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Abstract: - Results of research into the use of fuzzy sets for multicriteria decision making are presented. Two 
classes of problems that need the application of a multicriteria approach are classified. According to this, 

>< MX  ,  and >< RX  ,  models may be constructed. Analysis of >< RX  ,  models is considered as part of a 
general approach to solving a wide class of optimization problems with fuzzy coefficients. This approach 
consists in formulating and analyzing one and the same problem within the framework of interrelated models. It 
allows one to maximally cut off dominated alternatives. The subsequent contraction of the decision uncertainty 
region is based on reduction of the problem to multicriteria decision making in a fuzzy environment with applying 
two techniques based on fuzzy preference relations. The first technique (lexicographic procedure) consists in step 
by step comparison of alternatives, that provides the sequential contraction of the decision uncertainty region. 
The second technique is associated with constructing and analyzing membership functions of a subset of 
nondominated alternatives obtained as a result of simultaneous considering all criteria. The results of the paper 
are of a universal character and are already being used to solve problems of power engineering. 
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1   Introduction 
In the process of posing and solving a wide range of 
problems related to the design and control of complex 
systems, one inevitably encounters diverse kinds of 
uncertainty. Taking into account the uncertainty 
factor in shaping the mathematical models serves as a 
means for increasing their adequacy and, as a result, 
the credibility and factual efficiency of decisions 
based on their analysis. Investigations of recent years 
show the utility of applying fuzzy set theory [1] for 
considering diverse kinds of uncertainty. Its use in 
problems of optimization character offers advantages 
of both fundamental nature (the possibility of validly 
obtaining more effective, less “cautious solutions”) 
and computational character [2]. 

The uncertainty of goals is the notable kind of 
uncertainty that is associated with a multicriteria 
character of many optimization problems. It is 
possible to classify two types of problems, which 
need the use of a multicriteria approach [3]: 

- problems in which solution consequences cannot 
be estimated on the basis of a single criterion. These 

problems are associated with the analysis of models 
including economic as well as natural indices (when 
alternatives cannot be reduced to the comparable 
form) and also by the need to consider indices whose 
cost estimates are hampered or impossible; 

- problems that, from the substantial point of view, 
may be solved on the basis of a single criterion. 
However, if the uncertainty of information does not 
allow one to obtain a unique solution, it is possible to 
reduce these problems to multicriteria decision 
making: the use of additional criteria can serve as 
convincing means to contract the decision uncertainty 
regions [4]. 

In accordance with these types of problems, two 
classes of models (so-called >< MX  ,  and >< RX  ,  
models) may be constructed. 

When analyzing >< MX  ,  models, a vector of 
objective functions )}(,...,)({)( 1 XFXFXF q=  is 

considered, and the problem consists in simultaneous 
optimizing all objective functions (local criteria), i. e., 

qpXF
LX

p ,...,1    ,extr)( =→
∈

,            (1) 



 

where L  is a feasible region in .nR  
The lack of clarity in the concept of “optimal 

solution” is the basic methodological complexity in 
solving multicriteria problems. When applying the 
Bellman-Zadeh approach [5] for analyzing >< MX  ,  
models, this concept is defined with reasonable 
validity: the maximum degree of implementing goals 
serves as a criterion of optimality. This conforms to 
the principle of guarantee result and provides a 
constructive line in obtaining harmonious solutions 
[6]. Furthermore, the approach permits one to realize 
an effective (from the computational standpoint) as 
well as rigorous (from the standpoint of obtaining 
solutions from a set of Pareto optimal solutions) 
method of analyzing multicriteria optimization models 
[6,7]. Finally, its use allows one to preserve a natural 
measure of uncertainty in decision making and to take 
into account indices, criteria, and constraints of 
qualitative character. These considerations justify the 
advisability of using the Bellman-Zadeh approach to 
analyze >< MX  ,  models. Some specific questions 
of using the Bellman-Zadeh approach in multicriteria 
optimization, including its practical applications to 
power engineering problems, are considered in [6,8]. 

Taking the above into account, attention in this 
paper is given to the analysis of >< RX  ,  models. 
 
 

2   Optimization Problems with Fuzzy 
Coefficients 
Numerous problems related to the design and control 
of complex systems [4,9] may be formulated as 
follows: 

)(
~

 maximize 1 n,...,xxF                    (2) 

subject to the constraints 

m,...,jBx,...,xg jnj 1    ,
~

)(~
1 =⊆ .           (3) 

The objective function (2) and constraints (3) 
include fuzzy coefficients, as indicated by the ~ 
symbol. 

Given the problem (2), (3), we can state a problem 
of minimization with fuzzy coefficients: 

)(
~

 minimize 1 n,...,xxF                     (4) 

subject to the constraints (3). 
A possible approach to handling constraints of the 

form (3) is proposed in [4]. This approach involves 
approximate replacement of each of the constraints of 
the form (3) by a finite set of deterministic (nonfuzzy) 
constraints, represented in the form of inequalities; 
these can be formulated readily, but with considerable 

increase in the dimension of the problem being solved. 
However, the principle of explicit domination [4] 
substantially reduces the dimensionality of the 
resulting equivalent nonfuzzy analog before solution 
of the problem commences. According to the physical 
essence of the problem solved, we may go over the 
constraints with fuzzy coefficients (3) to constraints 

md,...,jb,...,xxg jnj ≥′=≤ 1    ,)( 1         (5) 

or to constrains 

md,...,jb,...,xxg jnj ≥′′=≥ 1    ,)( 1 .      (6) 

The solution of problems with fuzzy coefficients in 
the objective functions alone is possible by a 
modification of traditional optimization methods 
[2,4]. In particular, it is possible to solve the problem 
(2) with satisfying the constraints (5) as well as the 
problem (4) with satisfying the constraints (6). The 
algorithms of solving the discrete fuzzy optimization 
problems (2), (5) and (4), (6), based on modifying 
generalized methods of discrete optimization [10,11], 
are proposed in [4,9]. When using these algorithms, 
the need arises to compare alternatives (in essence, to 
compare or rank fuzzy numbers) on the basis of 
relative fuzzy values of the objective function. This 
may be done with the use of the corresponding 
methods classified in [12]. In particular, one of the 
groups of the methods is based on building fuzzy 
preference relations, that provides [13] the most 
justified and practical way to compare alternatives. 
Taking this into account, it is necessary to distinguish 
the choice function or fuzzy number ranking index 
introduced by Orlovsky [14]. It is based on the 
conception of a membership function of a generalized 
preference relation. 

If the membership functions corresponding to the 

natural or relative values 1
~
F  and 2

~
F  of the objective 

function to be maximized are )( 1fµ  and )( 2fµ , the 

quantity )}(),({ 21 ff µµη  is the degree of preference 

)( 1fµ )( 2fµ , while })(),({ 12 ff µµη  is the degree 

of preference )( 2fµ )( 1fµ . Then the membership 

functions of the generalized preference relations 
)}(),({ 21 ff µµη  and })(),({ 12 ff µµη  take the 

following form: 

)}(,)({ 21 ff µµη
)},(,)(,)(min{sup 2121

, 21

ffff R
Fff

µµµ=
∈

,    (7) 

)}(),({ 12 ff µµη
)},(,)(,)(min{sup 1221

, 21

ffff R
Fff

µµµ=
∈

,    (8) 



 

where )( 21 f,fRµ  and )( 12 f,fRµ  are the 

membership functions of the corresponding fuzzy 
preference relations. 

If F is the numerical axis on which the values of 
the maximized objective function are plotted, and R is 
the natural order (≥) along F, then (7) and (8) reduce 
to the following expressions: 

)}(,)(min{sup)}(,)({ 21
,

21

21
21

ffff

ff
Fff

µµ=µµη
≥

∈
,     (9) 

)}(,)(min{sup)}(,)({ 21
,

12

12
21

ffff

ff
Fff

µµ=µµη
≥

∈
,   (10) 

which agree with the Baas-Kwakernaak [15], 
Baldwin-Guild [16], and one of the Dubois-Prade 
[17] fuzzy number ranking indices. 

On the basis of the relations between (9) and (10), 
it is possible to judge the preference (and the degree 
of preference) of any of the alternatives compared. 
Utilization of this approach is justified, that is 
confirmed by the results of [18]. However, experience 
shows that in many cases the membership functions 
of the alternatives )( 1fµ  and )( 2fµ  form flat apices 

(for example, [2,4]), i.e., they are so-called flat fuzzy 
numbers. In view of this, using (9) and (10), we can 

say that the alternatives 1
~
F  and 2

~
F  are 

indistinguishable if 

)}(),({)}(),({ 1221 ffff µµη=µµη .          (11) 

In such situations the algorithm of [4,9] does not 
allow one to obtain a unique solution because they 
“stop” when conditions like (11) arise. This occurs 
also with other modifications of mathematical 
programming methods because combination of the 
uncertainty and the relative stability of optimal 
solutions can produce these so-called decision 
uncertainty regions. In this connection, other choice 
functions or indices (for example, [13,19-21]) may be 
used as additional means for the ranking of fuzzy 
numbers. However, these indices occasionally result 
in choices which appear inconsistent with intuition, 
and their use does not permit one to close the question 
of constructing an order on a set of fuzzy numbers 
[4]. Besides, from the substantial point of view, these 
indices have been proposed with the aspiration for 
obligatory distinguishing the alternatives, that is not 
natural because the uncertainty of information creates 
the decision uncertainty regions There actually is 
another approach that is better validated and natural 
for the practice of decision making. This approach is 
associated with transition to multicriteria choosing 
alternatives in a fuzzy environment because the 
application of additional criteria (including the criteria 

of qualitative character, such as “comfort of 
maintenance”, “flexibility of operation”, etc.) can 
serve as convincing means to contract the decision 
uncertainty region. 
 
 

3   Multiciteria Choice Procedures in 
Fuzzy Environment 
Before starting to discuss multicriteria decision 
making in a fuzzy environment, it is necessary to note 
that considerable contraction of the decision 
uncertainty region may be obtained by formulating 
and analyzing one and the same problem within the 
framework of mutually interrelated models: 

a) the model of maximization (2) with satisfaction 
of the constraints (5) interpreted as convex down; 

b) the model of minimization (4) with satisfaction 
of the constraints (6) interpreted as convex up. 

In this case, solutions dominated by the initial 
objective function are cut off from below as well as 
from above to the greatest degree [4]. It should be 
stressed that this is a universal approach and my also 
be used in solving continuous optimization problems, 
for example, by modifying the zero-order optimization 
methods. 

Assume we are given a set X  of alternatives, 
which are to be examined by q criteria of quantitative 
and/or qualitative nature to make a choice among 
alternatives. The problem of decision making is 
presented by a pair >< RX  , , where },...,{ 1 qRRR =  

is a vector fuzzy preference relation. In this case, we 
have 

XXX,...,qpXXXXR lklkRp p
∈=µ×= ,  ,1  )],,( ,[ , 

(12) 

where ),( lkR XX
p

µ  is a membership function of 

fuzzy preference relation. 
It is supposed in [20,22] that the matrices 

qpR p ,...,1 , =  are given on the basis of expert 

estimation. However, with the availability of fuzzy or 

linguistic estimates of alternatives )(
~

kp XF , 

XXqp k ∈=  ,,...,1  (constructed on the basis of 

expert estimation or on the basis of aggregating 
information arriving from different sources of both 
formal and info1rmal character [2]) with the 
membership functions )]([ kp Xfµ , the matrices 

qpR p ,...,1 , =  may be obtained as follows, using (9) 

and (10): 
 



 

),( lkR XX
p

µ  

)]}([)],([{minsup

)()(
,

lpkp
XXX

XfXf

lXpfkXpf
lk

µµ=
≥

∈
,   (13) 

),( lkR XX
p

µ

)]}([)],([{minsup

)()(
,

lpkp
XXX

XfXf

kXpflXpf
lk

µµ=
≥

∈
.  (14) 

If the pth criterion is associated with minimization, 
then (13) and (14) are written for regions 

)()( lpkp XfXf ≤  and )()( kplp XfXf ≤ . 

Considering that the fuzzy preference relations 
qpR p ,...,1 , =  play a role identical to the objective 

functions qpXFp ,...,1 ),( =  in >< MX  ,  models, it 

should be noted that the fuzzy preference relations 
may be introduced in the analysis of these models as 
well. For example, for )(XFp , which is to be 

maximized, it is possible to construct 

β+−α=µ )]( )([),( lpkplkR XFXFXX
p

.    (15) 

Following [23], it is possible to demand the 
fulfillment of the condition 0.5),( =µ kkR XX

p
, 

which leads to 0.5=β  and ),( lkR XX
p

µ  

1),( =µ+ klR XX
p

. This permits one to write 

1=0.5)]( min)( max[ +−α
∈∈

XFXF p
LX

p
LX

 to obtain 

)]( min)( max[2

1

XFXF p
LX

p
LX ∈∈

−
=α .          (16) 

Thus, the correlation (15) may be presented as 

),( lkR XX
p

µ  

0.5
)]( min)( max2[

)( )(
+

−

−
=

∈∈
XFXF

XFXF

p
LX

p
LX

lpkp ,     (17) 

providing 1),(0 ≤µ≤ lkR XX
p

. 

Let us consider the situation of setting up a single 
preference relation R . In a nonfuzzy case, we may be 
given a nonstrict preference in one of the following 
forms [22]: 

a) RXX lk ∈),(  or kX lX  that means “ kX  is 

not worse than lX ”, 

b) RXX kl ∈),(  or lX kX  that means “ lX  is 

not worse than kX ”, 

c) RXX lk ∉),(  or RXX kl ∉),(  that means 

“ kX  and lX ” are not comparable. 

The nonstrict preference relation R  can be 

presented by a strict preference relation sR  and 

indifferent relation IR  [22,23]. We can say that “ kX  

is strictly better than lX ” if RXX lk ∈),(  and 

RXX kl ∉),( . The subset of all these pairs is the 

strict preference relation sR , and it is possible to use 

the inverse relation 1−R  ( 1),( −∈ RXX lk  is 

equivalent to RXX kl ∈),(  [22]) to obtain 

1\ −= RRR s .                        (18) 

If s
lk RXX ∈),( , then kX  dominates lX , i.e., 

lk XX f . The alternative XX k ∈  is nondominated 

in >< RX  ,  if s
lk RXX ∈),(  for any XX l ∈ . 

If we have ),( lkR XXµ  as a nonstrict fuzzy 

preference relation, then the value ),( lkR XXµ  is the 

degree of preference kX lX  for any XXX lk ∈, . 

The membership function, which corresponds to (18) 
in this case (considering that ),(1 lkR

XX−µ  

),( klR XXµ=  [22]) is the following: 

{ }0 ),,(),(max),( klRlkRlk
s
R XXXXXX µ−µ=µ . 

(19) 

The use of (19) permits one to carry out the choice 

of alternatives. In particular, ),( kl
s
R XXµ  for any 

lX  describes a fuzzy set of alternatives, which are 

strictly dominated by lX . Therefore, the complement 

of this fuzzy set by ),(1 kl
s
R XXµ−  gives the fuzzy 

set of alternatives, which are not dominated by other 
alternatives from X . To choice the set of all 
alternatives, which are not dominated by other 
alternatives from X  [22], it is necessary to find the 

intersection of all XXXX kkl
s
R ∈µ−  ),,(1  on all 

XX l ∈ . This intersection is a subset of 

nondominated alternatives and has a membership 
function 

)],(1[inf)( kl
s
R

XX
kR XXX

l

µ−=µ′
∈

).,(sup1 kl
s
R

XX
XX

l

µ−=
∈

                       (20) 

Because )( kR Xµ′  is the degree of nondominance, 

it is natural to obtain alternatives providing 

)}.(sup)( ,|{ kR
XX

kRkk XXXXXX
k

µ′=′µ′∈′′=′
∈

  (21) 

If 1)(sup =
∈

k
XX

X
k

, then the alternatives X ′′  

}1)( ,|{ =′′µ′∈′′′′= kRkk XXXX  are [22] nonfuzzy 

nondominated and can be considered as the nonfuzzy 
solution of a fuzzy problem. 



 

If the fuzzy preference relation R is transitive, then 
∅≠′′X . Taking this into account, it should be noted 

that when )(
~

kp XF  is quantitatively expressed, 

∅≠′′X . With qualitative )(
~

kp XF  it is possible to 

have ∅=′′X  under intransitivity of R, that permits 
one to detect contradictions in an expert estimates. 

The expressions (19)-(21) may be used to solve 
the choice problem as well as ranking problem [20] 
with the single preference relation. If we have the 
vector fuzzy preference relation, the expressions (19)-
(21) can serve as the basis for constructing a 
lexicographic procedure associated with step by step 
introduction of criteria for comparing the alternatives. 
This procedure permits one to obtain a sequence 

qXXX  ,..., , 21  so that qXXXX ⊇⊇⊇⊇ ...21  
with the use of the following expressions: 

)],([1inf)(
1 kl

s
R

XX
k

p
R XXX

pp
l

µ−=µ′
−∈

 

,1,...,    ),,(sup1
1

qpXX kl
s
R

XX
pp

l

=µ−=
−∈

    (22) 

)( ,|{ 1 p
k

p
k

pp
k

p
k

p XXXXX ′µ′∈′′= −

)}( sup
1

k
p

R
XX

X
p

k

µ′=
−∈

,                              (23) 

obtained on the basis of (20) and (21), respectively. 
It should be noted that if pR  is transitive, we can 

bypass the pairwise comparison of alternatives at the 
pth step. In this situation, the comparison can be done 
on a serial basis (the direct use of (13) and (14)) with 
memorizing the best alternatives. 

It is natural that the lexicographic procedure is 
applicable if criteria can be arranged in order of their 
importance. If the construction of the uniquely 
determined order is difficult, it is possible to apply 
another choice procedure. In particular, the 
expressions (19)-(21) are applicable if we take 

p

q

p
RR

1=
= I , i.e., 

.,    ),,(min),(
1

XXXXXXX lklkR
qp

lkR p
∈µ=µ

≤≤
 (24) 

When using this procedure, the application of 
(19)-(21) leads to the set X ′  that fulfils [22,23] the 
role of the set of Pareto optimal solutions. Its 
contraction is possible on the basis of differentiating 
the importance of qpR p ,...,1 , =  with the use of the 

following convolution [22]: 

),( lkT XXµ  

XXXXX lklkR

q

p
p p

∈µλ= ∑
=

,    ),,(
1

,          (25) 

where qpp 1,..., , =λ  are weights (importance 

factors) of the corresponding criteria 0,( >λ p  

1 ,1,..., 
1

=λ= ∑
=

q

p
pqp ). 

The construction of XXXXX lklkT ∈µ ,  ),,(  

allows one to obtain the corresponding membership 
function )( kT Xµ′ of the subset of nondominated 

alternatives according to an expression similar to 
(20). The intersection of )( kR Xµ′  and )( kT Xµ′  

defined as 

XXXXX kkTkRk ∈µ′µ′=µ′     )},( ),(min{)(     (26) 

provides us with 

)}( sup)( ,|{ k
XX

kkk XXXXXX
k

µ′=′µ′∈′′=′
∈

.    (27) 

 
 

4   Applications 
The results of the paper are of a universal character 
and can be applied to the design and control of 
systems and processes of different nature as well as 
the enhancement of corresponding CAD/CAM 
systems and intelligent decision support systems. In 
practical aspect, the results of the paper have served 
as a basis for solving problems of power engineering, 
including substation planning in power systems [8] 
and optimization of reliability (optimization of 
reliability indices while meeting restrictions on 
resources or minimization of resource consumption 
while meeting restrictions on reliability levels) in 
distribution systems. 
 
 

5   Conclusion 
Two classes of problems that need the application of 
a multicriteria approach have been classified. 
According to this, >< MX  ,  and >< RX  ,  models 
may be constructed. The use of >< RX  ,  models, 
which allow one to combine considering different 
types of uncertainty, is associated with applying a 
general approach to solving optimization problems 
with fuzzy coefficients. This approach is based on a 
modification of traditional optimization methods and 
consists in formulating and analyzing one and the 
same problem within the framework of interrelated 
models. The subsequent contraction of a decision 
uncertainty region is associated with reduction of the 
problem to multicriteria selecting alternatives in a 
fuzzy environment with applying two techniques 
based on fuzzy preference relations. The first 
technique consists in step by step comparison of 



 

alternatives, that provides the sequential contraction 
of the decision uncertainty region. The second 
technique is associated with constructing and 
analyzing membership functions of a subset of 
nondominated alternatives obtained as a result of 
simultaneous considering all criteria. The results of 
the paper are of a universal character and can be 
applied to the design and control of systems and 
processes of different nature as well as the 
enhancement of corresponding CAD/CAM systems 
and intelligent decision support systems. In practical 
aspect, the results of the paper have served as a basis 
for solving problems of power engineering. 
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