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Abstract: In this contribution, we propose the use of Cellular Neural Networks as an application for the image 
segmentation of cinematographic image sequences. The proposed approach is based on a Cellular Neural 
network cost function that takes into account motion and colour. Cellular Neural Networks are of particular 
interest for hardware implementation due to the inherent parallelism and initial results using an FPGA 
simulator are also presented. 
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1 Introduction 
Regions of image segmentation should be uniform 
and homogeneous with respect to some features 
such as pixel brightness or texture. Region interiors 
should be simple and without many small holes. 
Adjacent regions of segmentation should have 
different values, with respect to the feature on 
which they are uniform. Boundaries of each 
segment should be simple, not ragged, and must be 
spatially accurate. Achieving all these desired 
properties is difficult because strictly uniform and 
homogenous regions are typically full of small 
holes and have ragged boundaries. Insisting that 
adjacent regions have large differences in values 
can cause regions to merge and boundaries to be 
lost, producing under-segmented or over-
segmented images.  

Image segmentation techniques are 
basically ad hoc and differ precisely in the way 
they emphasise one or more of the desired 
properties and in the way they balance and 
compromise one desired property against another. 
Broadly speaking, there are two approaches to 
image segmentation. The classical/statistical and 
the neural/fuzzy approach. Several attempts have 
been made to develop image segmentation 
algorithms using neural network models [1,2,3,4]. 
These algorithms work well even in a highly noisy 
environment and they are capable of producing 
outputs in real time. Though many algorithms are 
available for colour image segmentation, the 
literature is not that rich as it is for grey level 
images. Moreover, most of them consider static 
images and not sequences of them. 

The framework of study here is to use a 
Cellular Neural Network (CNN) for the 

segmentation of a sequence of colour images. In 
particular, we are interested in the segmentation of 
differently moving elements in the images of a film 
sequence. Segmentation in film post-production is 
often carried out laboriously by hand, thus making 
automated segmentation techniques particularly 
beneficiary to the film industry. 
 
 
1.1 Cellular Neural Networks 
 CNN [5] is a multi-disciplinary research area with 
broad applications in image and video signal 
processing. CNNs have a continuous-time feature 
that enables them of processing signals in real time 
and also they have a local interconnection feature 
that makes them tailor-made for VLSI 
implementation. Using CNNs, each cell interacts 
directly with only neighbouring cells within a 
specified radius r, and through state signal 
propagation with the remaining network cells. In 
this way, CNN perform global parallel 
computation, a feature that makes them very 
attractive architectures, from the point of view of 
performance, for image processing applications.  
 
 
1.2 Reconfigurable Computing 
Today, one of the major challenges for both 
hardware and software engineers and scientists, is 
that of Reconfigurable Computing. Reconfigurable 
computers are systems that their hardware 
architecture can change under software control to 
suit a different application. The core component of 
reconfigurable computers is a Field Programmable 
Gate Array (FPGA), a silicon chip containing a 
large number of gates as in microprocessors and 



RAM chips, whose logical arrangement can be 
reprogrammed on the fly. Despite that FPGAs were 
initially introduced sometime ago, only recently a 
large number of gates can be contained on a single 
chip. The second key technology is that of 
hardware compilation. Handel-C, designed by the 
Oxford Hardware Compilation Group, is such a 
smart tool. Handel-C is a programming language 
designed for compiling programs into hardware 
implementations. A compilation and simulation 
system has been built around it, which maps 
Handel-C programs into description of hardware as 
gate-level netlists. Commercial software can be 
then used to map these netlists onto FPGAs. 
Handel-C is closely related to ANSI C, but 
extended with the parallel and channel 
communication constructs and arbitrary width 
variables and expressions. More information can be 
downloaded from the Celoxica Limited web site:          
http://www.celoxica.com/ 
 
 

2 Previous Work 
Previous work was based on statistical-based 
approaches for the segmentation of differently 
moving elements in the images of a film sequence, 
and in particular the separation of foreground 
elements, such as actors, from arbitrary 
backgrounds. In image sequence data, properties of 
the image such as motion, colour and texture often 
differ in the foreground and the background. 
Segmentation techniques have been developed 
based on the differences of these global 
characteristics. 
 

2.1  Motion 
Visual motion promises to provide a powerful cue 
to image segmentation. Many of the commonly 
used motion models are formulated by examining 
the three-dimensional motion of a point in the view 
volume. In our case, a depth-independent, 8-
parameter linear visual displacement model was 
derived. After defining the motion model, an 
appropriate motion estimation procedure was 
chosen. The classical optical flow procedure [6] 
was used to generate motion fields between 
successive images. In order to utilise motion; an 
iterative estimator was generated taking into 
account three consecutive frames (Fig.1).  

 

Fig. 1 Three consecutive frames (Cathy sequence) 

 
Global motion estimates were then obtained, 
representing the motion of the background (the 
largest independently moving part of the image). 
The backgrounds of first-frame and last-frame with 
that of middle-frame were aligned and produced 
two motion-compensated frames, which when 
subtracted from first-frame and last-frame provide 
images of motion residuals known as forward and 
backward displaced frame differences (DFDs). 
Having computed the global motion of the image, 
each pixel depending on the magnitude of its 
residuals in the two DFDs is then classified into 
one of four classes:  
• background pixels that belong to the global 

motion; 
• uncovered background pixels that were 

occluded by the foreground in the previous 
frame; 

• covered pixels that were previously 
background pixels and now occluded by the 
foreground and  

• foreground pixels that belong to object 
occluding the background.  

Since noise can a have a significant effect 
on this per-frame classification approach, a 
temporal dimension was also introduced in the 
process by including knowledge about the previous 
classification of a pixel into the calculation of a 
posterior probabilities. A synopsis of the previous 
work was highlighted above. The interest reader 
can consult [7,8] for further information. 
 
 

3 CNN and Bayesian methods 
Experimental comparison of neural networks and 
Bayesian methods [9] has shown that neural 
networks do offer a very useful means of 
classifying images without the need for a statistical 
model of the features. The major disadvantage is 
the lack of a clear strategy for choosing between 
the many training paradigms. A method based on 
the convergence of the two worlds is therefore 
desirable.  

The results obtained using the statistical-
based approach outlined in Section 3 were quite 
satisfactory. The boundary between foreground and 



background was determined accurately and the 
number of mis-classified pixels was fairly low. 
However, the iterative nature of the approach 
meant that it was computationally slow. Here, we 
propose to use a neural network approach instead. 
The segmentation problem is posed as an 
optimisation process based on the same evidence of 
motion residuals and colour information. A CNN 
was used to determine the set of pixel labels that 
minimised a particular cost function, thereby 
representing the most appropriate labelling of an 
image. 
 
 
3.1 Cost Function 
The following cost function was derived for each 
pixel i of an image I and for each class k: 
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The cost function consists of four terms 

that constrain the probabilities pik. The selection 
pressure coefficient Βik (with range [0,1]) acts an 
input bias on the neurons, determining which 
probabilities are to be selected (Βik high) and which 
suppressed (Βik low). A pixel's selection pressure is 
based on its motion residuals and colour; e.g., for 
the covered class Βik is defined as: 
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the pixel, made up of the motion residuals at the 
pixel in the backward and forward DFDs 
respectively and the colour of the pixel; UNλ and 

CHλ are the class associated with unchanged 
(those having low residual in a DFD) and changed 
(those having high residual) pixels; and Mλ are 

pixels belonging to the background of the colour 
mask. 

The second term constrains the labels 
assigned to pixels I and their neighbours, NI(i), to 

be compatible. The coefficient kl
ijC measures the 

compatibility between pixels i and j when assigned 
labels k and l respectively. When the labels of 
neighbouring pixels are compatible the associated 
probabilities are selected together; when the labels 
are incompatible, the higher probability is accepted 
and the lower rejected. 

Similarly, the third term seeks 
compatibility between a pixel's label k in the 
current image It and its label l in the previous 
image, where pil is the probability that l is the 
correct label for I in the previous image. The 
coefficient Tkl measures the compatibility between 
the pixel's previous label and each of the possible 
labels it may have in the current image. 

The fourth term (error term) seeks to force 
the sums of the label probabilities for a pixel to 
sum to 1. Squaring the deviation from 1 ensures 
that the term is positive and the resulting cost 
function is quadratic. The weights γβα ,, allow the 
relative effects of the contributing terms to be 
controlled. 

Expanding the error term and collecting up 
like terms gives the following form for the cost 
function: 
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3.2 Optimisation 
Optimisation was performed using a CNN having 
the following dynamic equation: 
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where C and R are respectively the capacitance and 
resistance associated with the CNN, uij is the state 
of the neuron representing label l in pixel j and g(.) 
is a sigmoid function that converts the state uij into 
the probability pij. 

 
The minimum of the cost function is then 

obtained by the following algorithm, applied for all 
i 0 I and for all k 0 ϖ: 
1. Initialise uij to g(Βik) 
2. Solve the dynamic equation for uij using a 

Runge-Kutta update procedure 
3. Compute pik = g(uik) 

4. Evaluate the cost function t
ike for the given 

probabilities, where t is the current iteration 

5. If the relative error 11 / ++ − t
ik

t
ik

t
ik eee  in the cost 

function is greater than some fixed percentage 
(e.g., 1%), return to step 2. 

Figure 2 shows the label images for Kathy, initially 
and after 100 iterations. 
 

 

Fig. 2 Label images - initial and after 100 iterations 

 
 

4 CNN Simulation using Handel-C 
Some results of experimenting with the Handel-C 
compiler are presented in this section. The task is 
edge detection of 256 gray-level images (synthetic 
and natural) with various sizes. The two methods 
under discussion are: A traditional edge detection 
algorithm based on thresholding (threshold value of 
16) the gray level difference of neighbouring 
pixels, modified to work with images of arbitrary 
size and a CNN edge detection algorithm. 

The three 8-bit test bitmaps (hardware, 
Lena and lighthouse) can be seen in Figure 3. Their 
size is 320x240, 128x128 and 80x60 respectively. 
Handel-C compiler was running on a Pentium II, 

clocked at 233 MHz with 128 MB of main memory 
and 4MB of graphics memory.  

 

 

Fig. 3 Test images 

Parameters for the experiments were: the 
amount of hardware generated; the total number of 
clock cycles; the amount of real time needed. In all 
cases, the simulator was set to display the state of 
the program variables once every 1000 cycles, so 
the total number of cycles is the truncated result of 
the true number. Figures 4, 5 and 6 show the results 
obtained with the two methods. The original 
images are on the top left corner, the outputs from 
the thresholding method are on the top right corner, 
and the bottom images are the outputs from the 
CNN algorithm after 1 and 3 iterations. 

 

Fig. 4 Hardware results 

 

 

Fig. 5 Lena results 



 
 

 

Fig. 6 Lighthouse results 

The thresholding edge detection is faster 
and produces less hardware. However, with the 
present hardware design technology standard, a 
number such as 2000 gates is not a major problem. 
The compensation for the CNN method is its 
polymorphic character. By changing the template 
set the same program can have a completely 
different functionality. It can also be run in real-
time, interactive way. We can monitor the output 
on every iteration and stop when we think that the 
result is satisfying, for instance if we would prefer 
stronger or weaker edges. It can also be tuned for a 
number of variables, such as the bias or the 
integration stepsize, whereas in the traditional 
approach there is only the threshold value.  

5 Future Work and Conclusions 
 
The purpose of this contribution was to present the 
work undertaken so far. Although the area of image 
segmentation is well explored not much has been 
reported about sequences of colour images. The 
CNN approach looks quite promising and we 
expect that the FPGA implementation will 
accelerate the performance of the network. 
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