
Fast Position Estimation for Autonomous Mobile Robot Navigation

ALVARO SANCHEZ-MIRALLES, MIGUEL ANGEL SANZ-BOBI
Instituto de Investigación Tecnológica

Universidad Pontificia Comillas
Alberto Aguilera, 23. 28015 Madrid

SPAIN

Abstract: - One of the problems in mobile robotics is the estimation of the robot position in the environment. In this
paper we propose a model, called positioning model, for estimating a confidence interval of the robot position, in order
to compare it with the estimation made by a dead-reckoning system. Both estimations are fused with heuristic rules.
The positioning model is useful to estimate the robot position with or without previous knowledge of the previous
position. Furthermore, it is possible to define the degree of previous knowledge of the robot position, allowing to make
the estimation adaptive by varying this knowledge degree. This model is based on a one-pass neural network which
could adapt itself in real time conditions and could learn the relationship between exteroceptive sensors measurements
and the robot position.

Key-Words: - First location problem, RTDENN, neural network, continuous mobile robot relocalization.

1 Introduction
An autonomous mobile robot must be able to know the
environment before executing some of the tasks for
which it was designed. Executions mobile robot
movements as well as the success in performing its
tasks depend on the quality of the measurements taken
by its sensors. An autonomous mobile robot has
generally an odometer, which allows it to obtain
information about its position. However, the
measurements taken by the sensors are imprecise and
with many limitations.

The main source of error comes from the estimation
of the robot position. The imprecise measurement that
the robot odometer gives, gets worse by the
accumulation of errors due to the sliding of the wheels
or to its own limitations. For that reason, it is necessary
a method for estimating robot position using
information of the environment.

Position estimation has been approached in different
and clearly differentiated ways:
• The estimation based on the landmarks detection

[1].
• The estimation based on matching exteroceptive

measurements with a metric map of the
environment [2][3][6].

A new technique for estimating robot position of
autonomous robots, based on the positioning model,
(PM) is described in this article. The mentioned model
learns the relationship between the measurements of
exteroceptive sensors and the robot position. The PM
doesn’t distinguish between first location problem and
robot relocalization, because it approaches both
problems in the same way. Furthermore, it is possible to
define the degree of previous knowledge of the robot
position. This allows to make estimation adaptive, by
varying this knowledge degree. As a result the model is
more robust against failures due, for example, to a bad
correction of the position, sliding of wheels, etc.

The estimation of the position is not only reduced to
give a value, but also to calculate a set of confidence
intervals within which the position and orientation of
the robot should be found at a 99% confidence. The
model is adapted in real time to changes in the
environment.

2 Positioning model
The PM estimates the robot position and orientation as
it moves. As a result, confidence intervals for each of
the variables to be estimated are provided, within which

robot position and orientation must be at a 99%
confidence.

There are two types of estimation in real
applications:
• The estimation without previous knowledge of the

robot position (first location problem), called in this
paper robot localization.

• The estimation with knowledge of the robot
position at the previous moment (relocalization
problem).

In this section it is proposed a model which doesn’t
difference the type of estimation; it means that the
model to estimate the robot position with or without
previous knowledge is unique. To achieve this,
positioning model has a parameter that measures the
knowledge of the previous robot position, called
positioning excitation threshold (PET), see section 2.5.
Thanks to this parameter the concept of two states
disappears: knowledge and ignorance of the robot
position at the previous moment. On the other hand, a
continuum of states from knowledge to complete
ignorance through different degrees of knowledge of
previous robot position, appear.

If it is possible to vary gradually this parameter and
use it as an input to the position estimation algorithm,
then it is possible to control it according to the
estimation of the resulting confidence intervals. This
causes a feedback as shows fig.1, where a module that
determines the strategy to follow by the position
estimation algorithm is involved.

Positioning
strategy

Positioning
Excitation
Threshold Position

Estimation
Algorithm

Position intervals

Variables

Fig. 1. Positioning model

The position module works as follows:
• If it is the first time it starts working and the robot

does not know its position, then the PET becomes
0, with which it would be able to apply the
localization algorithm. Once we know certainly
where the robot is, then the threshold is increased

to a level of 1/3, because it is the maximum and it
corresponds to the minimum excitation of a neuron
(position estimation algorithm uses a neural
network which is explained in section 2.2) with
which the confidence intervals of 99% confidence
are obtained.

• If we know approximately where the robot is, then
the PET is established at 1/3. If we do not find
active neurons, either the region is not known for
the PM, or the estimation of the robot position is
not the correct one. In order to try to correct this
last point, the positioning threshold is diminished
by reducing the value. If the region is not known or
the robot gets lost, it is necessary to reduce the
threshold to 0.

• If the area where the robot moves is unknown, the
application of this algorithm does not have sense.
This is detected because the robot loses itself all the
time and the threshold is 0.

• It may occur that the localization of the lost robot
will not be successful giving an erroneous solution.
This is not a problem, since in a short time the
robot will get lost, because the PM is not coherent
with the sensor measurements.

In the following subsections the PM is explained in
detail. It is based on a neural network called RTDENN,
explained in section 2.2, and on the position estimation
algorithm explained in section 2.5. In order to explain
this algorithm, it is first described the localization
algorithm of the robot, which is a specific case of first
one and helps to understand it, see section 2.4.

2.1 Description
The positioning model (PM) is based on a neural
network, called positioning neural network (PNN),
which learns the relationship between exteroceptive
sensorial measurements and the robot position

The PNN is very useful to estimate with uncertainty
the robot position in the environment from
measurements taken by exteroceptive sensors. It has as
inputs the position and orientation of the robot, in
addition to the exteroceptive sensor measurements. The
output of the network is an estimation of the probability
density function of the input variables, see fig. 2.

Positioning neural network
RTDENN

Position and
orientation
of the robot

Exteroceptive
measurements

Probability density
function estimation

Fig. 2: Positioning Neural Network

The implantation is a key point, since the model must

fulfil certain requirements that make it suitable for
mobile robots. The requirements are listed below:
• To work in real time.
• A compromise between the use of memory and

learning precision.
• The model must be easy to interpret so that its

information should be also easy to use by the
algorithms, which estimate the robot position.

• Facility to adapt to changing situations.
• Possibility of learning without any previous

knowledge.
The use of the RTDENN which fulfils the above

mentioned requirements is proposed. The RTDENN is
adapted in real time, allowing to optimize the use of
memory according to the required precision. One of the
main advantages is that it can learn starting from no
knowledge in real time conditions, which allows the
robot to move in totally unknown environments. In
spite of being multi-dimensional, this network is easy to
interpret as you can interpret the RTDENN structure.
That is, neurons can be projected in different
dimensions, the centers of which represent the robot
working patterns and which covariance matrices show
the area size where each pattern works.

2.2 RTDENN
This section aim is to describe the RTDENN (real time
dynamic ellipsoidal neural network).

2.2.1 Description
Let R be the M-dimensional workspace where the robot
has to work. Each dimension of R corresponds to a
variable collected by the robot. R can be divided in sub-
workspaces or regions Ri ⊂ R.

Let { }N
iiN 1== xX be a set of sample vectors containing

values of variables monitored by the mobile robot.

Each { }M
jiji 1

x
=

=x belongs to R ⊂ ℜM . The RTDENN

consists of a set of neurons { }I
iiI nnNN 1== , see Fig. 3,

where each neuron nni is specialized in a particular sub-
workspace Ri. Every set of sample vectors included in
every sub-workspace Ri represented by the neuron nni
can be characterised by the following RTDENN
parameters:
• The number of sample vectors that belongs to the

region or sub-workspace, Ki .
• One vector i

Ki
µ obtained by the estimation of the

mean values of the sample vectors of that region.

∑
=

=
i

i

K

j i

i
ji

K K1

x
µ .

• A MxM covariance matrix of the sample vectors of
a sub-workspace noted as i

Ki
Ω with elements

Mmnνi
Kmn i

�1,|),(=⋅ .

e
jx 1

e
jx 2

e
jNx

iX1
iX 2

i
Ki

X

nn1

nni

nnI

nni

e
jx 1

e
jx 2

e
jNx

Workspace R

RIR1

Ri

Region Ri

Ki

iX1
iX 2

i
Ki

X

O

For FDP estimation

K1

K2

KI

Sample vectors

Fig. 3: RTDENN structure

2.2.2 RTDENN neuron excitation
Neurons are excited by a set of examples { }H

i
e
i

e
H xX 1== .

These examples are characterized with the same
parameters as neurons are; that is, the number of
examples of the input set H, the mean of examples of
the input set e

Hµ and the covariance matrix e
HΩ .

An i-esima neuron excitation degree is determined as
follows:

)()()(
1

1 i
K

e
H

i
K

Ti
K

e
H

i

iii

exc
µµΩµµ −⋅⋅−

=
−

This excitation is characterized as follows:
• Maximum excitation excmax: if exci >= 1. Above

this excitation, there is 68% of examples, and in
this case examples reinforce the neuron log-
likelihood.

• Minimum excitation excmin: if 1 > exci >= 1/3.
Below that excitation, there is 1% of examples, and
so it is considered that those examples are out of
the neuron scope.

• Without excitation: If exci < 1/3.

2.2.3 Network training
The training algorithm is a one-pass learning [4] that
consists of several cycles in which the network is
excited by different examples. Then activated neurons
are selected (a neuron is active when its excitation is
greater than the minimum excitation level, excmin). If
there isn’t any activated neuron, it means that there is
an area which is not modeled by the network and so, a
neuron is added. On the other hand if there are activate
neurons, their parameters are updated using the
following recursive equations:
• Number of examples that represents a neuron:

HK
x

HxK ii +−= (x is a forgotten factor [4]) (1)

• Mean recursive equation

nnkk k

H
ff

Hff
k

Hk µµµ ··· +
−−

= −
 (2)

• Covariance recursive equation:

++−−= −−−⋅⋅)··(· ··),(),(HkyHkxHkyxkyx ν
ff

Hff
k

Hkν µµ

kykxHyHxHyxνk
H

····),(·)··(µµµµ −++ ⋅ (3)

where H is the number of new examples taken by the
robot during its movement, k represents Ki simplifying
the notation and x is the number of samples that the
neuron needs to remember beginning from the last one.

As the number of neurons increase, two neurons
could be merged when they are very similar.

2.2.4 Merge of neurons
Two neurons are merged when they are specialized on
very similar regions. The similarity degree is measured

using a chi-square test applied to the Mahalanobis
distance between them. The new parameters of the
merged neuron are calculated using the recursive
equations previously described.

2.3 Estimation of the most probable values of a
variable
Once the PNN is trained, the value of an input variable
can be estimated, knowing the value of all other input
variables, called bias variables. The steps to follow are
shown in fig. 4 (a two-dimensional case for better
comprehension) and they are explained below:
1. To excite network with the values of input bias

variables.
2. To detect neurons, which are activated if the

network is projected over bias variables.
3. To calculate intersection points between non-

projected neurons and the straight line parallel to
the dimension of the variable to estimate and which
crosses the bias point (given by the bias variables).

4. Once the two intersection points have been found
(pi

max, pi
max) of each active neuron (NNi), it is

calculated the probability:









−

+
⋅Ω⋅








−

+
= − i

K

i
max

i
mini

K

T
i
K

i
max

i
mini

iii
p µppµpp

2
)(

2
1

with which each one has been activated. The two
values (pmin, pmax) determine the confidence
intervals within which the estimated variable
estimated should be (at 99% probability). They are
calculated using the following equations:

∑

∑
=

i

i
i

i
min

i

min p

p
p

p·

∑

∑
=

i

i
i

i
max

i

max p

p
p

p·

.

2
maxp

2
minp1

minp

1
maxp

21

2211 ··
pp
ppp minmin

min +
+= pp

21

2211 ··
pp
ppp maxmax

max +
+= pp

maxpminp

Positioning
model

Known variables

variable which
want to estimate

model excitation active neurons

Proyected active neurones

cutting points

NN1

NN2

2
maxp

2
minp1

minp

1
maxp

21

2211 ··
pp
ppp minmin

min +
+= pp

21

2211 ··
pp
ppp maxmax

max +
+= pp

maxpminp

Fig. 3. Estimation of the most probable values of a

variable

2.4 Localization algorithm
The localization algorithm estimates the robot position
without previous knowledge of its previous position.
This algorithm is a specific case of the position
estimation algorithm, which is explained in 2.5.

final positionl

Po
sit

io
n:

 c
oo

rd
in

a
te

 y

Position: coordinate x

Po
sit

io
n:

 c
oo

rd
in

a
te

 y

Position: coordinate x

Po
sit

io
n:

 c
o

or
d

in
a

te
 y

Position: coordinate x

Po
sit

io
n:

 c
o

or
d

in
a

te
 y

Position: coordinate x
Fig. 4. Localization algorithm

The algorithm consists of several cycles in which,

while the robot moves, some possible positions and
orientations are selected. Each cycle takes into account
both the information of the previous cycle and the
sensor measurements. After each cycle positions and
orientations become more restricted. Just when only
one position is valid, the algorithm finished. The
number of cycles is variable depending on the region
where the robot is moving. Each cycle consists of
several points which are explained below, see Fig. 5
(only PNN neurons projected on the x and y
coordinates are shown):
1. The strategy of this point is to look for those

environment positions in which it is coherent to
have the measurements taken by the sensors.

2. Once coherent positions are found from a sensorial
point of view, select those who remain unchanged
as the robot moves, are selected. The parameter
which decides what position is coherent is the
localization excitation threshold.

3. If there is only one possible position, the robot has
been localized and the confidence intervals of the
position should be calculated as commented in
section 2.3. Otherwise go back to the point 2.

The only parameter of the algorithm is the
localization excitation threshold. If this threshold is
reduced too much, then the algorithm convergence is
quicker but it is more uncertain that the solution should
be correct. If the threshold is increased, then the
algorithm converges slower but the solution obtained is
more robust.

2.5 Position estimation algorithm
This algorithm uses PNN to estimate the robot position.
Its aim is to provide confidence intervals within which
the robot position should be. It is calculated taking into
account the sensor measurements and the robot position
at the previous moment (imprecisely). In fig.6 is
showed the inputs and outputs of the algorithm (two-
dimensional case).

Sensorial variables

Positioning bands

Po
sit

io
n:

 c
o

o
rd

in
a

te
 y

Position coordinate x

Po
sit

io
n:

 c
o

o
rd

in
a

te
 y

reduced PM

positioning model

To apply the
localization algorithm

positioning excitation threshold

Fig. 5. Position estimation algorithm

Next it is described the steps the algorithm consists

of:
1. In order to reduce the number of calculations, the

positioning neural network is reduced to an
equivalent network formed by those neurons
representative of the environment in which the
robot position and orientation are similar to those at
the previous moment. The final network will have
more or less neurons according to this similarity
definition, which is determined by what is called
positioning estimation threshold (PET). The model
obtained in this way is called reduced positioning
neural network (NNRP).

2. To apply the localization algorithm to the NNRP.
As a result, confidence intervals are calculated.

As it can be shown, the position estimation algorithm
is a generalization of the localization algorithm. Even
more, if PET becomes 0, then both algorithms are
equal.

2.6 Conflict resolution

As it was previously commented, PM estimates
confidence intervals of the robot position. At the same
time, a dead-reckoning system can give an estimation of
the robot position and orientation as well. Both
estimations must be compatible; that is to say, the
position estimated by the dead-reckoning system should
be within the confidence intervals estimated by the PM.
If not, there is a conflict which is resolved using
heuristic rules. This conflict could be due to:
• The position estimation is not correct due to dead-

reckoning errors.
• The confidence interval estimation is not right due

to the position estimation algorithm has found a
robot workspace similar to another one in the
environment.

3 Experimental results
Some experiments with the RTDENN have been done
using the low cost mobile robot “UMI”. It consists of 8
ultrasonic rangers (SRF04), 5 infrared rangers
(GP2D12), one compass (VECTOR 2X) and an
odometric system (one HP encoder in each wheel of the
robot). Fig. 7 shows the layout of the robot.

Ultrasonic (u1) and IR ranger 90º (s5)

Ultrasonic ranger 64º (u2)

Ultrasonic and IR ranger 38º (s4)(u3)

Ultrasonic ranger 13º (u4)

Ultrasonic ranger -13º (u5)

Ultrasonic and IR ranger -38º (s2)(u6)

Ultrasonic ranger -64º (u7)

Ultrasonic and IR ranger -90º (s1)(u8)

Encoders

Compass IR 0º (s3)

Fig. 7: Layout of the robot used in the experiments.

In order to difficult the robot navigation, the compass
is deactivated. So the only way the robot has for
estimate its position using propioceptive sensors is
through dead-reckoning. In those conditions, it is
necessary to apply the PM for achieving a good
navigation.

All these experiments have been carried out in the
environment shown in fig. 8.

TABLE

W
A

R
D

R
O

B
E

W
A

R
D

R
O

B
E

BED

COURTAINS

CUPBOARD

TRUNK

BOOKCASE

TA
B

LE

SMALL DROWERS

CHAIR
BOARD

Fig. 8: Environment used in the experiments

The coordinate origin is situated in the corner formed

by the bookcase and the table. So bookcase is the axis
X and table is the axis Y. The robot position is
measured in centimeters, and the orientation is
measured in grades in a range of -180º to 180º.

In order to know where the robot is (for validation
purposes), some landmarks were made on the floor by
the robot as it moves. These landmarks are used to
check the robot position through the experiments.

3.1 Case 1: Position estimation using PM

Next an experiment has been performed for
estimating the robot position, knowing exactly the
location of the robot at the starting point. This
experiment consists of several cycles represented in fig.
9. It consist of three graphics corresponding, from up to
bottom, the evolution of X coordinate, the evolution of
Y coordinate and the evolution of robot orientation.
Each cycle is represented by four points: upper limit (in
red color) and lower limit (in blue color) of the
estimated interval, the estimated position (in green
color) and the real position (in cyan color).
Additionally, it is represented with arrows the instants
in which the robot has corrected its position.

Fig. 9. Evolution of the X and Y coordinate of the

robot position and the orientation.

Besides, in fig. 10 it is drawn the real (in green

color) and estimated (in blue color) path followed by
the robot in its navigation. The X and Y axis represent
the X and Y coordinates of the robot position.

As it may be seen, robot can navigate in the
environment thanks to PM.

Fig. 10. Path followed by the robot

3.2 Case 2: First location problem using PM
Next an experiment has been performed with the aim of
estimating the robot position when there isn’t any
knowledge of the starting location of the mobile robot.
Fig. 11.a).b).c) shows, in yellow color, the PNN
neurons projected on two dimensions, X and Y
coordinates of the robot. A neuron is represented by its
mean (the center of the ellipse) and by its covariance
matrix (the ellipse itself indicates 1/3 of its influence
region, that is to say, the region where the neuron could

be activated) Neurons activated, because exteroceptive
measurements match with the neuron influence region,
are marked in red color. The position and the path
followed by the robot are represented with a black cross
and a black line respectively. At first, there are many
activated neurons of the PNN (fig. 11.a). When the
robot knows its position approximately, there is only
one neuron activated (fig. 11.c).
On the other hand, fig. 11.d) shows the real (in green
color) and estimated (in blue color) path followed by
the robot when there is knowledge about its location.
Finally, in fig. 12 is represented the evolution of the
robot position, in a way similar to fig. 9. At first, none
estimated position intervals are given, because the robot
doesn’t know where it is.

Fig. 10. a) b) c) The PMM: projected active neurons (in

red color) in the 1st, 21st ,23rd cycle respectively. d)
Path followed by the robot after locates itself.

Fig. 11. Evolution of the X and Y coordinate of the

robot position and the orientation.

4 Conclusion
A new method has been proposed for continuous robot
positioning. It allows keeping a robot continuously
localized by estimating its position using the estimation
from a dead-reckoning system and comparing it with
the estimation made by the PM. If they differ, a
corrected estimation of the position is calculated
heuristically.

A positioning model based on the positioning neural
network has been developed. This model relates the
sensor measurements with the robot position, so that
given some sensor measurements, it is very simple to
obtain an estimation of the robot position and vice
versa.

The positioning model doesn’t distinguish between
first location problem and position estimation. This
makes the method more robust, since it doesn’t mind
the robot was lost due to an erroneous correction of the
robot position. Also the model could adapt itself in real
time conditions, allowing simultaneous localization and
model adaptation.

References:
[1] Robin R, Murphy. Introduction to AI robotics. 2000

MIT Press.
[2] J.M. Armingol. Localización geométrica de robots

autónomos. PhD U Carlos III Madrid. 1997
[3] J. Boreenstein, B. Everett. Navigating Mobile

Robots: Systems and Techniques. A. K. Peters, Ltd
Wellesley, MA, 1996.

[4] Donald F. Specht. A General Regresion Neural
Network. IEEE Tran On Neural Networks. Nov-
1991.

[5] Alvaro Sánchez. Simulador de entornos. Anales de
mecánica y electricidad. Sept-2000.

[6] Zhang, L., B.K, Ghosth. Line Segment Based Map
Building and Localization Using 2D Laser
RangeFinder”, 2000, IEEE, International
Conference on Robotics and Automation. San
Francisco, CA. April. pp 2538-2543.

