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Abstract: In this paper we present a regularization approach to the training of all the network weights in cascade-
correlation type constructive neural networks. Especially, the case of regularizing the output neuron of the net-
work is presented. In this case, the output weights are trained by employing a regularized objective function con-
taining a penalty term which is proportional to the weight values of the unit being trained. It is shown that the
training can still be done with the pseudo-inverse method of linear regression if the output unit employs linear
activation function. The degree of regularization and the smoothness of network mapping can be adjusted by
changing the value of the regularization parameter. The investigated algorithms were Cascade-Correlation, Mod-
ified Cascade-Correlation, Cascade, and Fixed Cascade Error. The algorithms having the regularization of the
hidden and output units were compared with the ones having only the regularization of the hidden units and with
those having no regularization at all. The simulation results show that the regularization of the output unit is
highly beneficial. It leads to better generalization performance and in many cases to lower computational costs
when compared to the partially and non-regulated versions of the same algorithms.

Key-Words: Constructive neural networks, regularization, generalization, cascade-correlation, classification,
regression.

1   Introduction
One of the central issues in the application of neural
networks is the determination of the appropriate level
of complexity for the networks. The complexity
determines the generalization properties of the
model, since a network which is either too simple or
too complex will have poor generalization perform-
ance. This means that there is some optimum number
of network coefficients for which the network will
give the best representation of the function needed for
solving the given problem [2].

There are basically three ways to control the net-
work size and structure. Constructive algorithms use
a minimal initial network and add weights, hidden
neurons or even layers until the network has learnt
the given problem at a desired accuracy. Pruning
algorithms, on the other hand, use an excessively
large initial network, and as the training proceeds the
numbers of weights, hidden units or layers are
decreased until the network can just represent the
problem solution [5]. The third way to control the
network structure is regularization [1], [2], in which
the cost function of the network is modified to con-
tain a term which favours smaller network parameter
values. When the unimportant network parameters

have been driven close to zero, their effect on the net-
work output is decreased although they are not actu-
ally removed from the network.

Although the constructive approach has been
shown to have a number of advantages [5] over the
pruning approach, there still is one major disadvan-
tage in the constructive algorithms. We do not exactly
know when to stop adding new hidden units into the
network and, thus, the resulting possibly overly large
network may lead to over-fitting and inferior general-
ization performance. One way to tackle this problem
is to combine the constructive algorithms with the
regularization approach. Regularization can prevent
the constructive algorithm from learning too complex
(and possibly erroneous) network mappings by set-
ting the excessive network weights close to zero,
which then decreases the effective size of the net-
work. This way the network that may be too large in
its true size acts like a smaller network, the size of
which is closer to the optimal size needed in the par-
ticular application. Thus the key idea behind the reg-
ularization is that it encourages smoother network
mappings [2], which is especially beneficial in
regression (function approximation) problems. The
degree of smoothness can easily be adjusted by regu-



larization parameters that can be varied according to
the algorithm and application at hand.

This paper is focused on applying a regularization
approach in the hidden and output unit training of
constructive neural network algorithms. Especially a
new feature of regularizing linear output units in
some cascade-correlation type algorithms has been
studied. The idea of the cascade-correlation algo-
rithm is to add hidden units one by one, each on a
separate hidden layer, to form a multilayer perceptron
capable of solving a learning problem without prior
assumptions about its size and structure.

2   Regularization in the Constructive
Algorithms
We have studied four different constructive algo-
rithms. The investigated algorithms were Cascade-
Correlation (CC) [3], Modified Cascade-Correlation
(MCC) with objective function  presented in [5],
Cascade (CAS) [12], and Fixed Cascade Error (FCE)
[6]. We studied three different versions of all these
algorithms. In the first versions (i.e. non-regulated
versions), regularization was not applied at all. In the
second versions (i.e. partially regularized versions),
we used regularization in the hidden unit training but
not in the output unit training. Finally, in the third
versions (i.e. totally regularized versions), we applied
regularization both in the hidden unit and output unit
training. The performance of all the versions of the
algorithms was then assessed based on numerical
simulations both with classification and regression
problems.

2.1  Regularizing the Hidden Units
The first benchmark algorithm is the standard Cas-
cade-Correlation algorithm designed by Fahlman
and Lebiere [3]. The cascade-correlation learning
begins with a minimal network and automatically
adds new hidden units one by one until a satisfactory
solution is achieved. Once a new hidden unit has
been added to the network, its input weights are fro-
zen. This unit then becomes a permanent feature
detector in the network, and it produces outputs for
possibly additional hidden units creating more com-
plex feature detectors. The cascade-correlation archi-
tecture has been noticed to have several advantages
over conventional non-constructive backpropagation
algorithms [3].

The (partially and totally) regularized versions of
the CC algorithm can be presented in the following

way. First, q (q = 8 in our simulations with all the
algorithms) candidate hidden units are created by ini-
tializing their weights with random numbers in prede-
fined ranges (these are given in section 3 for the
investigated algorithms). Next, all the q candidates
are trained to their final values with RPROP algo-
rithm [13] by employing the regularized version of
the standard objective function in the update rule. For
cascade-correlation, this function is given by

(1)

where Vj,l is the output of the jth candidate unit for
the lth training pattern, Vj the mean of the jth candi-
date unit outputs, El is the network output error (one
output unit in all our simulations) for the lth training
pattern, E is the mean of the network output errors, ν
is the regularization parameter, and wij is the network
weight that connects the input unit (or pre-existing
hidden unit) i to the candidate unit j. It should be
noticed that in the standard (non-regulated) version of
CC algorithm, the objective function is otherwise the
same but the last term (including the squared sum of
the weights) in Equation 1 is missing. The same is
true also with the other investigated algorithms.

Finally, after all the candidates have been trained
and the values of the objective function have been
recorded, the maximum magnitude of the regularized
covariance max(Cc,j) among all the candidates is
searched. The corresponding candidate unit j is
selected to be the most promisingly trained hidden
unit which is then installed in the active network.
After this the network output unit is trained (with or
without regularization, see section 2.2) and all the
other candidate hidden units are deleted. The above
procedure is repeated at each point when a new hid-
den unit is to be added to the network.

Modified Cascade-Correlation algorithm [5] is
almost equivalent to CC. Only exceptions are due to
the different objective function used in the hidden
unit training. The averages of both the remaining net-
work error and the candidate hidden unit output have
been deleted when compared to the objective func-
tion of the cascade-correlation. Otherwise, the gen-
eral structure of the algorithm has been maintained
the same. The candidate hidden units are now trained
by maximizing the regularized version of  [5],
which is given by

(2)
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All the other steps of this algorithm are kept the same
as compared to CC. The standard multiple-candidate
unit version of the algorithm is obtained just like in
all the algorithms by deleting the last term of the
objective function used in the hidden unit training.

There are two major changes in Cascade algo-
rithm [12] when compared to the CC algorithm.
Firstly, the regularized objective function employed
in the candidate hidden unit training is not correlation
(or covariance, actually) function but the squared
error function, which is defined as

(3)

where oj,l is the actual network output for lth training
pattern with the jth candidate unit in the network and
tl is the target output of the network for the lth train-
ing pattern. This objective function means that we
have to update also the output weight of the candidate
unit after each epoch during the candidate unit train-
ing, which leads to higher computational complexity
than in the other algorithms. Secondly, this objective
function is minimized and not maximized as in the
case of correlation (this also explains the use of a pos-
itive sign in front of the last term in Equation 3).
Again all the other parts of the algorithm are similar
to CC.

Fixed Cascade Error algorithm [6] is rather simi-
lar to the original cascade-correlation [3] and the
modified CC that was presented by Kwok and Yeung
[5]. The difference is that the objective function used
in the regularized hidden unit training is now defined
as

(4)

The best candidate unit after the training is yet again
selected to be the one that has the maximal value of
the above mentioned criterion CFE,j among all the q
candidates. The other stages of the algorithm are kept
similar to those of CC.

2.2  Regularizing the Output Units

The output unit regularization is carried out in a
little bit different way when compared to the hidden
unit regularization shown in the previous section.
Now, the activation function of the unit being trained
is a linear one, which enables us to solve the output
unit weights analytically. This means that we do not

have to use RPROP or any other iterative method in
the training phase. The objective function of the out-
put unit training in the totally regularized versions of
the algorithms is the squared error function added
with the regularization term [4], [9]

(5)

where µ is the regularization parameter, e1×n is the
output error vector, and v1×(p+h+1) is the weight vec-
tor (including bias) of the output unit. The number of
the training patterns is n, the number of network
inputs is p, and the number of the hidden units
installed in the network is h. (At this point, we must
notice that the standard objective function in the out-
put unit training is the regularized objective function
without the last term given in Eq. 5. That standard
function is used in the partially and non-regulated
versions of the algorithms.) Eq. 5 can be converted
into

(6)

where o1×n is the actual output vector and t1×n is the
target output vector of the network. Moreover,
R(p+h+1)×n is the input matrix of the output unit and
U(p+h+1)×(p+h+1) is a diagonal regularization matrix
in which all the diagonal elements are µ’s. Now, the
optimum value for v which minimizes the objective
function can be found by setting the gradient of t
objective function to zero

(7)

Eq. 7 can easily be solved in the following way. Firs

(8)

This can be computed further as

(9)

which then solves as

(10)

When compared to the solution of the standard ca
which is defined as

(11)

we notice that only the regularization matrix U has to
be added inside the inverse part in the final soluti
of the non-regulated case to obtain the final soluti
of the regulated case. By adding the matrix U into the
solution we can even avoid some numerical difficu
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ties that are rather often met in inverting matrices
(this adding method is called ‘ridge regression’ in
mathematical literature). Also the easiness of the
needed change in the equation encourages the use of
regularization in the output unit training, since with
only a tiny increase in the computational complexity
we can expect a clear enhancement in the generaliza-
tion performance of the neural network at hand.

3   Simulations and Results
The algorithms were tested in extensive simulations
with four classification and four regression problems.
The classification problems were Chess [8], Spiral
[3], 10-bit Parity [3], and Cancer diagnosis problem
[11]. The regression problems were Henon map [8],
Laser time series [14], Additive function approxima-
tion [5], and Mackey-Glass time series [10]. The
Cancer diagnosis problem and Laser time series are
based on real-world data while the others are artifi-
cially generated. All the simulations were repeated
twenty times due to the random initialization of the
network weights. The candidate hidden unit weights
were initialized with uniformly distributed random
numbers of the range [-0.5, +0.5] in all the versions
of all the algorithms.

The regularization parameter ν was set to 0.01 for
the totally and partially regularized versions of the
CC, MCC, and FCE algorithms in all the problems.
For the totally and partially regularized versions of
the CAS algorithm we used a parameter ν value of
10-5 in Chess, Cancer, Laser, and Additive problems
while in Spiral, Parity, Henon, and Mackey problems
we utilized a parameter ν value of 5×10-6. The regu-
larization parameter µ was set to 0.0001 for the
totally regularized versions of all the algorithms. Set-
ting the values of the regularization parameters was
not highly critical to the performance of the algo-
rithms. Only in CAS algorithm the parameter ν had to
be set more carefully according to each simulation
problem. It is also important to notice that the regu-
larization parameter ν should not be too large in any
of the algorithms since that would lead to some com-
putational difficulties first in the hidden and then in
the output unit training phases. On the other hand, if
both of the regularization parameters are set to very
low (positive) values, the regularized algorithms
behave just like their standard versions. In our simu-
lations, we used values that were noticed to perform
relatively well with all the simulation problems we
studied.

Since all the candidate hidden units had sigmoid
activation function (hyperbolic tangent), they wer
trained with RPROP algorithm [13]. The hidden un
training was continued until the changes in the obje
tive function value were sufficiently small or th
maximum number of the epochs was reached. T
output units were trained by the pseudo-inver
method of linear regression as discussed in sect
2.2. The network training was stopped when the n
work output error fell below the target error value o
the maximum number of the hidden units wa
reached. The error values that we used for comput
the simulation results were classification err
(CERR) for the classification problems and norma
ized mean square error (NMSE) for the regression
problems [7]. 

The final results are shown in Table 1. In ea
case, the averaged best result of the testing data
the average numbers of hidden units and MFLO
(millions of floating point operations) are shown. Th
uppermost row in all the cases was obtained with 
totally regularized version of the particular algorithm
the row in the middle is from the partially regularize
version, and the lowest row is from the standard no
regulated version of the algorithm. In Chess and S
ral problems the results are shown according to 
training data since there were no testing data ava
ble in these problems. For the readers’ convenien
the best result among all the versions of the alg
rithms is shown in ‘bold’ for each problem. In case 
many equally best results in a single problem, all t
best results in that particular problem are given 
‘bold’.

The results in Table 1 show that the output u
regularization offers us some clear benefits. When 
compare the results of the totally regularized versio
to the partially regularized versions of the algorithm
we can see that the changes in the error values ar
the range of -22% to +6% which means that the o
put unit regularization enhances the generalizat
performance of the networks in most cases. When
consider the number of the hidden units, the chan
are respectively in the range of -18% to +18% sho
ing that the output unit regularization does n
decrease the actual size of the networks. T
enhancement in the generalization performan
occurs thus due to the decreased effective size of the
networks as could be expected. When we study 
respective change in the number of MFLOPS w
notice it to be in the range of -27% to +25%. This 
not surprising since the output unit regularization 
such a simple operation that it should not increase 
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computational load of the algorithms. Thus, the varia-
tions in the computational load come mainly from the
small variations in the number of the hidden units,
especially when we remember that the computational
load of the algorithms is proportional to the square of
the number of the hidden units in the networks with
fully cascaded architecture.

When we examine the effects of the output unit
regularization problem-by-problem, we see that it is
extremely beneficial in Parity, Henon, and Additive
problems. Yet again it is interesting to notice that the
output unit regularization enhances results in Parity
problem even more than the hidden unit regulariza-
tion alone [7]. What makes this interesting is that we
have included some input noise in the training data of
that particular problem. Since it has been shown that
this kind of an addition of input noise is equivalent to
regularization [1], it means that the results with the
standard versions of the algorithms are already regu-
larized in some sense. Despite of that fact, both of the
regularized versions give furthermore enhancement
in the results. It is also rather delightful to notice that
the results in Additive function approximation prob-
lem are considerably enhanced, since this problem is
one of the most difficult ones investigated in this
study. Furthermore, we can see that the output unit
regularization does not only enhance the results of the
classification problems but also the results of the
regression problems, although the linear output unit
regularization alone could easily be thought to be
favourable mainly for the classification performance.
This observation confirms the fact that (any kind of)
regularization is favourable for solving regression
problems.

Finally, when we compare the totally regularized
versions of the algorithms to their partially regular-
ized versions one-by-one, we notice that the output
unit regularization works best with CC algorithm.
The enhancements are observable also with the rest
three algorithms although there is some decline in
results in some cases. As a summary of the results
with totally regularized versions we can say that the
FCE algorithm is computationally the easiest one, the
CC algorithm needs the smallest amount of hidden
units, and the MCC algorithm provides us the best
error values on average. The CAS algorithm is found
to be computationally the most demanding one. Dis-
cussion about the differences in results between the
partially regulated and standard versions of the algo-
rithms can be found in [7].

4   Conclusions
We presented a regularization approach to be used in
the output unit training of some cascade-correlation
type constructive neural network algorithms. The key
idea of the regularization is to use an objective func-
tion containing a penalty term which is proportional
to the output unit weight values while training that
particular unit. The use of the penalty term encour-
ages smoother network mappings by setting the
unimportant network weights to smaller values. It
was shown that the training of a linear output unit can
still be done with the pseudo-inverse method of linear
regression by only adding a regularization matrix in
the middle of the standard solution. Since there is no
need for iterative methods, the achieved enhancement
in generalization should increase the computational
complexity of the algorithm only slightly. The simu-
lations showed that the totally regularized versions
produced better generalization performance than the
standard or partially regularized versions of the algo-
rithms. Furthermore, in some cases the totally regu-
larized versions needed less hidden units than the
partially regularized versions and the overall compu-
tational load of the totally regularized versions was
kept the same when compared to the other two ver-
sions of the algorithms.
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Table 1. The results of the algorithms with all the simulation problems. The values are the error value
(ERR), the number of the hidden units (HU), and MFLOPS (MF) spent during the training phase,
respectively. Problems marked with an asterisk (*) give CERR and the others give NMSE as their error
values. In each case, the uppermost values are for the totally regularized versions (TR), the middle
ones are for the partially regularized versions (PR), and the lowest values are for the standard (non-
regularized) versions (NR) of the algorithms. The results are average values of twenty runs.

Algorithm CC MCC CAS FCE

Problem ERR HU MF ERR HU MF ERR HU MF ERR HU MF

Chess*
TR
PR
NR

0
0
0

3.45
3.65
3.25

0.93
0.99
1.30

0
0
0

3.25
3.35
3.20

0.80
0.84
1.14

0
0
0

3.25
3.20
3.55

1.84
1.77
2.01

0
0
0

3.05
3.10
2.95

0.69
0.70
0.92

Spiral*
TR
PR
NR

0
0
0

19.15
19.40
17.25

139
142
142

0
0
0

19.10
18.85
18.60

132
130
150

0
0
0

17.35
17.35
17.80

249
247
253

0
0
0

18.60
18.50
16.95

121
121
127

Parity*
TR
PR
NR

0.0144
0.0187
0.0200

5.80
6.60
6.70

144
167
177

0.0124
0.0166
0.0186

6.75
6.75
5.65

167
162
142

0.0221
0.0247
0.0199

8.40
8.95
9.65

419
468
506

0.0148
0.0141
0.0166

7.30
7.00
5.75

174
168
140

Cancer*
TR
PR
NR

0.0232
0.0244
0.0238

2.45
2.75
2.55

27.6
32.0
 34.4

0.0231
0.0238
0.0234

3.35
3.10
3.10

40.2
34.9
41.4

0.0215
0.0202
0.0229

2.70
2.45
2.85

67.1
58.4
70.3

0.0221
0.0222
0.0231

2.50
2.85
2.80

26.4
31.7
36.3

Henon
TR
PR
NR

0.0295
0.0313
0.0418

8.05
8.05
7.85

18.0
17.9
23.3

0.0279
0.0306
0.0422

8.40
8.40
8.10

17.9
17.9
23.2

0.0372
0.0414
0.0353

8.40
8.50
8.45

47.0
47.9
49.8

0.0281
0.0357
0.0374

8.20
7.95
7.85

16.5
15.8
21.2

Laser
TR
PR
NR

0.0256
0.0258
0.0284

15.85
15.35
16.00

765
721
982

0.0248
0.0227
0.0281

15.45
14.90
15.45

712
670
895

0.0271
0.0262
0.0276

15.60
15.45
15.50

1610
1590
1680

0.0253
0.0246
0.0276

15.65
15.80
16.45

708
718
971

Additive
TR
PR
NR

0.0317
0.0370
0.0402

17.50
17.90
15.85

219
232
269

0.0320
0.0335
0.0374

17.55
17.65
16.20

210
216
259

0.0443
0.0444
0.0511

17.20
17.40
17.15

482
489
502

0.0362
0.0372
0.0384

16.55
16.75
17.05

188
190
271

Mackey-
Glass

TR
PR
NR

0.3270
0.3239
0.3353

6.20
7.45
6.45

74.9
100
102

0.3264
0.3236
0.3341

6.85
7.20
6.70

81.6
88.9
102

0.3301
0.3372
0.3380

7.95
6.75
7.60

208
166
199

0.3237
0.3148
0.3347

6.40
7.80
6.55

68.8
94.2
91.8


