
Multiagent Environment for Hybrid AI Models

ROMAN NERUDA, PAVEL KRUŠINA, ZUZANA PETROVÁ�

Institute of Computer Science
Academy of Sciences of the Czech Republic
P.O. Box 5, 18207 Prague, Czech Republic

Abstract:To utilize the the concept of combining various modern artificial intelligence methods — namely neural
networks, genetic algorithms and fuzzy logic controllers — we develop a unified software platform called Bang2.
The system serves as a library for many artificial intelligence methods and allows for easy creation of such
combinations, and possibly their semi-automated generation, or even evolution. It also ensures their deployment
through the computer network and parallel processing. Inspired by software agents paradigm we have designed
Bang2 as a community of cooperating autonomous software agents.

Key-Words:Hybrid methods, Multiagent systems, Adaptive agents.

1 Introduction
Since the practical use of artificial intelligence meth-
ods, such as neural networks, genetic algorithms as
well as their simple combinations seem to be widely
explored ([1]), we have turned our effort to more com-
plex combinations, which are out of focus of most re-
searchers, probably also because of the lack of a unified
software platform that would allow for experiments
with hybrid models.

Design of Bang2 pursues two goals. At first to serve
as a library for many artificial intelligence methods and
thus help developers to design their own applications.
Moreover the unified interface allows to switch easily
e.g. between several learning methods, and to choose
the best combination for application design. Paral-
lel processing is the expected and useful advance here
as well as a rapid and easy design. Second goal of
Bang2 design involves creation of more complex mod-
els, semi-automated models generation and even evo-

�This work has been partially supported by the Grant Agency
of the Czech Republic under grants no. 201/00/1489 and
201/99/P057.

lution of models.
For distributed and relatively complex system like

Bang2 it is favorable to make it modular and to prefer
the local decision making against global intelligence,
and therefore to take advantage of agent technology.
Employing software agents also simplifies the imple-
mentation of new AI components (unified interface)
and addition of them without recompiling and restart-
ing.

2 Overview of Bang2
Bang2 consists of a population of sundry agents liv-
ing in the Environment. The Environment provides
the necessary support for Bang2’s run such as creation
of agents, giving them information necessary to sur-
vive and be able to communicate (e.g. where are other
agents), distribution processes to their computational
nodes (parallelism, load balancing). It also delivers
messages and transfers data.

Agents are the basic building blocks of Bang2. Each
agent provides and requires services (e.g. statistic

agent provides statistic preprocessing of data and re-
quires data to process). Agents communicate via spe-
cial communication language encoded in XML. There
are several special agents necessary for Bang2’s run
(like the Yellow Pages agent maintains information
about all living agents and about the services they pro-
vide). Other (not special) agents do the real work (read
data from files, represent neural net, learn neural net,
provide numeric calculation for other agents etc.)

Before any further insight to Bang2 the term agent
should be approached. Exact definition of agent
doesn’t exist, every group using agents provides its own
definition. For introduction to software agents see [3].
Generally software agent is a computer program, which
is autonomous, reacts to its environment (e.g. to user’s
commands or messages from other agents) and when
nothing interesting happens it doesn’t wait for the next
event as regular program, but does its own work. It
usually follows its own goal. It is adaptive and intel-
ligent in sense that it is able to obtain information it
needs by asking somebody (other agent, a human, a
server). Moreover it is usually mobile, persistent, and
sometimes tries to simulate human character.

3 Architecture
The Bang2 system consist of two fundamental parts
— the environment and the agents. The environment
serves as a living space for all the agents, giving them
resources they need and serves as a communication
layer. These are the main aspects we want to keep on
mind when designing and programming the environ-
ment:

Abstraction — hiding of raw hardware and OS to
our agents and providing most of services and re-
sources in friendly and comfortable manner.

Transparency — hiding as much implementation de-
tails as possible and suitable while still allow-
ing agents to explicitly request such informations.
The first task the transparency comes to our mind
is communication — the goal is to make the com-
munication being simple for the agent program-
mer and exactly the same for local and remote

case while still exploiting all the advantages of the
local one.

Scalability — hope to design and write program with
no built-in limits of amount of usable resources.
We want our program to be run on computers of
very different performance: from small laptops
for agents programmers to huge clusters for real
number crushing.

Adaptability — ability to run agent schemes devel-
oped on small systems on huge ones and vice
versa. Preferably with only small need of manual
interference.

Helper functions — being friendly to agent program-
mer. Insert a lot of functionality to agent base
class and provide a code generators.

3.1 Communication layer
What we call communication layer is mainly the envi-
ronment and a small code in agent base class. Purpose
of it is to allow communication between agents. What
we expect from it:

Simplicity — we want the communication to be sim-
ple from the agent programmer’s point of view,
something like a single function call.

Location transparency — there should be no differ-
ence for the agent programmer between commu-
nication to local and remote agent.

Synchronicity – we want to provide an easy way how
to select synchronous, asynchronous or deferred
synchronous mode of operation for any single
communication act.

Efficiency — we want to be efficient both in passing
XML strings and binary data.

As the best abstraction for the agent programmer we
have chosen the model of object method invocation.
Among its advantages let us mention the facts that pro-
grammers are more familiar with concept of function
calling then message sending and that the model of ob-
ject method invocation simplifies the trivial but much

Medium XML CData* function
strings parameters

Call Sync BinSync UFastNX
Generality High Run-time Hardwired
Speed Normal Fast The fastest

Table 1: Communication functions properties: Sync
is a blocking call of the given agent returning its an-
swer, Async is non-blocking call discarding answer
and Dsync is non-blocking call storing answer at ne-
gotiated place. BinSync and BinDsync are same as
Sync and Dsync but the exchange binary data instead
of XML strings. UFastNX is a common name for set of
functions with number of different parameters of basic
types usually used for proprietary interfaces.

common cases while keeping the way to the model
of message passing open and easy. Sync is a block-
ing call of the given agent returning its answer, Async
is non-blocking call discarding answer and Dsync is
non-blocking call storing answer at negotiated place.
BinSync and BinDsync are same as Sync and Dsync
but the exchange binary data instead of XML strings.
UFastNX is a common name for set of functions with
number of different parameters of basic types usually
used for proprietary interfaces.

3.2 Agents
All agents in Bang2 are regular C++ classes derived
from base class Agent which provide common services
and connection to environment (Fig. 1). Each agent
behavior is mainly determined by its ProcessMsg func-
tions which serves as main message handler. The Pro-
cessMsg function parses the given message, runs user
defined triggers via RunTriggers function and, if none
is found, the DefaultBehavior function is called. The
DefaultBehavior function provides standard processing
of common messages. Agent programmer can either
override ProcessMsg function on his own or (prefer-
ably) write trigger functions for messages he want to
process (Fig. 2). Triggers are functions with specified
XML tags and attributes. RunTriggers function calls
a matching trigger function for a received XML mes-

ProcessMsg

ProcessFast

UFastNX1

UFastNX2

magic

agent

pointers

Inner
state

Control
unit

Figure 1: Agent inwards

TRIGGER1(request_setfriend, id)
{

SETAGENT(friend, id);
OK;

}
TRIGGER0(request_pingfriend)
{

return Sync(friend,
"<request><ping/></request>");

}

Figure 2: Triggers code

sage and fills up the variables corresponding to speci-
fied XML attributes with the values (see 4).

Magic agent pointer is in fact an association of a reg-
ular pointer to Agent object with a string containing
its stringified handle registered to the Agent class, so
DefaultBehavior function can automatically adjust the
pointer and the handle according to information emit-
ted by Black Pages.

Finally inner state is a general name for values of rel-
evant member variables determining the mode of agent
operation and its learned knowledge. The control unit
is its counterpart — program code manipulation with
the inner state and performing agent behavior, it can
be placed in all ProcessMsg/ProcessFast functions or
triggers.

4 Communication language
Consider a simple example that iterates various stages
in a design of an agent communication. Let’s have a
neural net. It looks around for a learning agent, negoti-
ates with other agents if they are able to learn it, are free
(do not learn any other agent already) and negotiates
format of data to transfer. Then these two agents con-
nect together and exchange data (neural nets weights
and error). We need to:

� specify message headers. Should be human read-
able.

� language for agent messages(negotiation, con-
trol sequences). Should be human readable,
declarative.

� language for data transfer. Should be able to
transfer complex data structures through simple
byte stream.

There are several languages for these purposes. ACL
([4]) and KQML ([2] — widely used, de facto stan-
dard) define (among others) format of message headers
and communication protocols. They are lisp-based.

KIF (KQML group — [5]), ACL-Lisp (ACL group
— [4]) are languages for data transfer. They both came
out of predicate logic and both are lisp-based, enriched
with keywords for predicates, cycles etc. XSIL [8]
and PMML [7] are XML-based languages designed for
transfer of complex data structures through the simple
byte stream.

Messages in Bang2 system are syntactically XML
strings. Headers are not necessary, because the inner
representation of messages (method invocation), so the
sender and receiver are known. First XML tag defines
the type of the message (similar to message type de-
fined in an ACL header). Available message types are:
request, inform, query, ok(reply, no error),ugh (reply,
an error occurs).

The rest of the message (everything between outer-
most tags) is the content. It contains commands (type
request), information provisions, etc. Some of them are
understandable to all agents, others are specific to one
agent or a group of agents.

There are two ways how to transfer data:

<broadcast><halt/></broadcast>
<inform>
<created myid="!000000000001"

name="Lucy"
type="Neural Net.MLP"/>

</inform>

<ok>Agent Lucy, id=!000000000001,
type=Neural Net.MLP created</ok>

<request><ping/></request>

Figure 3: Example of Bang2 language for agent nego-
tiation

<query><vector row="45"/></query>
<query><vector/></query>
<ok><data separator=",">
Here are binary data
</data></ok>
<query><bin><query>
<vector/>
</query></bin></query>
<ok session="5" funcnum="1"/>

Figure 4: Example of Bang2 language for data transfer

� As a XML string — human readable, but lack
performance (the lack of performance is not fa-
tal in agents’ negotiation stage (as above), but
is a great disadvantage when they’re transferring
data).

� As a binary — much quicker, but receiver have to
be able to decode it.

Generally in Bang2 the XML way of data trans-
fer is implicit and the binary way is possible after the
agents make an agreement about the format of trans-
ferred data.

Data
source

Mux
or

CopyNN

GA

Camera Canvas

GA
clone

NN

clone

Swap

Figure 5: Task parallelization

5 Conclusion
For now, the design and implementation of the envi-
ronment is complete. So, we have started to create a
set of agents of different purpose and behavior to be
able to start designing and experimenting with adding
more sophisticated agent oriented features to the sys-
tem. There are going to be GA and RBF agents in near
future.

For experimenting with agent schemes, we need
agents of various types. We want to try mirrors, paral-
lel execution, automatic scheme generating and evolv-
ing. Also concept of an agent as the other agent’s brain
by means of decisions delegating seems to be promis-
ing. Another thing is the design of load balancing agent
able to adapt to changing load of host computers and
to changing communication/computing ratio. To make
interaction with human more comfortable we want to
create a user-friendly graphical user interface. Prefer-
ably in way allowing easy swap to non-graphical rep-
resentation. And finally we think about some form of
inter Bang2-sites communication.

In the following we discuss some of these directions
in more details.

5.1 Task parallelization
There are two ways of parallelization: by adding ability
to parallelize its work to a computation agent or by cre-
ating generic parallelization agent able to manage non-
parallel agent schemes. Both have their good and weak
sides, but here is no reason not to implement both and
let the user or agent programmer to choose. Consider

CanvasCanvasCanvas

NN NN

FLCGA

FLC

GA

NN

GA
Scheme

ops.

Figure 6: Scheme evolving

an example of a genetic algorithm. It can explicitly
parallelize by cloning fitness function agent and letting
the population being fitnessed simultaneously. Or on
the other hand, the genetic algorithm can use only one
fitness function agent, but be cloned together with it
and share the best genoms with its siblings via a spe-
cial purpose genetic operator. We can see this in figure
5, where agents of Camera and Canvas are used to au-
tomatize the subscheme-cloning. Camera looks over
the scheme we want to replicate and produces its de-
scription. Canvas receives such description and creates
the scheme from new agents. You can imagine cases
where each of the above approaches is better then the
other, so it make sense to defer this decision till the real
task is considered.

5.2 Agents scheme evolving
When thinking about implementing the task paral-
lelization, we found very useful to have a way of encod-
ing scheme descriptions in way understandable by reg-
ular agents. Namely we think about some kind o XML
description. This leads to idea of agents not only creat-
ing and reading it, but also manipulating with it. All we
need to be able to evolve agent schemes by generic ge-
netic algorithm is to create a suitable genetic operator
package. You may ask, what will be the fitness func-
tion for such genoms. The answer is simple: the part of
generic task parallelization infrastructure (namely the
Canvas, see fig. 6). For genetic evolving of schemes we

ProcessMsg

ProcessFast

UFastNX1

UFastNX2

magic

agent

pointers

Inner
state

Agent
as

Control unit

Figure 7: Agents as brains

can use the Canvas for testing newly modified schemes.
In fact the only thing we want to add to be able from
task parallelization advance to scheme evolving is the
actual scheme genetic operator package. I find this a
nice proof of reusability and good design of Bang2.

5.3 Agent as a brain of other agent
As it is now, the agent has some autonomous - or in-
telligent - behavior encoded in standard responses for
certain situations and messages. A higher degree of
intelligence can be achieved by hard-coding some con-
sciousness mechanisms into agent. One can think of
creating a planning agents, Brooks subsumption archi-
tecture agents, layered agents, or Franklin “conscious”
agents. We plan to create a universal mechanism via
which a standard agent can delegate some or all of its
control to a specialized agent that serves as its external
brain. This brain can independently seek for supple-
mentary information, create its own internal models,
etc, and finally advise the original agent what to do.

References

[1] P. Bonnisone, “Soft computing: the convergence
of emerging reasoning technologies”,Soft Com-
puting, vol.I, pp. 6–18, 1997.

[2] Tim Finnin, Yannis Labrou, James Mayfield,
“KQML as an agent communication language”,
Software Agents, MIT Press, Cambridge, 1997,
http://www.cs.umbc.edu/agents/-
introduction/kqmlacl.ps.

[3] Stan Franklin, Art Graesser, “Is it an Agent, or
just a Program?: A Taxonomy for Autonomous
Agents”, Intelligent Agents III, pp. 21–35, 1997.

[4] Foundation for Intelligent Physical Agents,
“Agent Communication Language”, FIPA 97
Specification, 1997, http://www.fipa.org.

[5] Michael Genesereth, Richard Fikes et. al.,
“Knowledge interchange format, version 3.0 ref-
erence manual”, Technical Report, Computer Sci-
ence Department, Stanford University, 1992.
http://www.cs.umbc.edu/kse/kif/.

[6] Roman Neruda, Pavel Kruˇsina, “Creating Hybrid
AI Models with Bang”, Signal Processing, Com-
munications and Computer Science, pp. 228–233,
2000.

[7] “PMML v1.1 Predictive Model Markup
Language Specification”, Techni-
cal Report, Data Mining Group, 2000,
http://www.dmg.org/html/pmmlv1 1.html.

[8] Roy Williams, “XSIL: JAVA/XML for Scientific
Data”, Technical Report, California Institute of
Technology, 2000.

