
area of this surface, we calculate the
differential volume dV(ε). We obtain then:

A(ε) = 
dV(ε)

dε  (14)

Like with the previous method, the
differential volume dV(ε) must be
computed on a picture of constant size. We
then obtain at the following expression:

A(ε) = 
V(εa)−V(εp)

dε  , Where εa > εp     (15)

As the size of the window must be odd, the
variation of ε between the two successive
windows will be equal to 2:

A(ε)=
V(ε)−V(ε−2)

2                             (16)

This method using the definition of the
fractal dimension given by Minkowski, we
get:

Df=2− [ 
Log A(ε)

Log ε  ]’ (17)

where [[ 
Log A(ε)

Log ε  ] represents the slope of

Log A(ε)=f(Log ε)
In the same way as the variation method,
we define the fractal signature given by:

Local_slope=  
Log A(ε) − Log A(ε−2)

Log ε −Log (ε−2)
(18)

and sign_f= 2 - average(local_slope) 
 (19)

[3] has showed that the best results are
obtained by the use of a vertical or a
horizontal window. After we presenting
the different methods of the calculation,
we are going to see their application in the
environment of the subject.

  4. Application on synthetic
pictures

To verify the validation of the results,

we had to generate some fractal pictures
with a known dimension. In order to
generate some fractals, Mandelbrot
introduced the Fractional Brownian
movement. This Fractional Brownian
movement of translation and rotation,
unceasing and unconsidered, introduces
another parameter H which defines the
fractal dimension as follows :

Df = Dt+ 1-H ( 20)
with Df fractal dimension, and Dt
topologic dimension. 
The H variable taking its values in the
interval [0;l], we find a dimension superior
or equal to the topologic dimension. We
used the Saupe algorithm [15]. It consists
in the search of the half point of the two
points coming from a function, in a
recursive way. At the end of the algorithm
we obtain then a fractal picture as by the
figure 6.

Figure  6 : Synthetic fractal image.

By varying the H parameter, we can obtain
a set of picture which dimension lies in the
interval [2;3]. The dimension of the
generated pictures are 2,001; 2,1; 2,2; 2,3;
2,4; 2,5; 2,6; 2,7; 2,8; 2,9; 2,999,  that is to
say 11 various dimensions.

4.1. Results and discussions
The method of boxes, although easily set
up, has a major inconvenient which is the
error rate of the fractal dimension [16].
Indeed, during the volume description by a
structuring element, the occupation rate of



this values on the curve is not taken into
account. This method of variations, give us
after experimentation some values of the
fractal dimension between 2,188 and 2,76
(Figure 7). It reduces then the expected
range of the  dimension (between 2 and 3).
The method of morphological covering
produces a more spread variation of the
fractal dimension [2,25;3.23]. However it
delivers systematically overestimated
results (Figure 8).
 For the two last methods, we see a good
correlation between the calculated and
generated fractal dimension.

Figure 7: Fractal dimension by the method
of variation

Figure 8: Fractal dimension by
morphological  covering

We applied these two methods on real
bone texture images and it is noted that: (i)
concerning the method of the variations,
we find the same results, we obtain values
of fractal dimension  between 2,06 and
2,56. This method reduced thus well the
range of value of dimension This reduction

involved a bad discrimination of the
healthy patients and patients having an
osseous pathology. This error occurred on
15 patients on a total of 25 patients whom
were reached or not. (ii) concerning the
method of the morphological covers, we
find a range of variation of fractal
dimension quite higher than the theory.
On the 25 patients tested gave us that only
one error of discrimination.

We thus proposed to study, why we
obtained values higher than maximum
theoretical dimension for the method of
the morphological covers. We initially
directed our study towards the influence of
the number of Grey levels of an image on
fractal dimension and multi fractal
concept.

We then plotted the curve Log
A(ε).f(Log ε), for three different
dynamics: 4 bits, 8 bits and  12 bits
(Figure 9). We can note that the lines are
parallel and thus have identical slopes.
Consequently, fractal dimensions will be
equal.

For the planned clinical use, the goal is
not to measure the exact value of the
fractal dimension, but mainly to control its
variations according to the bone texture
alteration. In this case a maximal range of
variation of this fractal dimension can give
to the selected method a best sensitivity in
discriminating healthy patients from bone
pathologic patients. Among the
investigated methods, the method of
morphological covering gives us the
widest range of the measured values.
Consequently we retain it’ s two following
parameters: the fractal dimension and the
fractal signature.

We developed original methods for the
analysis and the characterization of the
bone texture. These methods are based on
the numerical processing of CT-Scan
images.
They led us to define some parameters that
could make possible the discrimination
between healthy patients and patients with
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bone disorders. These parameters are the
followings: (i) The dimension, (ii) and the
fractal signature.

Figure 9: Influence of dynamics on fractal
dimension

They come from a variant of the
morphological covering method. The
alteration of this method leads us to
calculate the fractal dimension not from a
volume but from an area.

All these parameters were investigated
during a preliminary study on a limited
number of patients. This work is being
carried on with a larger population in order
to refine these parameters, and perhaps to
propose other ones. We’ re planing to study
the dispersion of the measured values
within homogeneous groups of patients
such as the correlation of our results to
these from the bone mineral density to
control their validity.

6. CONCLUSION

We developed original methods for the
analysis and the characterization of the
bone texture. These methods are based on
the numerical processing of CT-Scan
images. They led us to define some
parameters that could make possible the
discrimination between healthy patients
and patients with bone disorders. These
parameters are the followings :
The dimension and the fractal signature:
they come from a variant of the
morphological covering method. The

alteration of this method leads us to
calculate the fractal dimension not from a
volume but from an area.
All these parameters were investigated
during a preliminary study on a limited
number of patients. This work is being
carried on with a larger population in order
to refine these parameters, and perhaps to
propose other ones. We’ re planing to study
the dispersion of the measured values
within homogeneous groups of patients
such as the correlation of our results to
these from the bone mineral density to
control their validity.
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