
Image Processing using CNNs and FPGAs: Initial Results

D. AMANATIDIS, D. TSAPTSINOS, P.R GIACCONE*, G.A JONES*

School of Mathematics, *School of Computer Science
Kingston University

Penhryn Road, Kingston-upon-Thames, Surrey KT1 2EE
UK

Abstract: In this contribution, we propose the use of Cellular Neural Networks as an application for the image
segmentation of cinematographic image sequences. The proposed approach is based on a Cellular Neural
network cost function that takes into account motion and colour. Cellular Neural Networks are of particular
interest for hardware implementation due to the inherent parallelism and initial results using an FPGA
simulator are also presented.

Key-Words: Cellular neural networks, image segmentation, optical flow, motion, FPGA, Handel-C

1 Introduction
Regions of image segmentation should be uniform
and homogeneous with respect to some features
such as pixel brightness or texture. Region interiors
should be simple and without many small holes.
Adjacent regions of segmentation should have
different values, with respect to the feature on
which they are uniform. Boundaries of each
segment should be simple, not ragged, and must be
spatially accurate. Achieving all these desired
properties is difficult because strictly uniform and
homogenous regions are typically full of small
holes and have ragged boundaries. Insisting that
adjacent regions have large differences in values
can cause regions to merge and boundaries to be
lost, producing under-segmented or over-
segmented images.

Image segmentation techniques are
basically ad hoc and differ precisely in the way
they emphasise one or more of the desired
properties and in the way they balance and
compromise one desired property against another.
Broadly speaking, there are two approaches to
image segmentation. The classical/statistical and
the neural/fuzzy approach. Several attempts have
been made to develop image segmentation
algorithms using neural network models [1,2,3,4].
These algorithms work well even in a highly noisy
environment and they are capable of producing
outputs in real time. Though many algorithms are
available for colour image segmentation, the
literature is not that rich as it is for grey level
images. Moreover, most of them consider static
images and not sequences of them.

The framework of study here is to use a
Cellular Neural Network (CNN) for the

segmentation of a sequence of colour images. In
particular, we are interested in the segmentation of
differently moving elements in the images of a film
sequence. Segmentation in film post-production is
often carried out laboriously by hand, thus making
automated segmentation techniques particularly
beneficiary to the film industry.

1.1 Cellular Neural Networks
 CNN [5] is a multi-disciplinary research area with
broad applications in image and video signal
processing. CNNs have a continuous-time feature
that enables them of processing signals in real time
and also they have a local interconnection feature
that makes them tailor-made for VLSI
implementation. Using CNNs, each cell interacts
directly with only neighbouring cells within a
specified radius r, and through state signal
propagation with the remaining network cells. In
this way, CNN perform global parallel
computation, a feature that makes them very
attractive architectures, from the point of view of
performance, for image processing applications.

1.2 Reconfigurable Computing
Today, one of the major challenges for both
hardware and software engineers and scientists, is
that of Reconfigurable Computing. Reconfigurable
computers are systems that their hardware
architecture can change under software control to
suit a different application. The core component of
reconfigurable computers is a Field Programmable
Gate Array (FPGA), a silicon chip containing a
large number of gates as in microprocessors and

RAM chips, whose logical arrangement can be
reprogrammed on the fly. Despite that FPGAs were
initially introduced sometime ago, only recently a
large number of gates can be contained on a single
chip. The second key technology is that of
hardware compilation. Handel-C, designed by the
Oxford Hardware Compilation Group, is such a
smart tool. Handel-C is a programming language
designed for compiling programs into hardware
implementations. A compilation and simulation
system has been built around it, which maps
Handel-C programs into description of hardware as
gate-level netlists. Commercial software can be
then used to map these netlists onto FPGAs.
Handel-C is closely related to ANSI C, but
extended with the parallel and channel
communication constructs and arbitrary width
variables and expressions. More information can be
downloaded from the Celoxica Limited web site:
http://www.celoxica.com/

2 Previous Work
Previous work was based on statistical-based
approaches for the segmentation of differently
moving elements in the images of a film sequence,
and in particular the separation of foreground
elements, such as actors, from arbitrary
backgrounds. In image sequence data, properties of
the image such as motion, colour and texture often
differ in the foreground and the background.
Segmentation techniques have been developed
based on the differences of these global
characteristics.

2.1 Motion
Visual motion promises to provide a powerful cue
to image segmentation. Many of the commonly
used motion models are formulated by examining
the three-dimensional motion of a point in the view
volume. In our case, a depth-independent, 8-
parameter linear visual displacement model was
derived. After defining the motion model, an
appropriate motion estimation procedure was
chosen. The classical optical flow procedure [6]
was used to generate motion fields between
successive images. In order to utilise motion; an
iterative estimator was generated taking into
account three consecutive frames (Fig.1).

Fig. 1 Three consecutive frames (Cathy sequence)

Global motion estimates were then obtained,
representing the motion of the background (the
largest independently moving part of the image).
The backgrounds of first-frame and last-frame with
that of middle-frame were aligned and produced
two motion-compensated frames, which when
subtracted from first-frame and last-frame provide
images of motion residuals known as forward and
backward displaced frame differences (DFDs).
Having computed the global motion of the image,
each pixel depending on the magnitude of its
residuals in the two DFDs is then classified into
one of four classes:
• background pixels that belong to the global

motion;
• uncovered background pixels that were

occluded by the foreground in the previous
frame;

• covered pixels that were previously
background pixels and now occluded by the
foreground and

• foreground pixels that belong to object
occluding the background.

Since noise can a have a significant effect
on this per-frame classification approach, a
temporal dimension was also introduced in the
process by including knowledge about the previous
classification of a pixel into the calculation of a
posterior probabilities. A synopsis of the previous
work was highlighted above. The interest reader
can consult [7,8] for further information.

3 CNN and Bayesian methods
Experimental comparison of neural networks and
Bayesian methods [9] has shown that neural
networks do offer a very useful means of
classifying images without the need for a statistical
model of the features. The major disadvantage is
the lack of a clear strategy for choosing between
the many training paradigms. A method based on
the convergence of the two worlds is therefore
desirable.

The results obtained using the statistical-
based approach outlined in Section 3 were quite
satisfactory. The boundary between foreground and

background was determined accurately and the
number of mis-classified pixels was fairly low.
However, the iterative nature of the approach
meant that it was computationally slow. Here, we
propose to use a neural network approach instead.
The segmentation problem is posed as an
optimisation process based on the same evidence of
motion residuals and colour information. A CNN
was used to determine the set of pixel labels that
minimised a particular cost function, thereby
representing the most appropriate labelling of an
image.

3.1 Cost Function
The following cost function was derived for each
pixel i of an image I and for each class k:

()

2

Ii k
ik

Ii k

)(

-1

(1) -

∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑

∈ ∈

∈ ∈ ∈

∈ ∈ ∈ ∈

+

−

∑
∈

∑
∈

−=

Λ

Λ Λ

Λ Λ

γ

β

α

Λ
πε

p

ppT

ppC

Ii k
ikpikikp

ikil
l

kl

jlik
Ii k itNj l

kl
ij

The cost function consists of four terms

that constrain the probabilities pik. The selection
pressure coefficient Βik (with range [0,1]) acts an
input bias on the neurons, determining which
probabilities are to be selected (Βik high) and which
suppressed (Βik low). A pixel's selection pressure is
based on its motion residuals and colour; e.g., for
the covered class Βik is defined as:

(2))|c()|()|(

)| (

i

i

MCH
f

iUN
b
i

ik

pepep

Ckp

λλλ

π

=

== á

where),,(ii cá f
i

b
i ee= is the evidence vector for

the pixel, made up of the motion residuals at the
pixel in the backward and forward DFDs
respectively and the colour of the pixel; UNλ and

CHλ are the class associated with unchanged
(those having low residual in a DFD) and changed
(those having high residual) pixels; and Mλ are

pixels belonging to the background of the colour
mask.

The second term constrains the labels
assigned to pixels I and their neighbours, NI(i), to

be compatible. The coefficient kl
ijC measures the

compatibility between pixels i and j when assigned
labels k and l respectively. When the labels of
neighbouring pixels are compatible the associated
probabilities are selected together; when the labels
are incompatible, the higher probability is accepted
and the lower rejected.

Similarly, the third term seeks
compatibility between a pixel's label k in the
current image It and its label l in the previous
image, where pil is the probability that l is the
correct label for I in the previous image. The
coefficient Tkl measures the compatibility between
the pixel's previous label and each of the possible
labels it may have in the current image.

The fourth term (error term) seeks to force
the sums of the label probabilities for a pixel to
sum to 1. Squaring the deviation from 1 ensures
that the term is positive and the resulting cost
function is quadratic. The weights γβα ,, allow the
relative effects of the contributing terms to be
controlled.

Expanding the error term and collecting up
like terms gives the following form for the cost
function:

(3)
)(

jlik
Ii k iNj l

kl
ijik

Ii k
ik pppn ∑ ∑ ∑ ∑∑ ∑

∈ ∈ ∈ ∈
−

∈ ∈
−

Λ ΛΛ
ΓΧγ

where

}{)(')(iiNiN ∪=

γΤβπΧ 2++= ∑ il
i

klikik p

≠=
==

∈−
=

lkij

lkij

iNjC kl
ij

kl
ij

,:2

,:

)(':

γ
γ

α
Γ

3.2 Optimisation
Optimisation was performed using a CNN having
the following dynamic equation:

(4))(
1

)(

+−= ∑ ∑

∈ ∈Ii iNj
ij

kl
ij

ik
ik

ik ug
R

u
I

Cdt

du
Γ

where C and R are respectively the capacitance and
resistance associated with the CNN, uij is the state
of the neuron representing label l in pixel j and g(.)
is a sigmoid function that converts the state uij into
the probability pij.

The minimum of the cost function is then

obtained by the following algorithm, applied for all
i 0 I and for all k 0 ϖ:
1. Initialise uij to g(Βik)
2. Solve the dynamic equation for uij using a

Runge-Kutta update procedure
3. Compute pik = g(uik)

4. Evaluate the cost function t
ike for the given

probabilities, where t is the current iteration

5. If the relative error 11 / ++ − t
ik

t
ik

t
ik eee in the cost

function is greater than some fixed percentage
(e.g., 1%), return to step 2.

Figure 2 shows the label images for Kathy, initially
and after 100 iterations.

Fig. 2 Label images - initial and after 100 iterations

4 CNN Simulation using Handel-C
Some results of experimenting with the Handel-C
compiler are presented in this section. The task is
edge detection of 256 gray-level images (synthetic
and natural) with various sizes. The two methods
under discussion are: A traditional edge detection
algorithm based on thresholding (threshold value of
16) the gray level difference of neighbouring
pixels, modified to work with images of arbitrary
size and a CNN edge detection algorithm.

The three 8-bit test bitmaps (hardware,
Lena and lighthouse) can be seen in Figure 3. Their
size is 320x240, 128x128 and 80x60 respectively.
Handel-C compiler was running on a Pentium II,

clocked at 233 MHz with 128 MB of main memory
and 4MB of graphics memory.

Fig. 3 Test images

Parameters for the experiments were: the
amount of hardware generated; the total number of
clock cycles; the amount of real time needed. In all
cases, the simulator was set to display the state of
the program variables once every 1000 cycles, so
the total number of cycles is the truncated result of
the true number. Figures 4, 5 and 6 show the results
obtained with the two methods. The original
images are on the top left corner, the outputs from
the thresholding method are on the top right corner,
and the bottom images are the outputs from the
CNN algorithm after 1 and 3 iterations.

Fig. 4 Hardware results

Fig. 5 Lena results

Fig. 6 Lighthouse results

The thresholding edge detection is faster
and produces less hardware. However, with the
present hardware design technology standard, a
number such as 2000 gates is not a major problem.
The compensation for the CNN method is its
polymorphic character. By changing the template
set the same program can have a completely
different functionality. It can also be run in real-
time, interactive way. We can monitor the output
on every iteration and stop when we think that the
result is satisfying, for instance if we would prefer
stronger or weaker edges. It can also be tuned for a
number of variables, such as the bias or the
integration stepsize, whereas in the traditional
approach there is only the threshold value.

5 Future Work and Conclusions

The purpose of this contribution was to present the
work undertaken so far. Although the area of image
segmentation is well explored not much has been
reported about sequences of colour images. The
CNN approach looks quite promising and we
expect that the FPGA implementation will
accelerate the performance of the network.

References:
[1] K.J. Cios and I. Shin, Image recognition neural

networks: Irnn, Neurocomputing, Vol.7, 1995,
pp. 159-185.

[2] A. Ghosh, N.R. Pal and S.K. Pal, Image
segmentation using a neural network,
Biological Cybernetics, Vol.66, 1991, pp. 151-
158.

[3] A. Goltsev, Brightness image segmentation by
a neuron-like network, Neurocomputing, Vol.
4, 1992, pp. 9-15.

[4] C.C. Lee and J. Pineda de Gyvez, Color image
Processing in a Cellular Neural Network
Environment. IEEE Transactions on Neural
Networks, Vol.7, No.5, 1996, pp. 1086-1098.

[5] L.O Chua, CNN: A paradigm for complexity,
World Scientific Series on Non-linear Science,
1998

[6] M. Sonka, V. Hlavac and R. Boyle, Image
Processing, Analysis and Machine Vision,
PWS Publishing, 1990

[7] P.R. Giaccone and G.A Jones, Spatio-temporal
approaches to the computation of optical flow,
Proceedings of the British Machine Vision
Conference, Colchester, UK, 1997, pp. 420-
429.

[8] P.R. Giaccone and G.A Jones, Segmentation of
global motion using temporal probabilistic
classification, Proceedings of the British
Machine Vision Conference, Southampton,
UK, 1998, pp. 619-628.

[9] K. Richards and G.D Sullivan, Colour and
texture in cloud identification: An experimental
comparison of neural network and bayesian
methods, Proceedings of the British Machine
Vision Conference, Guildford, UK, 1993, pp.
468-478.

