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ABSTRACT

The Bhattacharyya Bound is a measurement of the
error rate of a classifier. If the distributions of the
classes are independent Normal distributions, and
their parameters are known, the Bhattacharyya
Bound can be calculated explicitly. On the other
hand, if the parameters of the distributions are
unknown this bound has to be estimated. Both the
theory and simulation results indicate that the
estimator of the Bhattacharyya Bound given by
traditional methods is seriously biased especidly
when the training sample size is small. By applying
the bootstrap technique to the problem of estimating
the Bhattacharyya Bound, we introduce several
bootstrap schemes for this purpose. The results of
the simulations prove that the bootstrap technique
works very successfully, and dramatically reduces
the bias of the estimate.

|. INTRODUCTION

I.1 Bhattacharrya Bound
In a datistical pattern recognition problem, a
random vector X, called a pattern, is composed of a
pair

X=NM,w, (1.1)
where V is ad-dimensiona vector caled the feature
vector, and w is a variable representing a class.
Generdly, a feature vector V can take a continuous
value in a d-dimensional space and a class variable
w can take one of a finite set of vaues. In this
paper, we consider only the case when there are two
class cases, i.e. wi {1, 2}. Thea priori probability
of the two classes, P; and P, are assumed known
and equd.
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The conditional density of a feature vector V given

w is denoted as pu(Vv), w =1, 2. It is wel known

that the posterior prabability of wgivenV is

PP (v)
p(x)

where p(X) is the mixed density function and isa

constant independent of w.

gqw(V) = , w=12 (1.2)

The purpose of pattern recognition is to determine
whether a given feature vector V belongs to class 1
or 2. In other words, the aim is to predict the vaue
of w from a given feature vector V. A decision rule
based on probabilities is to maximize the posterior
probability with the given feature vector V. Thus,
according to (1.2), the classification rule, called the
Bayesian Decision Rulg, is:
w=1 if qu(V) > qu(V), or M > &;
p,(V) R
: p.(V) _ P,
w=2 if g(V) <qy(V), or ——= < =%, (1.3
(V) < (V) 0, (V) P, (1.3)
The conditional error caused by rule (1.3) is:
r(v) =min{ u(V), q:(V)}. (1.4)

The Bayesian error isthe average of r(V),
e=E{ r(V)} = Lr(vpv)dv
= I min{Pips(V), Popa(V)} V. (1.5)

Equation (1.5) is the crucial measurement for the
performance of the decision rule. Unfortunately, it
is generally very hard to directly calculate a
Bayesian error even if the conditional probabilities
p1(V) and px(V) are known. Therefore, many
researchers have devised upper bounds for (1.5)
which are easier to caculate and estimate. Two
such bounds, the Chernoff and Bhattacharyya
bounds, are the most well-known ones and will be



discussed in the second section. In this paper we
concentrate on the Bhattacharyya bound. Thus, the
third section will consider the traditiona approach
of estimating the Bhattacharyya bound and the
theoretical properties of the estimate. We will see
that traditional methods to estimate the
Bhattacharyya bound perform poorly especidly
when the sample size is smal (for example, eight).
Thisis clear from simulation results given in detail
in [OWO00] and [Wa00]. The concepts and genera
algorithms of the bootstrap are discussed in Section
IV. Although the problem of estimating the
Chernoff bound is not mentioned here; it is easy to
see that the approaches introduced here for
Bhattacharyya bound estimations can be directly
applied to the Chernoff bound.

|.2 Experimental Data Set

The data set used for al the experiments in this
paper isaset of randomly generated samples, which
consists of training samples for seven classes. Each
class has a 2-dimensional normal distribution with
covariance matrix & = |, and a training sample size
of eight. The mean vectors of the eight classes are
listed in TABLE I.1.

TABLE 1.1 Expectations of the classes

CLASS A B C D
Mean ©o | O5 | (11 | (@1
09 | 09 | 09 | 07
CLASS E F G
Mean @ | @ | @9
19 19 19

Only two classes are involved in each experiment:
oneistheclass A, and the other is selected from the
rest. Hence, there are, in total, six experimenta
pairs of classes, (A, B), (A, C), (A, D), (A, E), (A,
F), and (A, G), where each successive pair tests
classes which are increasingly distant from the
other. With each class pair, an experiment
repeatedly does 200 trials of simulation for any
given algorithm. The results of the experiments
given in this paper are the average statistics from
the 200 trials. As only the case of two classes is
discussed in this paper, for simplicity, we use the
notation that X; w = (V, w). So X represents
sample data from class 1, and X;, represents a
sample data from class 2.

Il. CHERNOFF-BHATTACHARRYA BOUNDS
[1.1 Chernoff Bound
For any real numbers, a, b 3 0, it iswell known
that the following inequality holds:

min{a b} £a°b', 0 £ s £ 1. (1.1)
Applying inequality (11.1) to (1.5), we have

LI min{Pypy(V), Pops(V)} dV

£p; Py Up W), ph v,
Theright side of the above inequdity

e&=P; Py [ps ). p3*wav. (1.2
is caled the Chernoff bound. The optimum sis the
value that minimizes the value of e, We consider
the case when the conditiona density functions are
normal distributions

pi(V) = Nj(M;, &), j=12.

The integration part of (I1.1) can be expressed as

[ps v), ph3v)dv =™, where,  (11.3)

) = S(lé S M- M) [s8:+(1-9) 47"

(M1 - M)+ 1 In |Saol +(1; S)_az |
2 &, rla,fe
The quantity n(s) is caled the Chernoff distance. It
is obvious that the optimum vaue of s will
maximize the vaue of n(s), which can be obtained
by studying the variation of n{s) for various values
of sfor thegiven M; and &; (j = 1, 2).

(11.4)

I1.2 Bhattacharyya Bound

The Bhattacharyya bound results when the
Chernoff bound is simplified by selecting the value
s=1/2. Insuchacase, (Il.2) becomes

e.= PP, L {/p,(V)p,(V) dv

= /PP, e™?, (11.5)
The upper bound given by (11.5) is caled the
Bhattacharyya bound. In our case, it is assumed
that P, = P, = Yatherefore, the Bhattacharyya bound
will take aform of:

o= 2 P (WP, (V) du = Ze™2. (1)

Correspondingly, the Bhattacharyya distance is:

o o ..-l
_1 Twl"-azg
m1/2) = g(Ml'Mz) g > g



a,+a,
p P
(Mi-Mp) + —In =" (1.7)
2 ERERY
I11. ESTIMATING BHATTACHARYYA BOUNDS
Let X = {Xl,l; XZ,]J ey Xm,l; Xl,Z,---a ln,z} be the
training sample: the first m sample points X, 1, X»1,
...y Xm1 belongs to class 1 with a normal
conditional distribution
Xl,ll ey Xm,l - Nl(Mll é~l)l (I I I 1)
and the other n sample data X ..., X,2 belongs to
class 2 with anormal conditional distribution
Xy Xnz ~ N(M,, &5). (111.2)
The maximum likelihood estimates of the means M;
and covariances &; (j = 1, 2) [Fu92] are given
respectively by
M, &,, M, ad &,. (111.3)

It is well known that the estimates given by (111.3)

have good properties, and are the optimized

estimates of the parameters M; and &; (j = 1, 2).

Basad on (111.3), an estimate of the Bhattacharyya

bound can be calculated by the following steps:

1. Replace the parameters in (11.7) with their
estimates given by (111.3) to get an estimate of
Bhattacharyya distance, say m(1/2).

2. Replace n(1/2) in (11.6) with M(1/2) to get an
estimate of the Bhattacharyya bound.

We refer to the estimating method described above
as the Direct Estimating approach or the General
approach. The unanswered question is one of
determining how good the estimate of the General
approach will be? The answer to this question is by
no means trivia, because the Bhattacharyya
distance and bound are fairly complex functions of
the parameters M; and &;.

To clarify issues, we present a brief discussion on
the estimate properties of a function of the
parameters. Let g = (qy, Qs s qt) beaparameter

vector, whose estimate are g (ql, qz - qt)
and f = f(g) be a function of g. Using the General
approach, an estimator of f= f( g) can be obtained.

Assuming that g and g are close enough, a Taylor

series can be used by expanding f= f(§|) up to the
second order terms,

i
=1(0) @i(a) + 1q ™

+ itraeﬂzf2 DquT : (111.4)
ZAE [¢ o

where Dg = §| g If éisan unbiased estimate of
g, E(Dg) =0. Thus,

£ 1 ﬂzf O
E(f) @(q) + =tr > B <. (I11.5)
2" g PP

A

It is clear to see that f is generdly a biased
estimator of f. In our case

a=M:", M,", svec(,)", svec(dz) ")’
where svec(A) represents a vector consisting of all
different components of a symmetric matrix A =
(@) SVEC(A) = (&u1,--+, Bty Q22 ++5 2y +++s ),
and its estimator

g=(M;",M,", svec(d,)', svec(d,) ")’
given in (111.3) is unbiased. For the Bhattacharyya
distance, the second term on the right side in (111.5)
is extremey complicated (plesse refer to
Fukunagad s book [Fu92] for more details). It is thus
apparent that the estimate of the Bhattacharyya
distance deduced from the General approach is
biased, as is the Bhattacharyya bound.

IV. THE BOOTSTRAP TECHNIQUE
V.1 Basic Bootstrap
The bootstrap technique was first introduced by
Efron in the late 1970's [Ef79]. The basic strategy
of bootstrap is based on resampling and simulation.

Let X ={X31, X5, ..., X} beani.i.d. d-dimensiona
sample from an unknown distribution E. We
consider an arbitrary functional of I, q = q(IF),
which for example, could be an expectation, a
guantile, avariance, etc. The quantity q is estimated
by a functional of the empirical distribution F, q
= q(i’),where

.~ 1
F : mass E at X1, X2, +.vy Xny
wheren isthe sample size, and {xy, X5, ..., X,} ae
the observed values of the sample{ X4, ..., Xn}.



The bias of qiswell defined as

Bias=¥Eg [q - q] =Eg [q(F) - qF)]. (IV.1)
where “Eg" indicates the expectation under
distribution I¥. Though it is possible to calculate q
= q(i’) having observed X1 = X3, X5 = X5, ..y X =
Xn, it is not possible to derive the bias directly
because of the fact that both q and I are unknown.

From one perspective, the quantity q can be
regarded as a simulation of g, since we use the
empirical distribution F to mirror the characteristic
of the unknown distribution I via the sampling
process. Extending the idea to the bias estimation,
we can use the same strategy to solve the problem.

As the empirical distribution I is known, it is easy
to randomly generate a sample from F. Assumi ng
the size of the sample generated isn, the sampleis

X ={X], X5, X5} (Iv.2)
Thus we have an empirical distribution B of the
empirical distribution F,where,

A * *

F :ma&sﬁ Xy, Xoy oy Xy

and {X; , X5, ..., X } are the observed values of

the {X; , X ,...X "}, and a corresponding q *
= q(f") isthe estimate of . Thus an estimator of
thebiasis

Bias =¥ [q" - q] =E'[q(F)-q(F)],

(IvV.3)

where E is the conditional expectation of F given
{X] = X1, X5 = X5, .., Xy = X,}. The
procedure to estimate the bias described above is
caled the Bootstrap technique. A typical bootstrap
procedure will take several steps:

1. Generate an an empirical distribution B of the
empirical distribution F;

2. Get acoresponding q ° = q(f’) as the
estimate of q

3. Repeat stepslandZ Btlm&g soasto havea

szetofastlmates{ql q 2y e q 5} of q
4, Cdculatethe estimate of the bias as

N

o l %
Bias = Eé\bq b - 0, (IV.4)

In the interest of brevity, the details are omitted here
- they can be found in [WaD0] and in the
unabridged paper [OWO0O0]. Efron suggested
choosing B = 200 as the number of times the
bootstrap resampling is repeated[E83], which is
quite adequate for most of purposes.

If g isan estimate of g and a bootstrap estimate of
the bias (1V.4) is provided, a bootstrap estimate of
g can be obtained by correcting the bias of the
or|g| nal esti mame as.

qBOOT— q Bias= 2q q (V.5
This strategy will be used later to estimate the
Bhattacharyya bound.

V.2 Bayesan/Random Weighting Method
As described above, the key issue of the bootstrap

technique is to obtain an empirical distribution P

of the empirical distribution &. It is possible to
generdize the sampling scheme for refrieving a
bootstrap sample in the following way.

Let P = (P, P , P7) be any probability
vector on the n-dimensional simplex

j ={P:P;30,&P; =1}, (IV.6)
called a resampling vector [Ef82]. For asample X
= {X1, Xz ..., X, a reweighted empirica
probability distribution B is defined with a
resampling vector P as

F massP; onx,i=1,2, ..,n, (Iv.7)
where {Xi, Xo, ..., Xo} arethe observed values of the
s;\mple{xl, Xz, ..., Xn}. Thus, a resampled vaue
of q, say q’, will be

9" = q(F'(B)=q(P"). (IV.8)

As before, after repeatedly generating the
resampling vector P* B times, a sample of g will
be obtained, say { q b. D=1 2, ..., B} Thebasic

bootstrap is, from this point of view, a specific case
of (IV.7) - (1V.8) in which the resampling vector P’
takes the form



P, =n;/n, (IV.9)

|
where n’ is the number of times X; appears in a

bootstrap sample. This means that P follows a
multinominal distribution,

E~1Mmmam (IV.10)
n
where Py = (ii i) is a n-dimensiona
nn n

vector. In other words, it is possible to execute a
resampling procedure by choosing another P'in the
n-dimensional simplex (IV.6). These arguments
lead to the Bayesan Bootstrap and Random
Weighting Method introduced by Rubin [ST95] and
Zhen [Zh87] respectively. We request the reader to
please refer to [OWO00), [ST95] [Wa00], and
[Zh87] for the details of the agorithms of the
Bayesian and Random Weighting M ethods.

V. DIRECT BIAS CORRECTION BOOTSTRAPS
The direct bias correction schemes for the estimate
of the Bhattacharyya bound directly use the
bootstrap estimate of the Bhattacharyya bound to
correct the bias, i.e. to apply (1V.5) given in section
IV. The dgorithms with the Basic Bootstrap
resampling scheme is described below:

Algorithm V.1 Basic Bootstrap
Input:
(i) n : the Sze of the training sample ;
(i) x[1, 1], ..., x[n, 1] : training samples - Class 1,
(iii) x[1, 2], ..., x[n, 2] : training samples Class 2,
(iv) B : repeated times of the bootstrap resampling.
Output: The Bhattacharyya bound estimate.
Method
BEGIN
& = CalcBound(x[1,1],...,x[n,1], x[1,2],..., X[n,2])
e=0
For (i=1toB)
For (=1ton)
m = random integer in [1, N
ylj, 11 = x[m, 1]
End-For
For (=1ton)
m = random integer in [1, N
Ylj, 21 =x[m, 2]
End-For
e=e+ CacBound(y[1,1],...,y¥[n, 1] ,
vi1, 2],...,y[n, 2])

End-For

e=2 g-¢el/B
Return e

END Basic Bootstrap

Procedure CalcBound

Input:

(i) n: the Size of the training sample ;

(i) 71, 1], ..., Z[n, 1] : sample data - Class 1,

(iii) [1, 2], ..., Z[n, 2] : sample data Class 2;

Output: A Bhattacharyya bound estimate.

Method

BEGIN

nM(1/2) = CalcDistance( Z[1, 1], ..., Z[n, 1],
71,2, ..., 2n, 2))

e=05* EXP(- M1/2))
Return e
END Procedure CalcBound

Procedure CalcDistance

Input: Asin Procedure CalcBound.
Output: A Bhattacharyya bound estimate.
Method

-]
1
[EEY

N

1
(z[1]-z[2]) + - In —-=—
2 Jla,lla,|
Return nm(1/2)
END Procedure CalcDistance

The agorithms are straightforward, but more
detailed explanations of the various steps are found
in [OWO00] and [W&00]. But, by changing the



technique of generating the bootstrap samples, the
other two estimating algorithms for the
Bhattacharyya bound, the Bayesian bootstrap and
the random weighting agorithms can be obtained.
They are draightforward and are omitted in the
interest of brevity and can be found in [Wa0Q].
However, the new procedure CalcNewDistance is
included as it will be utilized later.

Algorithm Procedure CalcNewDistance

Input: Asin Procedure CalcBound, and aflag to
indicate the resampling schemes.

Output: A Bhattacharyya bound estimate.
Method

BEGIN

Get_ Bootstrap_Weights (n, flag)

Z[1] =& jywililz[j, 1

S1=& [ wiilz[i, 1- y [1)(i, 1- Y [1])'
Get_ Bootstrap_Weights (n, flag)
z[2)=a ., wiilZj. 2

S =& [ wiilzli, 2- Z[2)(zli, 2- Z[2)

1 @ t8,0
my2)= =(Z[1- Z[2)" ¢—-—2=
8 e
|ﬁ|
(Z[0-Z[2)+ 22—
2 Jla,la,|
Return nm(1/2)
END Procedure CalcNewDistance

Here, the Get_ Bootstrap Weights procedure is
used to set the resampling weights w[1], w[2], ...,
w[n]. The two parameters passed to it determine the
dimension of the resampling vector and the scheme
used to generate the resampling vector.

V.1 Simulation Results

The simulation experiments were done with the
above three algorithms and the datistics for them
are listed in TABLE V.1 — V.3. The results are
given in terms of percentages.

TABLE V.1 Basic Bootstrap (%)
CLASSPAIR |(AB)|AC)|AD)|AB|AF) |AG)
Theordicd 4697| 4358| 4248 3063| 3658 3283}
Vaue
Mean 48341 42.16| 4053 31.84] 1852( 1264

STD 5% 829 884]1021) 1441 845

Maximum 5868| 5884 5844] 55.33| 4952 37.17}

8 5355| 49.24) 4809] 40.64] 33.08 19.94|

Median 4090 42.76| 41.23| 32.58| 1941 1152

D% 39.76| 3202) 2784 1656| 032 248

Minimum 044 833 1208 89- 002
11.00

TABLE V.2 Bayesian Bootstrap (%)
CLASSPAIR | (A.B)| AC)|(AD)|AE) | AF)|AG)
Theordica 4697| 4358| 42.48| 3963| 3653 3283
Vaue

Means 44.91) 30.30| 37.69| 2068 22.38| 118/
STD 553 772 819] 944 939 787
Maximum 55.08| 54.29) 4.2 49.74] 45.16) 3548
(0% S003| 4581 44.99] 37.71| 3052 1852
Median 4590 30.98| 3846| 3062| 2336 1113
D% 3664| 2056 2653) 1542 907 230

Minimum 2829 788 11720 837 182 0OL

TABLE V.3 Random Weighting Method (%)

CLASSPAIR | (AB)|(AC)|AD)|AB | AR |AC)
Theordicd 4697| 4358 4248| 30.63| 3658 32.88
Vaue

Means 42.33) 36.66| 35.14| 27.35) 2045| 10.7]]
STD 532 739 788 892 877 7.0
Maximum 5168| 51.24) 5L.35] 46.67| 4230 324
8 47.11) 43.09| 41.97| 3485| 27.62 17.19
Median 4321) 37.50| 3608 2827| 21.16| 9HA
D% 3419 27.11) 24.34) 1399 813 207

Minimum 570 829 1004 762 134 00L

As can been seen from the tables, the bootstrap
techniques does work in this case. On average, the
means of the 200 estimates for all the six class pairs
improves to some degree. As can be seen, the
percentage of the estimates with values over the
theoretical value aso increased. We note, however,
that there are a few disadvantages to the three
algorithms. The standard deviations of the estimates
are larger than that of the General approach. In the
experiment of the basic bootstrap algorithm with
the class pair (A, F), about 20% of the estimates
are even below zero, which is quite unacceptable.
Of course, a restriction to the agorithm could be
added to discard negetive estimate values. A simple
way of doing thisis to just reject an estimate when
a negative estimate value is reported, and to re-



draw the bootstrap samples and cdculate the
estimate again. This procedure would be repested
until  a nonnegative estimate is produced.
Comparatively, the Bayesian bootstrap and random
weighting method algorithms have smaller standard
deviations and no negative estimate values. More
detailed experimental results can be found in
[OWO00, Wa00] and are omitted here.
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