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Abstract: - In this paper the implementation of fragment digital Cellular Neural Network (CNN) for
image processing on the Field Programmable Gate Array (FPGA) and it’s experiment results are
present. The high processing speed of the network is use to provide real time processing. Results
shows that the architecture CNN and FPGA and implementation has good corespondent.
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1. Introduction
Real-time image processing requires large
computational powers. It is useful to apply
dedicated equipment for the realization of image
processing algorithms. The development of
programmable systems allows for the exceptio-
nally good application of solutions known as
CCM (Custom Compatible Machine). It is
beneficial to apply neural network structures in
this situation.

The aim of this paper is to investigate the
possibilities of the implementation of the chosen
neural network for image processing on the
FPGA programmable systems. The authors
assume that the network learning occurs in the
all applications computer while the imple-
mentation on the FPGA concerns the neural
network already taught.

The kind of neural networks that have been
widely applied in various fields is called the
cellular neural network. It combines the features
of the artificial neural network, that is
information processing by using identical
elements, simple structures and functions, and
the cellular automata model, that is the regular
structure and local connections among the
elements. It is characteristic that the connections
weights are fixed and the network displays the
recursive nature. Moreover, the structure
matches quite well the FPGA array structure.

2. Applied neural network
The cellular neural network consists of identical
elements combined closely together and forming
a regular geometrical architecture. Signals are
processed simultaneously and the interactions
among the cells occur locally. However, despite
the local range of these interactions, the cellular
neural network is able to perform global
processing, which means that the outcome may
depend on the values of the cells situated
beyond the closest vicinity. This happens
because the cell is controlled by the input signal
of the neighboring cells, and these cells vary
with time. The basic field for the application of
such network is image processing. Works on
cellular networks concern:
− real image segmentation,
− noise reduction,
− contour detection,
− feature detection.

A cell is the single element of the network.
Cells are connected through local channels and
form a regular, flat (two-dimensional) grid or
lattice. The info introduction into all the cells is
parallel. The cell interactions cause dynamic
transformation processes in the network. When
the network attains its equilibrium, we obtain
the input signal which, quite often, is a binary
one. Despite the fact that the cells are connected



locally, the processing is global, that is the
whole network participates in the process. The
cellular neural network structure is regular;
every cell is connected to the neighboring cell.
The only exception are the boundary cells which
are stimulated by artificially generated signals.
Their selection depends on the application of a
given network. There are solutions that connect
the cells from one edge with the cells from the
opposite edge creating a toroidal network.

The regularity of the network geometrical
structure enables its imple-mentation in the
real - time image processing and analysis. It is
possible to create such network using the
semiconductor technique.

Apart from the output and input signals,
every cell has its polarization signal. Polarization
signal has a fixed value but is not identical for
every cell in the network. The transforming
function models cell Xij state into the output state
Yij (fig.1).

Fig. 1. Plan Cellular Neural Network

This function is segmentally linear, of a unicast
slope in the origin of the coordinate system. We
can present the time change dynamics of the
state and output signals through the nonlinear
equations:
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where:
i,j – indexes referring to the controlled cell,
n – number period.

Every cell is connected to its neighbor only.
The neighboring cells interact. One has to find the
area intuitively and mark it as Nij. Every cell has its
initial value of the state x variables, u input (its
own as well as its neighboring cells) and y output
(its own as well as its neighboring cells). All of the
signals control the cell. Every cell processes the
signals identically. The outcome is the weighted
sum of controlling signals which is nonlinearly
transformed. The state of each cell is activated

after the time t > 0 and then it attains the
equilibrium. The cellular neural network always
returns one stable state. The network working is
presented on the (fig. 2)

Fig. 2. The network working with model

3. Technological plane
Virtex programmable systems by Xilinx have
been applied as a technological plane for the
implementation of the neural network. The
Virtex FPGA systems enable programming of
complicated logic because one of their features
is high density data compaction. The deve-
lopment of silicon integrated circuit technology
made it possible to achieve a very quick circuit
which broke the parameter barrier of its
predecessors and extended the traditionally
applied programmable logic. Drawing from
experience of producing previous series of
FPGA systems, the designers obtained the
system of a high ability to implement the
developed and complicated projects. Since the
appearance of the first XCV50 system, the
number of gates has increased 20 times in the
XCV1000 system, and the number of CLB has
increased 16 times. After the introduction of the
next 1,8 – Volt Virtex E series the program-
mable systems became the alternative for the
ASIC systems.
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Five different connection tracts applied in
the systems assure the communication on
various distances. They also have a considerable
impact on the architecture elasticity. It increases
the possibility of parallel processing of many
signals. Improving the elasticity is also a matter
of 16 global clock lines which can be
alternatively used as input-output ports. Virtex II
systems are equipped with the Select Link
interface allowing for quick communication
with the other Virtex systems (fig. 3). They also
include the JTAG interface compatible with the
IEEE1532 standards. Owing to this, there is a
possibility of partial reconfiguration of the
system structure during work. The system
architecture is modeled on the CLB structure. A
single cell contains four inputs, one output, one
carry and others. In Virtex systems every CLB
cell is built of four logical cells organized into
two identical slices (fig. 4). Every of the four-
input LUT tables can be optionally configured
as single or bi-port RAM memory and also as a
16-bits shift register.
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Fig. 4. Two-Slice Virtex CLB

The inner Virtex II system structure is
subordinated to obtaining the maximally high
work speed. One of the most important elements
influencing the resultant productivity is the carry
generator among the basic blocks realizing
logical functions. The possibility of creating
blocks for generating single-level multi-
argument functions or horizontal quick carry
functions is quite important. Additional ORCY
gates situated in every cell of the CLB block
have been applied for such realizations in the
basic logical cells of the Virtex II systems.

4. Image cognition by cellular NN
The task of the network is to extract from the
image a defined object. This object must reach
the maximum level in the grayscale, that is, it
must consist of elements that differentiate from
the background elements. The second condition

is that the element belonging to the object must
have at least one neighboring element belonging
to the background. The object cognition would
be realizable when two mutually independent
pieces of information are delivered to the
network: the information about the wanted
object and input data – containing the processed
image. In order to realize these assumptions in
the cellular neural network, one should define
the rules of delivering these two pieces of
information. The input image is introduced into
the network cells according to the rule telling
that we assign for the background pixels “-1”,
and for the object pixels “+1”. The wanted
object is defined by means of start states. The
object has an assigned “+1” value, and the
remaining cells have “-1” value.

Transformation rules:
a) If the neural cell has "+1" first state and

“+1” input signal, then “+1” output signal
should appear.

b) If the cell input is "+1" and the output signal
of any of the neighboring cell is "+1", then
this cell output will also be “+1”.

c) If the cell input signal equals "-1", then all
the cells outputs must adopt “-1” value.
The second transformation rule is called the

diffusion rule. The phenomenon occurs when
every cell analyses its neighbor’s input signal
values. In this rule it is sufficient when the size
of the operator A is 3×3. The values of operator
A should be positive because only such values
lead to the increase of the state variable value.

The controlling operator B defines which
cell belongs to the object and which to the
background. If the cell belongs to the object, it is
necessary that the operator does not increase its
values. That is why, it is beneficial when only
the central element is non-zero and positive.

Rule a) is reflected in inequality:

B + A00 – 8A + I > 0 (3)

In order to reflect rule b) we choose the
worst case when only the output signal
controlling the cell is the element of the object
and its value is “+1”:

B – A00 – 6A + I > 0 (4)

If the element of the object has not been
selected, is must remain as the background:

B – A00 – 8A + I < 0 (5)



The elements belonging to the background
remain the background because:

–B + A00 – 8A + I < 0 (6)

–B – A00 + 8A + I < 0 (7)

The following pattern may be the solution
of these inequalities:
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5. NN implementation in FPGA
Network implementation is possible only in
Virtex systems because the Virtex family
predecessors contain too few elements for
encompassing the network structure. I have
made an analysis for the XCV1000 system
implementing two networks of the neighboring
area : r = 1 and r = 2 in various configurations
(the results are presented in tab.1):
a) network r = 1, 1bit inputs and outputs, 4 bits

coefficient with sign,
b) network r = 1, 4 bits inputs and outputs with

sign, 4 bits coefficient with sign,
c) network r = 1, 8 bits inputs and outputs with

sign, 8 bits coefficient with sign,
d) network r = 2, 1 bit inputs and outputs, 4

bits coefficient whit sing.

I have applied signum activation function
into every network. The network structure is
toroidal. Apart from the intercellular connec-
tions and I/O signals, the cellular neural network
has controlling systems and connections in order
to exam whether all the cells have completed
their calculations and whether it is possible to
send the results to the cells output. It is also able
to clear its values.

I present below the results acquired after
the 3×3 network implementation. The results
perform defined functions: angle embossment,
edge (border) detection. These are three
networks of the same template with the input
info variable:
– 2 bits inputs and outputs with sign,
– 3 bits inputs and outputs with sign,
– 8 bits inputs and outputs with sign.
The results are presented in tab. 2. In particular
tab. 2 presents the comparison of the system
area occupied by the given network and the
comparison of the network working speed.
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requires the use of 3 bit coefficients but only 11 out
of 19 are non-zero.

The second network type is the network
used for edge detection. I have implemented
three networks just like in the former example.
The results are presented in tab. 3. In particular
tab. 3 presents the comparison of the system
area occupied by the given network and the
comparison of the network working speed.

Network template:
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As in the former case, the number of non-
zero elements equals 10.We have analyzed the
cellular networks in various configurations
implemented in the XCV1000 Virtex system.
The area occupation by the particular networks
the percentage system area is presented in fig. 5.
Numbers is same as above.
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Fig. 5. Waste percentage area system
by networks

Network implementation r = 2 occupies a
considerable space. Fig. 6 presents the
maximum working speed of the system
including a given network. First line presents the
speed before the optimization, the second line
after the optimization. Fig. 7 shows two speed
increments (augments) after the optimization.
The optimization of the extended network of r
=2 did not bring any effect. It is caused by the
considerable area occupation and limiting the
system maneuvers during the optimization.
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Fig. 7. Increment speed

6. Conclusions
The above presented networks are configured in
maximum values because, in reality, not all the
coefficients of the pattern are non- zero. It is also
unnecessary to record the coefficients in 8 bits.
This solution occupies considerable area and
decreases the system speed. In the analysis, I have
introduced two kinds of network: for angle
embossment and edge detection. They have 11
non- zero pattern coefficients and they characterize
, in comparison to the preceding networks , in
good speeds, at little waste of the system area. The
speeds, even at 8 bit input and output do not fall
below 20 MHz. For the angle embossment
network the speed only slightly decreases during
the bit increase. The use of the cellular image
processor with the application of these networks
gives a real chance for the physical utilization of
the network. Summing up the results of my work, I
can assert that cellular neural networks are suitable
for the implementation in FPGA systems.
However, the utilization of a network implemented
in FPGA systems has to take place with
cooperation with other systems. The construction

of too large a neural network and its
implementation in FPGA system, despite the
possibility of using XC2V8000, is not a good
solution because it considerably decreases the
system speed. The use of the cellular image
processor, which works sequentially, seems to be a
better solution. We should also apply a suitable
interface making it possible to introduce images
into the "digital world". Initial processing can
precisely take place in the cellular neural network.
The neural network implemented in the FPGA
system can serve for various tasks concerning
image processing, we should only exchange
suitable patterns for given tasks. The authors truly
hope for the use of neural networks for the
realization on higher levels, and processing images
connected with diagnosing the object shapes. The
authors' current works basing on the experiments
presented in the paper proceed in this direction.
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Table 1. Values for optimization of area or speed

Network r = 1,
1 bit inputs and
outputs, 4 bits.
coefficients,
XCV1000

Network r = 1, 4
bit inputs and
outputs, 4 bits
coefficients,
XCV1000

Network r = 1,
8 bit inputs and
outputs, 8 bits
coefficients,
XCV1000

Network r = 2,
1 bit inputs and
outputs, 4 bits
coefficients,
XCV1000

Elements  FPGA

speed area speed area speed area speed area
Slices 746 742 1318 1317 2863 2862 9511 9511
Flops 18 18 36 36 81 81 150 150
Latches 9 9 27 27 72 72 125 125
IOBs 64 64 100 100 217 217 176 176
4 input LUTs 516 508 2173 2173 4459 4459 9565 9565
Total gates 9117 9069 25530 25530 53574 53574 146827 146827

Max frequency
[MHz] 16,762 16,437 14,298 13,854 11,887 11,830 5,274 5,274

Max delay [ns] 11,421 14,617 15,276 15,113 16,016 10,257 19,963 19,963

Table 2. Area values for networks

Elements FPGA
2 bits inputs
and outputs
with sign

3 bits inputs
and outputs
with sign

8 bits inputs
and outputs
with sign

Slices 514 547 600
Flops 43 45 90
Laches 34 36 81
IOBs 55 109 244
4 input LUTs 812 885 974
Total gates 9760 10245 11382

Max frequence
[MHz] 22,702 22,362 22,142

Max delay [ns] 12,351 9,385 8,621

Table 3. Area values for networks

Elements FPGA
2 bits inputs
and outputs
with sign

3 bits inputs
and outputs
with sign

8 bits inputs
and outputs
with sign

Slices 489 626 733
Flops 27 45 90
Latches 18 36 81

IOBs 53 105 211
4 input LUTs 769 931 1156
Total gates 9294 11175 13542

Max frequency [MHz] 25,401 23,910 21,797
Max delay [ns] 10,542 11,829 8,757


