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Abstract: - One of the problems in mobile robotics is the estimation of the robot position in the environment. In this 
paper we propose a model, called positioning model, for estimating a confidence interval of the robot position, in order 
to compare it with the estimation made by a dead-reckoning system. Both estimations are fused with heuristic rules. 
The positioning model is useful to estimate the robot position with or without previous knowledge of the previous 
position. Furthermore, it is possible to define the degree of previous knowledge of the robot position, allowing to make 
the estimation adaptive by varying this knowledge degree. This model is based on a one-pass neural network which 
could adapt itself in real time conditions and could learn the relationship between exteroceptive sensors measurements 
and the robot position. 
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1   Introduction  
An autonomous mobile robot must be able to know the 
environment before executing some of the tasks for 
which it was designed. Executions mobile robot 
movements as well as the success in performing its 
tasks depend on the quality of the measurements taken 
by its sensors. An autonomous mobile robot has 
generally an odometer, which allows it to obtain 
information about its position. However, the 
measurements taken by the sensors are imprecise and 
with many limitations.  

The main source of error comes from the estimation 
of the robot position. The imprecise measurement that 
the robot odometer gives, gets worse by the 
accumulation of errors due to the sliding of the wheels 
or to its own limitations. For that reason, it is necessary 
a method for estimating robot position using 
information of the environment.  

Position estimation has been approached in different 
and clearly differentiated ways:  
• The estimation based on the landmarks detection 

[1].  
• The estimation based on matching exteroceptive 

measurements with a metric map of the 
environment [2][3][6].  

A new technique for estimating robot position of 
autonomous robots, based on the positioning model, 
(PM) is described in this article. The mentioned model 
learns the relationship between the measurements of 
exteroceptive sensors and the robot position. The PM 
doesn’t distinguish between first location problem and 
robot relocalization, because it approaches both 
problems in the same way. Furthermore, it is possible to 
define the degree of previous knowledge of the robot 
position. This allows to make estimation adaptive, by 
varying this knowledge degree. As a result the model is 
more robust against failures due, for example, to a bad 
correction of the position, sliding of wheels, etc.  

The estimation of the position is not only reduced to 
give a value, but also to calculate a set of confidence 
intervals within which the position and orientation of 
the robot should be found at a 99% confidence. The 
model is adapted in real time to changes in the 
environment.  

 
 

2   Positioning model 
The PM estimates the robot position and orientation as 
it moves. As a result, confidence intervals for each of 
the variables to be estimated are provided, within which 



robot position and orientation must be at a 99% 
confidence.  

There are two types of estimation in real 
applications:  
• The estimation without previous knowledge of the 

robot position (first location problem), called in this 
paper robot localization.  

• The estimation with knowledge of the robot 
position at the previous moment (relocalization 
problem).  

In this section it is proposed a model which doesn’t 
difference the type of estimation; it means that the 
model to estimate the robot position with or without 
previous knowledge is unique. To achieve this, 
positioning model has a parameter that measures the 
knowledge of the previous robot position, called 
positioning excitation threshold (PET), see section 2.5. 
Thanks to this parameter the concept of two states 
disappears: knowledge and ignorance of the robot 
position at the previous moment. On the other hand, a 
continuum of states from knowledge to complete 
ignorance through different degrees of knowledge of 
previous robot position, appear. 

If it is possible to vary gradually this parameter and 
use it as an input to the position estimation algorithm, 
then it is possible to control it according to the 
estimation of the resulting confidence intervals. This 
causes a feedback as shows fig.1, where a module that 
determines the strategy to follow by the position 
estimation algorithm is involved.  
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Fig. 1. Positioning model 
 

The position module works as follows: 
• If it is the first time it starts working and the robot 

does not know its position, then the PET becomes 
0, with which it would be able to apply the 
localization algorithm. Once we know certainly 
where the robot is, then the threshold is increased 

to a level of 1/3, because it is the maximum and it 
corresponds to the minimum excitation of a neuron 
(position estimation algorithm uses a neural 
network which is explained in section 2.2) with 
which the confidence intervals of 99% confidence 
are obtained.  

• If we know approximately where the robot is, then 
the PET is established at 1/3. If we do not find 
active neurons, either the region is not known for 
the PM, or the estimation of the robot position is 
not the correct one. In order to try to correct this 
last point, the positioning threshold is diminished 
by reducing the value. If the region is not known or 
the robot gets lost, it is necessary to reduce the 
threshold to 0.  

• If the area where the robot moves is unknown, the 
application of this algorithm does not have sense. 
This is detected because the robot loses itself all the 
time and the threshold is 0.  

• It may occur that the localization of the lost robot 
will not be successful giving an erroneous solution. 
This is not a problem, since in a short time the 
robot will get lost, because the PM is not coherent 
with the sensor measurements.  

In the following subsections the PM is explained in 
detail. It is based on a neural network called RTDENN, 
explained in section 2.2, and on the position estimation 
algorithm explained in section 2.5. In order to explain 
this algorithm, it is first described the localization 
algorithm of the robot, which is a specific case of first 
one and helps to understand it, see section 2.4. 
 
 
2.1  Description 
The positioning model (PM) is based on a neural 
network, called positioning neural network (PNN), 
which learns the relationship between exteroceptive 
sensorial measurements and the robot position  

The PNN is very useful to estimate with uncertainty 
the robot position in the environment from 
measurements taken by exteroceptive sensors. It has as 
inputs the position and orientation of the robot, in 
addition to the exteroceptive sensor measurements. The 
output of the network is an estimation of the probability 
density function of the input variables, see fig. 2.  
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Fig. 2: Positioning Neural Network 
 
The implantation is a key point, since the model must 

fulfil certain requirements that make it suitable for 
mobile robots. The requirements are listed below:  
• To work in real time. 
• A compromise between the use of memory and 

learning precision.  
• The model must be easy to interpret so that its 

information should be also easy to use by the 
algorithms, which estimate the robot position.  

• Facility to adapt to changing situations.  
• Possibility of learning without any previous 

knowledge.  
The use of the RTDENN which fulfils the above 

mentioned requirements is proposed. The RTDENN is 
adapted in real time, allowing to optimize the use of 
memory according to the required precision. One of the 
main advantages is that it can learn starting from no 
knowledge in real time conditions, which allows the 
robot to move in totally unknown environments. In 
spite of being multi-dimensional, this network is easy to 
interpret as you can interpret the RTDENN structure. 
That is, neurons can be projected in different 
dimensions, the centers of which represent the robot 
working patterns and which covariance matrices show 
the area size where each pattern works. 
 
 
2.2  RTDENN 
This section aim is to describe the RTDENN (real time 
dynamic ellipsoidal neural network). 
 
2.2.1 Description 
Let R be the M-dimensional workspace where the robot 
has to work. Each dimension of R corresponds to a 
variable collected by the robot. R can be divided in sub-
workspaces or regions Ri ⊂ R.   

Let { }N
iiN 1== xX  be a set of sample vectors containing 

values of variables monitored by the mobile robot.  

Each { }M
jiji 1

x
=

=x  belongs to R ⊂ ℜM . The RTDENN 

consists of a set of neurons { }I
iiI nnNN 1== , see Fig. 3, 

where each neuron nni is specialized in a particular sub-
workspace Ri. Every set of sample vectors included in 
every sub-workspace Ri represented by the neuron nni 
can be characterised by the following RTDENN 
parameters:  
• The number of sample vectors that belongs to the 

region or sub-workspace, Ki . 
• One vector i

Ki
µ obtained by the estimation of the 

mean values of the sample vectors of that region. 
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Fig. 3: RTDENN structure 

 
2.2.2 RTDENN neuron excitation 
Neurons are excited by a set of examples { }H

i
e
i

e
H xX 1== . 

These examples are characterized with the same 
parameters as neurons are; that is, the number of 
examples of the input set H, the mean of examples of 
the input set e

Hµ  and the covariance matrix e
HΩ . 

An i-esima neuron excitation degree is determined as 
follows: 
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This excitation is characterized as follows: 
• Maximum excitation excmax: if exci >= 1. Above 

this excitation, there is 68% of examples, and in 
this case examples reinforce the neuron log-
likelihood. 

• Minimum excitation excmin: if 1 > exci >= 1/3. 
Below that excitation, there is 1% of examples, and 
so it is considered that those examples are out of 
the neuron scope. 

• Without excitation: If exci < 1/3. 
 
2.2.3 Network training 
The training algorithm is a one-pass learning [4] that 
consists of several cycles in which the network is 
excited by different examples. Then activated neurons 
are selected (a neuron is active when its excitation is 
greater than the minimum excitation level, excmin). If 
there isn’t any activated neuron, it means that there is 
an area which is not modeled by the network and so, a 
neuron is added. On the other hand if there are activate 
neurons, their parameters are updated using the 
following recursive equations: 
• Number of examples that represents a neuron:  

HK
x

HxK ii +−=  (x is a forgotten factor [4]) (1) 

• Mean recursive equation 
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• Covariance recursive equation: 
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where H is the number of new examples taken by the 
robot during its movement, k represents Ki simplifying 
the notation and x is the number of samples that the 
neuron needs to remember beginning from the last one. 

As the number of neurons increase, two neurons 
could be merged when they are very similar.  

 
2.2.4 Merge of neurons 
Two neurons are merged when they are specialized on 
very similar regions. The similarity degree is measured 

using a chi-square test applied to the Mahalanobis 
distance between them. The new parameters of the 
merged neuron are calculated using the recursive 
equations previously described. 
 
2.3  Estimation of the most probable values of a 
variable 
Once the PNN is trained, the value of an input variable 
can be estimated, knowing the value of all other input 
variables, called bias variables. The steps to follow are 
shown in fig. 4 (a two-dimensional case for better 
comprehension) and they are explained below: 
1. To excite network with the values of input bias 

variables. 
2. To detect neurons, which are activated if the 

network is projected over bias variables. 
3. To calculate intersection points between non-

projected neurons and the straight line parallel to 
the dimension of the variable to estimate and which 
crosses the bias point (given by the bias variables).  

4. Once the two intersection points have been found 
(pi

max, pi
max) of each active neuron (NNi), it is 

calculated the probability:  
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with which each one has been activated. The two 
values (pmin, pmax) determine the confidence 
intervals within which the estimated variable 
estimated should be (at 99% probability). They are 
calculated using the following equations: 
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Fig. 3. Estimation of the most probable values of a 

variable 



 
 
2.4  Localization algorithm  
The localization algorithm estimates the robot position 
without previous knowledge of its previous position. 
This algorithm is a specific case of the position 
estimation algorithm, which is explained in 2.5. 
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Fig. 4. Localization algorithm 

 
The algorithm consists of several cycles in which, 

while the robot moves, some possible positions and 
orientations are selected. Each cycle takes into account 
both the information of the previous cycle and the 
sensor measurements. After each cycle positions and 
orientations become more restricted. Just when only 
one position is valid, the algorithm finished. The 
number of cycles is variable depending on the region 
where the robot is moving. Each cycle consists of 
several points which are explained below, see Fig. 5 
(only PNN neurons projected on the x and y 
coordinates are shown): 
1. The strategy of this point is to look for those 

environment positions in which it is coherent to 
have the measurements taken by the sensors. 

2. Once coherent positions are found from a sensorial 
point of view, select those who remain unchanged 
as the robot moves, are selected. The parameter 
which decides what position is coherent is the 
localization excitation threshold. 

3. If there is only one possible position, the robot has 
been localized and the confidence intervals of the 
position should be calculated as commented in 
section 2.3. Otherwise go back to the point 2.  

The only parameter of the algorithm is the 
localization excitation threshold. If this threshold is 
reduced too much, then the algorithm convergence is 
quicker but it is more uncertain that the solution should 
be correct. If the threshold is increased, then the 
algorithm converges slower but the solution obtained is 
more robust. 
 
 
2.5  Position estimation algorithm 
This algorithm uses PNN to estimate the robot position. 
Its aim is to provide confidence intervals within which 
the robot position should be. It is calculated taking into 
account the sensor measurements and the robot position 
at the previous moment (imprecisely). In fig.6 is 
showed the inputs and outputs of the algorithm (two-
dimensional case). 
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Fig. 5. Position estimation algorithm 

 
Next it is described the steps the algorithm consists 

of: 
1. In order to reduce the number of calculations, the 

positioning neural network is reduced to an 
equivalent network formed by those neurons 
representative of the environment in which the 
robot position and orientation are similar to those at 
the previous moment. The final network will have 
more or less neurons according to this similarity 
definition, which is determined by what is called 
positioning estimation threshold (PET). The model 
obtained in this way is called reduced positioning 
neural network (NNRP). 

2. To apply the localization algorithm to the NNRP. 
As a result, confidence intervals are calculated.  

As it can be shown, the position estimation algorithm 
is a generalization of the localization algorithm. Even 
more, if PET becomes 0, then both algorithms are 
equal. 

 



 
2.6 Conflict resolution 

As it was previously commented, PM estimates 
confidence intervals of the robot position. At the same 
time, a dead-reckoning system can give an estimation of 
the robot position and orientation as well. Both 
estimations must be compatible; that is to say, the 
position estimated by the dead-reckoning system should 
be within the confidence intervals estimated by the PM. 
If not, there is a conflict which is resolved using 
heuristic rules. This conflict could be due to: 
• The position estimation is not correct due to dead-

reckoning errors. 
• The confidence interval estimation is not right due 

to the position estimation algorithm has found a 
robot workspace similar to another one in the 
environment. 

 
 

3  Experimental results 
Some experiments with the RTDENN have been done 
using the low cost mobile robot “UMI”. It consists of 8 
ultrasonic rangers (SRF04), 5 infrared rangers 
(GP2D12), one compass (VECTOR 2X) and an 
odometric system (one HP encoder in each wheel of the 
robot). Fig. 7 shows the layout of the robot. 

Ultrasonic (u1) and IR ranger 90º (s5)

Ultrasonic ranger 64º (u2)

Ultrasonic and IR ranger 38º (s4)(u3) 

Ultrasonic ranger 13º (u4)

Ultrasonic ranger  -13º (u5)

Ultrasonic  and IR  ranger -38º (s2)(u6)

Ultrasonic ranger -64º (u7)

Ultrasonic  and IR ranger -90º (s1)(u8)

Encoders

Compass IR 0º (s3)

 
Fig. 7: Layout of the robot used in the experiments. 
 

In order to difficult the robot navigation, the compass 
is deactivated. So the only way the robot has for 
estimate its position using propioceptive sensors is 
through dead-reckoning. In those conditions, it is 
necessary to apply the PM for achieving a good 
navigation. 

All these experiments have been carried out in the 
environment shown in fig. 8.  
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Fig. 8: Environment used in the experiments 
 
The coordinate origin is situated in the corner formed 

by the bookcase and the table. So bookcase is the axis 
X and table is the axis Y. The robot position is 
measured in centimeters, and the orientation is 
measured in grades in a range of -180º to 180º. 

In order to know where the robot is (for validation 
purposes), some landmarks were made on the floor by 
the robot as it moves. These landmarks are used to 
check the robot position through the experiments. 
 
3.1  Case 1: Position estimation using PM 

Next an experiment has been performed for 
estimating the robot position, knowing exactly the 
location of the robot at the starting point. This 
experiment consists of several cycles represented in fig. 
9. It consist of three graphics corresponding, from up to 
bottom,  the evolution of X coordinate, the evolution of 
Y coordinate and the evolution of robot orientation. 
Each cycle is represented by four points: upper limit (in 
red color) and lower limit (in blue color) of the 
estimated interval, the estimated position (in green 
color) and the real position (in cyan color). 
Additionally, it is represented with arrows the instants 
in which the robot has corrected its position.  

 



 
Fig. 9. Evolution of the X and Y coordinate of the 

robot position and the orientation. 
 
Besides, in fig. 10 it is drawn the real (in green 

color) and estimated (in blue color) path followed by 
the robot in its navigation. The X and Y axis represent 
the X and Y coordinates of the robot position.  

As it may be seen, robot can navigate in the 
environment thanks to PM. 

 

 
Fig. 10. Path followed by the robot 

 
 

3.2  Case 2: First location problem using PM 
Next an experiment has been performed with the aim of 
estimating the robot position when there isn’t any 
knowledge of the starting location of the mobile robot.  
Fig. 11.a).b).c) shows, in yellow color, the PNN 
neurons projected on two dimensions, X and Y 
coordinates of the robot. A neuron is represented by its 
mean (the center of the ellipse) and by its covariance 
matrix (the ellipse itself indicates 1/3 of its influence 
region, that is to say, the region where the neuron could 

be activated) Neurons activated, because exteroceptive 
measurements match with the neuron influence region, 
are marked in red color. The position and the path 
followed by the robot are represented with a black cross 
and a black line respectively. At first, there are many 
activated neurons of the PNN (fig. 11.a). When the 
robot knows its position approximately, there is only 
one neuron activated (fig. 11.c). 
On the other hand, fig. 11.d) shows the real (in green 
color) and estimated (in blue color) path followed by 
the robot when there is knowledge about its location.  
Finally, in fig. 12 is represented the evolution of the 
robot position, in a way similar to fig. 9. At first, none 
estimated position intervals are given, because the robot 
doesn’t know where it is.  

 
Fig. 10. a) b) c) The PMM: projected active neurons (in 

red color) in the 1st, 21st ,23rd  cycle respectively. d) 
Path followed by the robot after locates itself. 

 
Fig. 11. Evolution of the X and Y coordinate of the 

robot position and the orientation. 



 
 

4   Conclusion 
A new method has been proposed for continuous robot 
positioning. It allows keeping a robot continuously 
localized by estimating its position using the estimation 
from a dead-reckoning system and comparing it with 
the estimation made by the PM. If they differ, a 
corrected estimation of the position is calculated 
heuristically.  

A positioning model based on the positioning neural 
network has been developed. This model relates the 
sensor measurements with the robot position, so that 
given some sensor measurements, it is very simple to 
obtain an estimation of the robot position and vice 
versa.  

The positioning model doesn’t distinguish between 
first location problem and position estimation. This 
makes the method more robust, since it doesn’t mind 
the robot was lost due to an erroneous correction of the 
robot position. Also the model could adapt itself in real 
time conditions, allowing simultaneous localization and 
model adaptation. 
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