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Abstract: - A piecewise linear recursive approximation scheme is applied to the computation of the sigmoid 
function and its derivative in artificial neurons with learning capability. The scheme provides high 
approximation accuracy with very low memory requirements. The recursive nature of this method allows for the 
control of the rate accuracy/computation delay just by modifying one parameter with no impact on the occupied 
area. The error analysis shows an accuracy comparable to or better than other reported piecewise linear 
approximation schemes. No multiplier is needed for a digital implementation of the sigmoid generator and only 
one multiplier for its derivative. 
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1   Introduction 
In the hardware implementation of artificial neural 
networks (ANN), the non-linearity of the activation 
function is one of the factors that constrains either 
the occupied area or the computation time of the 
system. The most popular activation function is the 
sigmoid, often used with gradient-descendent type 
learning algorithms. There are different possibilities 
for evaluating this function, such as a truncated series 
expansion, look-up tables, or piecewise 
approximation. Piece Wise Linear (PWL) 
approximation schemes appear to be a good 
alternative [1,2] that save silicon area and show short 
latency times [3]. Moreover, when gradient 
descendent algorithms are used, they require the 
existence of the first derivative of the activation 
function. In consequence, if the learning is going to 
be carried out on-line, it is also necessary to compute 
efficiently the first derivative. 
     The solutions we propose in this paper for an 
efficient and cost effective implementation of the 
sigmoid function is based on a PWL approximation 
scheme that can be applied to the approximation of 
any non-linear function. The method has been 
optimized to approximating both the sigmoid 
function and its first derivative for future ANN 
hardware implementations. This procedure is well 
suited for VLSI circuit design, is computationally 
efficient and allows for a certain control of the rate 
accuracy/computation delay as it is based on a 
recursive algorithm. 
 
 

 

2   PWL Optimized Approximation of 
the Sigmoid Function  
In this section we will describe the computational 
scheme for the approximation of a sigmoid function 
given by 
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We will apply a Centered Linear Approximation 
(CRI) to the efficient generation of an optimized 
approximation to the above-defined function. CRI is 
a recursive computational scheme for the generation 
of PWL functions with successive vertex smoothing.  
This method has been described with detail in [4] and 
is a natural quadratic approximation with lattice 
structure. The main advantage of the CRI is its 
simplicity and recursively-improved accuracy. 
Moreover, CRI generates accurate approximations to 
non-linear functions from a very simple PWL 
starting structure and requieres the storage of very 
few parameters. 
     The initial structure, which must be generated as 
the starting PWL approximation, is shown in Fig.1 
and described bellow 
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where y2(x) is the tangent to the reference sigmoid 
function in x = 0. Notice that we only need an adder 
and a shift register in the case of a digital design. 
This initial structure assures null error at x=0 and the 
squashing property of the function. 

Figure 1: Initial structure for the CRI approximation of 
the sigmoid function. 
 
     Nevertheless, it is known that once computed the 
sigmoid function for negative inputs (x−) the 
computation of the same function for positive inputs 
(x+) is straightforward and is given by 
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Consequently, we will only consider de negative 
semi axis. Therefore, the definition of y3(x) and the 
computation of the minimum operations are avoided 
in the computation algorithm, although a sign 
detector must be implemented for the inputs. The 
CRI algorithm for negative inputs is as follows: 
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where ∆ is the depth parameter, that must be stored 
in memory for each q, q is the interpolation level, h 
is the linear interpolation function, and g(x) is the 
obtained approximated function. g’(x) is only needed 
to write a sequential algorithm, but it would 
disappear from the computation scheme in a physical 
circuit implementation as g(x) and h(x) would be 
computed in parallel. 
     For an optimal approximation, we must choose 
the value of ∆ that minimizes the error of the 
approximation for each q (∆q,opt). In this case we have 

optimized ∆ to achieve the minimum of the 
maximum error for any input for every interpolation 
level, that is 

 
( ){  }PqEmaxmin     (4) 

 
where P=[∆] is a one-dimensional vector and 
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As the value of the input x the maximum error occurs 
for is a function of ∆, the error surface |ε(x,∆)|=|f(x)-
gq(x,∆)| must be computed, the maximum values for 
each ∆ obtained and finally the minimum value of 
such maximums identified to select ∆q,opt. The values 
of ∆q,opt for each q are: 

∆1,opt = 0.30895  ∆2,opt = 0.28094 
∆3,opt = 0.26588  ∆4,opt = 0.26380 

These values have been obtained by calculating 
numerically the error surface with an input resolution 
of 10−5 in ∆ and 10-2 in x. 
     The generated optimized approximations through 
CRI, for negative and positive inputs, and the error 
curves magnified by ten are shown in Fig.2. The 
initial structure has only 3 segments, comprising 
y1(x)=0 and y3(x)=1. This quantity increases in each 
recursion, and can be calculated for each 
interpolation level as follows: 
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So the number of segments increases to 5, 9, 17 and 
33 for q=1, 2, 3 and 4 respectively. 
     As mentioned above, note that, being y2(x) the 
tangent to f(x) in x=0, the error is zero for x = 0 and 
very small in its surroundings. This fact enhances the 
training when off-line simulation packages based on 
gradient descendent algorithms are used [1], as the 
derivative of f(x) and g(x) are very close. 
 
 

3   Approximation of the First 
Derivative 
The first derivative of the sigmoid function given in 
(1) is 
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Online training, if based on gradient descendent 
methods, demands on-chip computation of the first 
derivative that can be implemented in various forms.  
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Figure 2: Reference function (sigmoid), approximated function and error curve magnified by ten for the first four 
interpolation levels. Number of segments: 5 for q=1, 9 for q=2, 17 for q=3 and 33 for q=4. 
 
 
The first approach consists of a straightforward 
differentiation of the PWL approximation of the 
sigmoid that results in a non-continuous step 
function. This function must be computed efficiently, 
for example by choosing power of two values for 
each step in digital designs [3]. Alternatively  
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can be computed. In our case, we would use g(x), i.e. 
the CRI approximation of the sigmoid, for the 
calculation of (8), but the obtained approximations 
are not very accurate. 

Figure 3: Initial structure for the CRI approximation of 
the first derivative. 

     A better approximation can be achieved if  CRI is 
used again to generate a PWL approximation of the 
derivative function. Now, three straight lines form 
the initial structure shown in Fig.3:  
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where  
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so being y2(x) and y3(x) the tangents to f’(x) in its 
points of inflection. The CRI algorithm is very 
similar to the one given for the approximation of the 
sigmoid function. Now we need two different 
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interpolation depths for accurately approximate de 
reference function f’(x): one for vertex P (∆a,q) and 
another one for vertexes Q and R (∆b,q). The 
recursive algorithm is as follows: 
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where dg(x) is the approximated first derivative of 
the sigmoid function. 
     The optimization problem has been solved as 
stated before in (4) and (5), i.e. by searching for the 
minimum value of the maximum error at any input x. 
In particular, the optimization problem for ∆a,q has 
been  solved  with  the  constraint  of  ε(x=0) = 0. The 

solution is straightforward as CRI assures that the 
height of the function is set in the first interpolation 
level: 
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From the resolution of (5) we obtain for ∆b,q: 
 

∆b,1 = 0.11266  ∆b,2 = 0.10150 
∆b,3 = 0.09634  ∆b,4 = 0.09547 
 

The approximations obtained for the first four 
interpolation levels are depicted in Fig.4, where error 
curves have been magnified by ten. 
     The approximation error for each q has been 
evaluated for 106 input data uniformly spaced in the 
domain [−8,8] as made in [5]. The numerical values 
are summed up in Table 1 and Table 2 for the 
sigmoid and the first derivative respectively. These 
values of the maximum and average errors are 
comparable in order of magnitude to those reported 
in [1, 2, 5] for specific digital designs of PWL 
sigmoid function approximating circuits. 
 
 

 

 
Figure 4: Reference function (first derivative), CRI approximation (dg(x)) and error curve magnified by ten for the first 
four recursion levels. Number of segments: 7 for q=1, 15 for q=2, 27 for q=3 and 41 for q=4. 
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Interpolation level Optimum depth parameter Average error Maximum error No. segments 
q = 1 ∆1,opt = 0.30895 1.20×10−2 3.78×10−2 3 (5) 
q = 2 ∆2,opt = 0.28094 9.21×10−3 2.45×10−2 7 (9) 
q = 3 ∆3,opt = 0.26588 8.48×10−3 2.06×10−2 15 (17) 
q = 4 ∆3,opt = 0.26380 8.41×10−3 1.97×10−2 31 (33) 

 
Table 1: Sigmoid approximation. Optimization of the maximum error. In brackets the number of segments excluding the 
constant functions y=1 and y=0. 
 
Interpolation level Optimum depth parameter Average error Maximum error No. segments 

q = 1 ∆b,1 = 0.11266 4.91×10−3 1.43×10−2 5 (7) 
q = 2 ∆b,2 = 0.10150 3.67×10−3 9.56×10−3 13 (15) 
q = 3 ∆b,3 = 0.09634 3.40×10−3 8.09×10−3 25 (27) 
q = 4 ∆b,4 = 0.09547 3.31×10−3 7.79×10−3 39 (41) 

 
Table 2: Approximation of the first derivative. Optimization of the maximum error. In brackets the number of segments 
excluding de constant functions y=1 and y=0 
 

4   Concluding Remarks 
We have presented a new scheme for the generation 
of a sigmoid function and its first derivative in 
order to achieve hardware design of self contained 
neurons with on-line learning capability. This 
scheme is recursive and provides enhancing 
accuracy and function smoothing for each epoch. 
For digital designs, the proposed method requires 
no multiplication for the sigmoid generation. 
Another mayor advantage of the method lies in the 
fact that only one number, the optimized value of ∆, 
must be stored in memory for each value of q, while 
the number of segments increases by powers of two 
as shown in (6). The approximation of the first 
derivative is also possible through the same 
method. In this case, only one multiplication is 
required for the generation of each tangent to 
provide the initial PWL structure. 
     The calculated error both for the sigmoid and the 
first derivative approximation depends of the 
parameter optimization priorities, i.e. maximum or 
average error optimization, and the interpolation 
level. We have chosen to assure a null error in x=0 
and to optimize the maximum deviation for any 
input. The obtained errors are comparable to the 
better error ranges reported for specific sigmoid 
function PWL approximation schemes. Although 
general properties of this scheme are promising, the 
occupied area and the computation times can not be 
estimated until a specific technology is selected for 
the physical circuit implementation. 
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