
Approximation of Sigmoid Function and the Derivative for Artificial Neurons

KOLDO BASTERREXTEA
Elektronika eta Telekomunikazio Saila

University of the Basque Country (UPV/EHU)
EUITI Bilbao. La Casilla plaza 3. 48012 Bilbao

SPAIN

JOSÉ MANUEL TARELA
 and INÉS DEL CAMPO

Elektrizitate eta Elektronika Saila
University of the Basque Country (UPV/EHU)

SPAIN

Abstract: - A piecewise linear recursive approximation scheme is applied to the computation of the sigmoid
function and its derivative in artificial neurons with learning capability. The scheme provides high
approximation accuracy with very low memory requirements. The recursive nature of this method allows for the
control of the rate accuracy/computation delay just by modifying one parameter with no impact on the occupied
area. The error analysis shows an accuracy comparable to or better than other reported piecewise linear
approximation schemes. No multiplier is needed for a digital implementation of the sigmoid generator and only
one multiplier for its derivative.

Key-Words: - sigmoid function, neural networks, hardware design, piecewise linear approximation, recursive
centered interpolation.

1 Introduction
In the hardware implementation of artificial neural
networks (ANN), the non-linearity of the activation
function is one of the factors that constrains either
the occupied area or the computation time of the
system. The most popular activation function is the
sigmoid, often used with gradient-descendent type
learning algorithms. There are different possibilities
for evaluating this function, such as a truncated series
expansion, look-up tables, or piecewise
approximation. Piece Wise Linear (PWL)
approximation schemes appear to be a good
alternative [1,2] that save silicon area and show short
latency times [3]. Moreover, when gradient
descendent algorithms are used, they require the
existence of the first derivative of the activation
function. In consequence, if the learning is going to
be carried out on-line, it is also necessary to compute
efficiently the first derivative.
 The solutions we propose in this paper for an
efficient and cost effective implementation of the
sigmoid function is based on a PWL approximation
scheme that can be applied to the approximation of
any non-linear function. The method has been
optimized to approximating both the sigmoid
function and its first derivative for future ANN
hardware implementations. This procedure is well
suited for VLSI circuit design, is computationally
efficient and allows for a certain control of the rate
accuracy/computation delay as it is based on a
recursive algorithm.

2 PWL Optimized Approximation of
the Sigmoid Function
In this section we will describe the computational
scheme for the approximation of a sigmoid function
given by

xe
xf −+

=
1

1
)((1)

We will apply a Centered Linear Approximation
(CRI) to the efficient generation of an optimized
approximation to the above-defined function. CRI is
a recursive computational scheme for the generation
of PWL functions with successive vertex smoothing.
This method has been described with detail in [4] and
is a natural quadratic approximation with lattice
structure. The main advantage of the CRI is its
simplicity and recursively-improved accuracy.
Moreover, CRI generates accurate approximations to
non-linear functions from a very simple PWL
starting structure and requieres the storage of very
few parameters.
 The initial structure, which must be generated as
the starting PWL approximation, is shown in Fig.1
and described bellow

1)(

2
1

2

1
)(

0)(

3

2

1

=

 +=

=

xy

x
xy

xy

 (2)

where y2(x) is the tangent to the reference sigmoid
function in x = 0. Notice that we only need an adder
and a shift register in the case of a digital design.
This initial structure assures null error at x=0 and the
squashing property of the function.

Figure 1: Initial structure for the CRI approximation of
the sigmoid function.

 Nevertheless, it is known that once computed the
sigmoid function for negative inputs (x−) the
computation of the same function for positive inputs
(x+) is straightforward and is given by

)(1)(−+ −= xfxf (3)

Consequently, we will only consider de negative
semi axis. Therefore, the definition of y3(x) and the
computation of the minimum operations are avoided
in the computation algorithm, although a sign
detector must be implemented for the inputs. The
CRI algorithm for negative inputs is as follows:

()

[]
()

[];)(),(Max

};4/

);()(

;)()(21

;)(),(Max{

)i;i0;(ifor

 ; 2121)()(; 0)()(21

xhxgg(x)

xgxg

xhxgh(x)

xhxg(x)g

q

xxyxhxyxg

=
∆=∆

′=
∆++=

=′
++==

+====

where ∆ is the depth parameter, that must be stored
in memory for each q, q is the interpolation level, h
is the linear interpolation function, and g(x) is the
obtained approximated function. g’(x) is only needed
to write a sequential algorithm, but it would
disappear from the computation scheme in a physical
circuit implementation as g(x) and h(x) would be
computed in parallel.
 For an optimal approximation, we must choose
the value of ∆ that minimizes the error of the
approximation for each q (∆q,opt). In this case we have

optimized ∆ to achieve the minimum of the
maximum error for any input for every interpolation
level, that is

(){ }PqEmaxmin (4)

where P=[∆] is a one-dimensional vector and

() () ()∆−== ,max xgxfMaxMaxE q
q εP (5)

As the value of the input x the maximum error occurs
for is a function of ∆, the error surface |ε(x,∆)|=|f(x)-
gq(x,∆)| must be computed, the maximum values for
each ∆ obtained and finally the minimum value of
such maximums identified to select ∆q,opt. The values
of ∆q,opt for each q are:

∆1,opt = 0.30895 ∆2,opt = 0.28094
∆3,opt = 0.26588 ∆4,opt = 0.26380

These values have been obtained by calculating
numerically the error surface with an input resolution
of 10−5 in ∆ and 10-2 in x.
 The generated optimized approximations through
CRI, for negative and positive inputs, and the error
curves magnified by ten are shown in Fig.2. The
initial structure has only 3 segments, comprising
y1(x)=0 and y3(x)=1. This quantity increases in each
recursion, and can be calculated for each
interpolation level as follows:

12)(1 += +qns segmentsof number (6)

So the number of segments increases to 5, 9, 17 and
33 for q=1, 2, 3 and 4 respectively.
 As mentioned above, note that, being y2(x) the
tangent to f(x) in x=0, the error is zero for x = 0 and
very small in its surroundings. This fact enhances the
training when off-line simulation packages based on
gradient descendent algorithms are used [1], as the
derivative of f(x) and g(x) are very close.

3 Approximation of the First
Derivative
The first derivative of the sigmoid function given in
(1) is

()2
1

)('
x

x

e

e
xf

−

−

+
= (7)

Online training, if based on gradient descendent
methods, demands on-chip computation of the first
derivative that can be implemented in various forms.

-6 -4 -2 2 4 6

-0.2

0.2

0.4

0.6

0.8

1

y1=0,y2=0,y3=1/2(1+x/2)

Figure 2: Reference function (sigmoid), approximated function and error curve magnified by ten for the first four
interpolation levels. Number of segments: 5 for q=1, 9 for q=2, 17 for q=3 and 33 for q=4.

The first approach consists of a straightforward
differentiation of the PWL approximation of the
sigmoid that results in a non-continuous step
function. This function must be computed efficiently,
for example by choosing power of two values for
each step in digital designs [3]. Alternatively

))(1)(()(' xfxfxf −= (8)

can be computed. In our case, we would use g(x), i.e.
the CRI approximation of the sigmoid, for the
calculation of (8), but the obtained approximations
are not very accurate.

Figure 3: Initial structure for the CRI approximation of
the first derivative.

 A better approximation can be achieved if CRI is
used again to generate a PWL approximation of the
derivative function. Now, three straight lines form
the initial structure shown in Fig.3:

nmxxy

nmxxy

xy

+−=
+=

=

)(

)(

0)(

3

2

1

 (9)

where

()

()

()
() 293391.032

32

1
132

1

096225.0

32

1
132

1

32

1
132

2

2

3

2

=−−

−
+−

=

=

−
+−

−

−
+−

=

mLn

n

m

 (10)

so being y2(x) and y3(x) the tangents to f’(x) in its
points of inflection. The CRI algorithm is very
similar to the one given for the approximation of the
sigmoid function. Now we need two different

-7.5 -5 -2.5 0 2.5 5 7.5
-0.2

0

0.2

0.4

0.6

0.8

1
Sigmoid,g4,10err3; q=3

-7.5 -5 -2.5 0 2.5 5 7.5
-0.2

0

0.2

0.4

0.6

0.8

1
Sigmoid,g5,10err4; q=4

-7.5 -5 -2.5 0 2.5 5 7.5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Sigmoid,g2,10err1; q=1

-7.5 -5 -2.5 0 2.5 5 7.5
-0.2

0

0.2

0.4

0.6

0.8

1
Sigmoid,g3,10err2; q=2

-6 -4 -2 2 4 6

-0.1

Q 0.1 R

0.2

0.3 P

0.4
y1=0,y2=mx+n,y3=-mx+n

interpolation depths for accurately approximate de
reference function f’(x): one for vertex P (∆a,q) and
another one for vertexes Q and R (∆b,q). The
recursive algorithm is as follows:

[]
()

[]
()

[]
[];)(),('Max)(

;)('),(Min'

};4;4

;)()('21)(

;)(),('Max)(d

;)(')(21'

;)('),(Min'{d

)iq;i0;(ifor

;)()('

;)()(d ; 0)()(

3

21

xhxdgxdg

xhxdg(x)dg

xhxdgxh

xhxdgxg

xhxdg(x)h

xhxg(x)g

nmxxyxh

nmxxyxgxyxh

bbaa

b

a

=
=

∆=∆∆=∆
∆++=

=
∆−+=

=
++==

+−==
+====

where dg(x) is the approximated first derivative of
the sigmoid function.
 The optimization problem has been solved as
stated before in (4) and (5), i.e. by searching for the
minimum value of the maximum error at any input x.
In particular, the optimization problem for ∆a,q has
been solved with the constraint of ε(x=0) = 0. The

solution is straightforward as CRI assures that the
height of the function is set in the first interpolation
level:

qna any for 0.0868
4

1
2 ≈

 −=∆ (11)

From the resolution of (5) we obtain for ∆b,q:

∆b,1 = 0.11266 ∆b,2 = 0.10150
∆b,3 = 0.09634 ∆b,4 = 0.09547

The approximations obtained for the first four
interpolation levels are depicted in Fig.4, where error
curves have been magnified by ten.
 The approximation error for each q has been
evaluated for 106 input data uniformly spaced in the
domain [−8,8] as made in [5]. The numerical values
are summed up in Table 1 and Table 2 for the
sigmoid and the first derivative respectively. These
values of the maximum and average errors are
comparable in order of magnitude to those reported
in [1, 2, 5] for specific digital designs of PWL
sigmoid function approximating circuits.

Figure 4: Reference function (first derivative), CRI approximation (dg(x)) and error curve magnified by ten for the first
four recursion levels. Number of segments: 7 for q=1, 15 for q=2, 27 for q=3 and 41 for q=4.

-7.5 -5 -2.5 0 2.5 5 7.5

-0.1

0

0.1

0.2

Sig_der,dg4,10err4; q=3

-7.5 -5 -2.5 0 2.5 5 7.5

-0.1

0

0.1

0.2

Sig_der,dg5,10err4; q=4

-7.5 -5 -2.5 0 2.5 5 7.5

-0.1

0

0.1

0.2

Sig_der,dg2,10err1; q=1

-7.5 -5 -2.5 0 2.5 5 7.5

-0.1

0

0.1

0.2

Sig_der,dg3,10err2; q=2

Interpolation level Optimum depth parameter Average error Maximum error No. segments
q = 1 ∆1,opt = 0.30895 1.20×10−2 3.78×10−2 3 (5)
q = 2 ∆2,opt = 0.28094 9.21×10−3 2.45×10−2 7 (9)
q = 3 ∆3,opt = 0.26588 8.48×10−3 2.06×10−2 15 (17)
q = 4 ∆3,opt = 0.26380 8.41×10−3 1.97×10−2 31 (33)

Table 1: Sigmoid approximation. Optimization of the maximum error. In brackets the number of segments excluding the
constant functions y=1 and y=0.

Interpolation level Optimum depth parameter Average error Maximum error No. segments

q = 1 ∆b,1 = 0.11266 4.91×10−3 1.43×10−2 5 (7)
q = 2 ∆b,2 = 0.10150 3.67×10−3 9.56×10−3 13 (15)
q = 3 ∆b,3 = 0.09634 3.40×10−3 8.09×10−3 25 (27)
q = 4 ∆b,4 = 0.09547 3.31×10−3 7.79×10−3 39 (41)

Table 2: Approximation of the first derivative. Optimization of the maximum error. In brackets the number of segments
excluding de constant functions y=1 and y=0

4 Concluding Remarks
We have presented a new scheme for the generation
of a sigmoid function and its first derivative in
order to achieve hardware design of self contained
neurons with on-line learning capability. This
scheme is recursive and provides enhancing
accuracy and function smoothing for each epoch.
For digital designs, the proposed method requires
no multiplication for the sigmoid generation.
Another mayor advantage of the method lies in the
fact that only one number, the optimized value of ∆,
must be stored in memory for each value of q, while
the number of segments increases by powers of two
as shown in (6). The approximation of the first
derivative is also possible through the same
method. In this case, only one multiplication is
required for the generation of each tangent to
provide the initial PWL structure.
 The calculated error both for the sigmoid and the
first derivative approximation depends of the
parameter optimization priorities, i.e. maximum or
average error optimization, and the interpolation
level. We have chosen to assure a null error in x=0
and to optimize the maximum deviation for any
input. The obtained errors are comparable to the
better error ranges reported for specific sigmoid
function PWL approximation schemes. Although
general properties of this scheme are promising, the
occupied area and the computation times can not be
estimated until a specific technology is selected for
the physical circuit implementation.

Acknowledgments: This work has been partially
supported by UPV (Project 224.310-EA105/99) and
DGES (Project TIC99-0357).

References:
[1] D.J. Myers and R.A. Hutchinson, Efficient

implementation of piecewise linear activation
function for digital VLSI neural networks,
Electronic Letters, 25(24), 1989, 1662-1663.

[2] C. Alippi and G. Storti-Gajani, Simple
approximation of sigmoidal functions: realistic
design of digital neural networks capable of
learning, in “Proc. IEEE International
Symposium on Circuits and Systems”, 1991,
1505-1508.

[3] P. Murtagh and A.C. Tsoi, Implementation
issues of sigmoid function and its derivative for
VLSI digital neural networks, IEE Proceedings-
E, 139(3), 1992, 207-214.

[4] K. Basterretxea, E. Alonso, J. M. Tarela, I. del
Campo, PWL Approximation of Non-linear,
Functions for the Implementation of Neuro-
Fuzzy Systems, Proceedings of the
IMACS/IEEE CSCC’99, Athens 1999.

[5] M. Zhang, S. Vassiliadis and J.G. Delgado-
Frias, Sigmoid Generators for Neural
Computing Using Piecewise Approximations,
IEEE Transactions on Computers, 45(9), 1996,
1045-1049.

