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ABSTRACT 
The Bhattacharyya Bound is a measurement of the 
error rate of a classifier. If the distributions of the 
classes are independent Normal distributions, and 
their parameters are known, the Bhattacharyya 
Bound can be calculated explicitly.  On the other 
hand, if the parameters of the distributions are 
unknown this bound has to be estimated. Both the 
theory and simulation results indicate that the 
estimator of the Bhattacharyya Bound given by 
traditional methods is seriously biased especially 
when the training sample size is small. By applying 
the bootstrap technique to the problem of estimating 
the Bhattacharyya Bound, we introduce several 
bootstrap schemes for this purpose. The results of 
the simulations prove that the bootstrap technique 
works very successfully, and dramatically reduces 
the bias of the estimate. 
 

I. INTRODUCTION 
I.1 Bhattacharrya Bound 
In a statistical pattern recognition problem, a 
random vector X, called a pattern, is composed of a 
pair  

X = (V, ω), (I.1) 
where V is a d-dimensional vector called the feature 
vector, and ω is a variable representing a class. 
Generally, a feature vector V can take a continuous 
value in a d-dimensional space and a class variable 
ω can take one of a finite set of values. In this 
paper, we consider only the case when there are two 
class cases, i.e. ω ∈{1, 2}. The a priori probability 
of the two classes, P1 and P2 are assumed known 
and equal.  
 

The conditional density of a feature vector V given 
ω is denoted as pω(v), ω = 1, 2. It is well known 
that the posterior probability of ω given V is  

qω(v) = 
)(

)(

xp
vpP ωω ,    ω = 1, 2 (I.2) 

where p(x) is the mixed density function and is a 
constant independent of  ω.  
 
The purpose of pattern recognition is to determine 
whether a given feature vector V belongs to class 1 
or 2. In other words, the aim is to predict the value 
of ω from a given feature vector V. A decision rule 
based on probabilities is to maximize the posterior 
probability with the given feature vector V. Thus, 
according to (I.2), the classification rule, called the 
Bayesian Decision Rule, is: 

ω = 1  if q1(V) > q2(V), or 
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The conditional error caused by rule (I.3) is : 
r(V) = min{ q1(V), q2(V)}. (I.4) 

The Bayesian error is the average of r(V), 

ε = E{ r(V)} = � r(V)p(V)dV  

  = � min{P1p1(V), P2p2(V)}dV.  (I.5) 
 
Equation (I.5) is the crucial measurement for the 
performance of the decision rule. Unfortunately, it 
is generally very hard to directly calculate a 
Bayesian error even if the conditional probabilities 
p1(V) and p2(V) are known. Therefore, many 
researchers have devised upper bounds for (I.5) 
which are easier to calculate and estimate. Two 
such bounds, the Chernoff and Bhattacharyya 
bounds, are the most well-known ones and will be 



 

discussed in the second section. In this paper we 
concentrate on the Bhattacharyya bound. Thus, the 
third section will consider the traditional approach 
of estimating the Bhattacharyya bound and the 
theoretical properties of the estimate. We will see 
that traditional methods to estimate the 
Bhattacharyya bound perform poorly especially 
when the sample size is small (for example, eight). 
This is clear from simulation results given in detail 
in [OW00] and [Wa00]. The concepts and general 
algorithms of the bootstrap are discussed in Section 
IV. Although the problem of estimating the 
Chernoff bound is not mentioned here; it is easy to 
see that the approaches introduced here for 
Bhattacharyya bound estimations can be directly 
applied to the Chernoff bound. 
 
I.2 Experimental Data Set 
The data set used for all the experiments in this 
paper is a set of randomly generated samples, which 
consists of training samples for seven classes. Each 
class has a 2-dimensional normal distribution with 
covariance matrix ∑ = I, and a training sample size 
of eight. The mean vectors of the eight classes are 
listed in TABLE I.1. 
 
TABLE I.1 Expectations of the classes 

CLASS A B C D 
Mean (0.0, 

0.0) 
(0.5, 
0.0) 

(1.1, 
0.0) 

(1.1, 
0.7) 

CLASS E F G  
Mean (1.1, 

1.5) 
(2.0, 
1.5) 

(3.0, 
1.5) 

 

 
Only two classes are involved in each experiment: 
one is the class A, and the other is selected from the 
rest. Hence, there are, in total, six experimental 
pairs of classes, (A, B), (A, C), (A, D), (A, E), (A, 
F), and (A, G), where each successive pair tests 
classes which are increasingly distant from the 
other. With each class pair, an experiment 
repeatedly does 200 trials of simulation for any 
given algorithm. The results of the experiments 
given in this paper are the average statistics from 
the 200 trials. As only the case of two classes is 
discussed in this paper, for simplicity, we use the 
notation that Xi, ω =  (V, ω). So Xi,1 represents 
sample data from class  1, and Xi,2 represents a 
sample data from class  2.  
 

II. CHERNOFF-BHATTACHARRYA BOUNDS 
II.1 Chernoff Bound 
For any real numbers, a, b ≥ 0, it is well known 
that the following inequality holds: 

min {a, b} ≤ as b1-s,  0  ≤  s  ≤  1. (II.1) 
Applying inequality (II.1) to (I.5), we have 

� min{P1p1(V), P2p2(V)}dV  

  ≤ P1
s  P 2

1−s � p1
s (V), p 2

1−s (V)dV. 

The right side of the above inequality 

εu = P1
s  P 2

1−s � p 1
s (V), p 2

1−s (V)dV. (II.2)  

is called the Chernoff bound. The optimum s is the 
value that minimizes the value of εu.  We consider 
the case when the conditional density functions are 
normal distributions 

pj(V) = Nj(Mj, ∑j),   j = 1, 2 . 
The integration part of (II.1) can be expressed as 

� p1
s (V), p 2

1−s (V)dV = e -µ(s), where, (II.3) 

µ(s) = 
2

)1( ss −
(M1 - M2)

T [s ∑1 + (1 - s) ∑2]
 -1  
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1
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21

21

||||

|)1(| ss
.   (II.4) 

The quantity µ(s) is called the Chernoff distance. It 
is obvious that the optimum value of s will 
maximize the value of µ(s), which can be obtained 
by studying the variation of µ(s) for various values 
of s for the given Mj and ∑j (j = 1, 2). 
 
II.2 Bhattacharyya Bound 
The Bhattacharyya bound results when the 
Chernoff  bound is simplified by selecting the value 
s = 1 / 2. In such a case,  (II.2) becomes 

εu = 21PP � )()( 21 VpVp dV  

    = 21PP e -µ(1/2).  (II.5) 

The upper bound given by (II.5) is called the 
Bhattacharyya bound. In our case, it is assumed 
that P1 = P2 = ½; therefore, the Bhattacharyya bound 
will take a form of: 

εu = 
2
1 � )()( 21 VpVp dV = 

2
1

e -µ(1/2).  (II.6) 

Correspondingly, the Bhattacharyya distance is: 

µ(1/2) = 
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III. ESTIMATING BHATTACHARYYA BOUNDS  
Let X = {X1,1, X2,1, …, Xm,1, X1,2,…, Xn,2} be the 
training sample: the first m sample points X1,1, X2,1, 
…, Xm,1 belongs to class 1 with a normal 
conditional distribution 

X1,1, …, Xm,1 ~ N1(M1, ∑1), (III.1) 
and the other n sample data X1,2,…, Xn,2 belongs to 
class 2 with a normal conditional distribution 

X1,2,…, Xn,2 ~ N 2(M2, ∑2). (III.2) 
The maximum likelihood estimates of the means Mj 
and covariances ∑j (j = 1, 2) [Fu92] are given 
respectively by  

1M̂ , 1∑̂ , 2M̂  and 2∑̂ .         (III.3) 

 
It is well known that the estimates given by (III.3) 
have good properties, and are the optimized 
estimates of the parameters Mj and ∑j (j = 1, 2). 
Based on (III.3), an estimate of the Bhattacharyya 
bound can be calculated by the following steps: 
1. Replace the parameters in (II.7) with their 

estimates given by (III.3) to get an estimate of 
Bhattacharyya distance, say $µµ (1/2).  

2. Replace µ(1/2) in (II.6) with $µµ (1/2) to get an 

estimate of the Bhattacharyya bound.  
 
We refer to the estimating method described above 
as the Direct Estimating approach or the General 
approach. The unanswered question is one of 
determining how good the estimate of the General 
approach will be? The answer to this question is by 
no means trivial, because the Bhattacharyya 
distance and bound are fairly complex functions of 
the parameters Mj and ∑j.  
 
To clarify issues, we present a brief discussion on 
the estimate properties of a function of the 
parameters. Let θ = (θ1, θ2, …, θt)

T be a parameter 

vector, whose estimate are θ̂ = ( θ̂ 1, θ̂ 2, …, θ̂ t)
 T, 

and f = f(θ) be a function of θ. Using the General 

approach, an estimator of f̂ = f( θ̂ ) can be obtained. 

Assuming that θ and θ̂  are close enough, a Taylor 

series can be used by expanding f̂ = f( θ̂ ) up to the 

second order terms, 

f̂ = f( θ̂ ) ≅ f(θ) + 
T

θ∂
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∆θ  
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, (III.4) 

where ∆θ = θ̂ - θ.  If θ̂ is an unbiased estimate of 

θ, E(∆θ) = 0. Thus, 

E( f̂ )  ≅ f(θ) + 
1
2

tr 
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It is clear to see that f̂  is generally a biased 
estimator of f. In our case  

θ = (M1
 T, M2

 T, svec(∑1)
T, svec(∑2)

 T) T , 
where svec(A) represents a vector consisting of all 
different components of a symmetric matrix A = 
(ai,j)n×n, svec(A) = (a11,…, an1, a 22, …, a n2, …, ann), 
and its estimator  

θ̂  = (M1
 T, M2

 T, svec(∑1)
T, svec(∑2)

 T) T 

given in (III.3) is unbiased. For the Bhattacharyya 
distance, the second term on the right side in (III.5) 
is extremely complicated (please refer to 
Fukunaga’s book [Fu92] for more details). It is thus 
apparent that the estimate of the Bhattacharyya 
distance deduced from the General approach is 
biased, as is the Bhattacharyya bound. 
 

IV. THE BOOTSTRAP TECHNIQUE 
IV.1 Basic Bootstrap 
The bootstrap technique was first introduced by 
Efron in the late 1970’s [Ef79]. The basic strategy 
of bootstrap is based on resampling and simulation.  
 
Let X = {X1,  X2, …,  Xn} be an i.i.d. d-dimensional 
sample from an unknown distribution F. We 
consider an arbitrary functional of F, θ  =  θ(F),  
which for example, could be an expectation, a 
quantile, a variance, etc. The quantity θ is estimated 

by a functional of the empirical distribution $F , θ̂  

=  θ( $F ), where 

$F  : mass 
1

n
 at x1,  x 2, …, xn,   

where n is the sample size,  and {x1,  x 2, …, xn} are 
the observed values of the sample {X1, …,  Xn}.  



 

 

The bias of θ̂ is well defined as  

Bias = EF [ θ̂  - θ ] = EF [θ( $F ) - θ(F)].  (IV.1) 
where “EF” indicates the expectation under 

distribution F. Though it is possible to calculate θ̂   

=  θ( $F ) having observed X1 = x1,  X2 = x2, …,  Xn = 
xn, it is not possible to derive the bias directly 
because of the fact that both θ and F are unknown.  
 

From one perspective, the quantity θ̂  can be 
regarded as a simulation of θ, since we use the 

empirical distribution $F  to mirror the characteristic 
of the unknown distribution F via the sampling 
process.  Extending the idea to the bias estimation, 
we can use the same strategy to solve the problem. 

As the empirical distribution $F  is known, it is easy 

to randomly generate a sample from $F .  Assuming 
the size of the sample generated is n, the sample is  

X* = {X 1
* , X 2

*
 , …, X n

* }.  (IV.2) 

Thus we have an empirical distribution $F * of the 

empirical distribution $F , where, 

$F * : mass 
1

n
 at x1

* , x 2
* , …, x n

* , 

and {x1
* , x 2

* , …, x n
* } are the observed values of 

the {X 1
* , X 2

* ,…,X n
* }, and a corresponding  θ̂  *  

=  θ( $F *) is the estimate of θ̂ . Thus an estimator of 
the bias is 

 Bias$  = E* [ θ̂ *  - θ̂ ]  = E *[θ( $F *) - θ( $F )],
        (IV.3) 

where E* is the conditional expectation of $F  given 

{X 1
*  = x 1

* , X 2
*  = x 2

* , …, X n
*  = x n

* }. The 

procedure to estimate the bias described above is 
called the Bootstrap technique. A typical bootstrap 
procedure will take several steps : 

1. Generate an an empirical distribution $F * of the 

empirical distribution $F ; 

2. Get a corresponding  θ̂  *  =  θ( $F *) as the 

estimate of θ̂ ; 
3. Repeat steps 1 and 2 B times, so as to have a 

set of estimates { θ̂ 1
* , θ̂ 2

* , …, θ̂ *
B } of θ̂ ; 

4. Calculate the estimate of the bias as  

Bias$  = 
B

1
∑b θ̂ *

b  - θ̂ , (IV.4) 

In the interest of brevity, the details are omitted here 
- they can be found in [Wa00] and in the 
unabridged paper [OW00]. Efron suggested 
choosing B = 200 as the number of times the 
bootstrap resampling is repeated[E83], which is 
quite adequate for most of purposes. 
 

If θ̂  is an estimate of θ and a bootstrap estimate of 
the bias (IV.4) is provided, a bootstrap estimate of 
θ can be obtained by correcting the bias of the 
original estimate as: 

θ̂ BOOT = θ̂ − Bias$ = 2 θ̂ − θ̂ * (IV.5) 
This strategy will be used later to estimate the 
Bhattacharyya bound. 
 
IV.2 Bayesian/Random Weighting Method 
As described above, the key issue of the bootstrap 

technique is to obtain an empirical distribution $F * 

of the empirical distribution $F .  It is possible to 
generalize the sampling scheme for retrieving a 
bootstrap sample in the following way. 
 

Let P* = (P *
1 , P *

2  ,…, P *
n )  be any probability 

vector on the n-dimensional simplex 

ϕn={P*: P *
i ≥≥0, ∑iP

*
i =1},  (IV.6) 

called a resampling vector [Ef82].  For a sample X  
= {X1, X2, …, Xn} a re-weighted empirical 

probability distribution F̂ * is defined with a 
resampling vector P* as 

F̂ *: mass P *
i  on xi , i = 1, 2, …, n,  (IV.7) 

where {x1, x2, …, xn} are the observed values of the 
sample {X1, X2, …, Xn}. Thus, a resampled value 

of θ̂ , say θ̂ *, will be 

θ̂ * =  θ( F̂ *(P *)) = θ(P *). (IV.8) 
 
 
As before, after repeatedly generating the 

resampling vector P * B times, a sample of θ̂  will 

be obtained, say { θ̂ *
b : b = 1, 2, …, B}. The basic 

bootstrap is, from this point of view, a specific case 
of (IV.7) - (IV.8) in which the resampling vector P* 
takes the form 



 

P *
i  = n *

i / n,  (IV.9) 

where n *
i  is the number of times Xi appears in a 

bootstrap sample. This means that P* follows a 
multinominal distribution, 

P* ~ 
n

1
Mult(n, P0),  (IV.10) 

where P0 = (
n

1
,
n

1
 ,…, 

n

1
) is a n-dimensional 

vector. In other words, it is possible to execute a 
resampling procedure by choosing another P*in the 
n-dimensional simplex (IV.6). These arguments 
lead to the Bayesian Bootstrap and Random 
Weighting Method introduced by Rubin [ST95] and 
Zhen [Zh87] respectively. We request the reader to 
please refer to [OW00), [ST95] [Wa00], and 
[Zh87] for the details of the algorithms of the 
Bayesian and Random Weighting Methods. 
 
V. DIRECT BIAS CORRECTION BOOTSTRAPS 

The direct bias correction schemes for the estimate 
of the Bhattacharyya bound directly use the 
bootstrap estimate of the Bhattacharyya bound to 
correct the bias, i.e. to apply (IV.5) given in section 
IV. The algorithms with the Basic Bootstrap 
resampling scheme is described below: 
 
Algorithm V.1 Basic Bootstrap 
Input:  
(i) n : the size of the training sample ; 
(ii) x[1, 1], …, x[n, 1] : training samples - Class 1; 
(iii) x[1, 2], …, x[n, 2] : training samples Class 2; 
(iv) B : repeated times of the bootstrap resampling. 
Output:  The Bhattacharyya bound estimate. 
Method 
BEGIN 
ε0 = CalcBound(x[1,1],…,x[n,1], x[1,2],…, x[n,2]) 
ε = 0 
For (i = 1 to B) 

For (j = 1 to n)  
m = random integer in [1, n] 
y[j, 1] = x[m, 1] 

End-For 
For (j = 1 to n) 

m = random integer in [1, n] 
y[j, 2] = x[m, 2] 

End-For 
ε = ε + CalcBound(y[1,1],…, y[n, 1] ,  
                                        y[1, 2],…, y[n, 2])  

End-For 
ε = 2 × ε0 − ε / B 
Return ε 
END Basic Bootstrap 
 
 
 
 
Procedure CalcBound 
Input:  
(i) n : the size of the training sample ; 
(ii) z[1, 1], …, z[n, 1] : sample data - Class 1; 
(iii) z[1, 2], …, z[n, 2] : sample data Class 2;  
Output:  A Bhattacharyya bound estimate. 
Method 
BEGIN 
µ(1/2) = CalcDistance( z[1, 1], …, z[n, 1],  

z[1, 2], …, z[n, 2]) 
 ε = 0.5 * EXP(−µ(1/2)) 
Return ε 
END Procedure CalcBound 
 
Procedure CalcDistance 
Input: As in Procedure CalcBound.  
Output:  A Bhattacharyya bound estimate. 
Method 
BEGIN 

z [1] = 
n

1
∑ n

j 1= z[j, 1] 

Σ1 = 
1-

1
n

∑ n
j 1= (z[j, 1]- z [1])(z[j, 1]- z [1])T 

z [2] = 
n

1
∑ n

j 1= z[j, 2] 

Σ2 = 
1-

1
n

∑ n
j 1= (z[j, 2]- z [2])(z[j, 2]- z [2])T 

µ(1/2) = 
8

1
( z [1] - z [2])T 

1

21

2

−







 ∑+∑

 

         ( z [1] - z [2]) + 
2
1

ln 
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|

21
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Return  µ(1/2) 
END Procedure CalcDistance 
 
The algorithms are straightforward, but more 
detailed explanations of the various steps are found 
in [OW00] and [Wa00]. But, by changing the 



 

technique of generating the bootstrap samples, the 
other two estimating algorithms for the 
Bhattacharyya bound, the Bayesian bootstrap and 
the random weighting algorithms can be obtained. 
They are straightforward and are omitted in the 
interest of brevity and can be found in [Wa00]. 
However, the new procedure CalcNewDistance is 
included as it will be utilized later. 
 
Algorithm Procedure CalcNewDistance 
Input: As in Procedure CalcBound, and  a flag to 
indicate the resampling schemes. 
Output:  A Bhattacharyya bound estimate. 
Method 
BEGIN 
Get_ Bootstrap_Weights (n, flag) 

z [1] = ∑ n
j 1= w[j]z [j, 1] 

Σ1 = ∑ n
j 1= w[j](z [j, 1]- y [1])(z[j, 1]- y [1])T 

Get_ Bootstrap_Weights (n, flag) 

z [2] = ∑ n
j 1= w[j]z[j, 2] 

Σ2 = ∑ n
j 1= w[j](z [j, 2]- z [2])(z [j, 2]- z [2])T 

µ(1/2) = 
8

1
( z [1] - z [2])T 

1

21

2

−







 ∑+∑

 

          ( z [1] - z [2]) + 
2
1

ln 
||||

|
2

|

21

21
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∑+∑

 

Return  µ(1/2)  
END Procedure CalcNewDistance 
 
Here, the Get_ Bootstrap_Weights procedure is 
used to set the resampling weights w[1], w[2], …, 
w[n]. The two parameters passed to it determine the 
dimension of the resampling vector and the scheme 
used to generate the resampling vector. 
 
V.1 Simulation Results 
The simulation experiments were done with the 
above three algorithms and the statistics for them 
are listed in TABLE V.1 – V.3. The results are 
given in terms of percentages. 
 

TABLE V.1 Basic Bootstrap (%) 
CLASS PAIR (A, B) (A, C) (A, D) (A, E) (A, F) (A, G) 

Theoretical 
Value 

46.97 43.58 42.48 39.63 36.58 32.88 

Mean 48.34 42.16 40.53 31.84 18.52 12.64 

STD 5.94 8.29 8.84 10.21 14.41 8.46 
Maximum 58.68 58.84 58.44 55.33 49.52 37.17 
80% 53.55 49.24 48.09 40.64 33.08 19.96 
Median 49.90 42.76 41.23 32.58 19.41 11.52 
20% 39.76 32.02 27.84 16.56 -0.32 2.48 
Minimum 30.44 8.33 12.08 8.92 -

11.00 
0.02 

 
 
 
TABLE V.2 Bayesian Bootstrap (%) 

CLASS PAIR (A, B) (A, C) (A, D) (A, E) (A, F) (A, G) 

Theoretical 
Value 

46.97 43.58 42.48 39.63 36.58 32.88 

Means 44.91 39.30 37.69 29.68 22.38 11.87 
STD 5.53 7.72 8.19 9.44 9.39 7.87 
Maximum 55.08 54.29 54.22 49.74 45.16 35.48 
80% 50.03 45.81 44.99 37.71 30.52 18.52 
Median 45.90 39.98 38.46 30.62 23.36 11.13 
20% 36.64 29.56 26.53 15.42 9.07 2.30 
Minimum 28.29 7.88 11.72 8.37 1.82 0.01 

 
TABLE V.3 Random Weighting Method (%) 

CLASS PAIR (A, B) (A, C) (A, D) (A, E) (A, F) (A, G) 

Theoretical 
Value 

46.97 43.58 42.48 39.63 36.58 32.88 

Means 42.33 36.66 35.14 27.35 20.45 10.71 
STD 5.32 7.39 7.88 8.92 8.77 7.20 
Maximum 51.68 51.24 51.35 46.67 42.30 32.54 
80% 47.11 43.09 41.97 34.85 27.62 17.18 
Median 43.21 37.50 36.08 28.27 21.16 9.94 
20% 34.19 27.11 24.34 13.99 8.13 2.07 
Minimum 25.70 8.29 10.04 7.62 1.54 0.01 

 
As can been seen from the tables, the bootstrap 
techniques does work in this case. On average, the 
means of the 200 estimates for all the six class pairs 
improves to some degree. As can be seen, the 
percentage of the estimates with values over the 
theoretical value also increased. We note, however, 
that there are a few disadvantages to the three 
algorithms. The standard deviations of the estimates 
are larger than that of the General approach. In the 
experiment of the basic bootstrap algorithm with 
the class pair (A, F), about 20% of the estimates 
are even below zero, which is quite unacceptable. 
Of course, a restriction to the algorithm could be 
added to discard negative estimate values. A simple 
way of doing this is to just reject an estimate when 
a negative estimate value is reported, and to re-



 

draw the bootstrap samples and calculate the 
estimate again. This procedure would be repeated 
until a nonnegative estimate is produced. 
Comparatively, the Bayesian bootstrap and random 
weighting method algorithms have smaller standard 
deviations and no negative estimate values. More 
detailed experimental results can be found in 
[OW00, Wa00] and are omitted here. 
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