Singular Value Based Model Approximation
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Abstract: - This paper is motivated by the fact that though weighted component based non-linear model
approximation techniques are popular engineering tools, their utilisation is being restricted by their
exponential complexity caused by the number of components. Even in case when the components are
generated by some expert operator, the approximations usualy have redundant or weakly contributing
components resulting in exponentialy growing unnecessary calculation. The main objective of this paper is to
propose a complexity reduction technique capable of finding the minimal number of components of a given

approximation.
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1 Introduction

The caculation power offered by computers
considerably gained the role of numerica techniques
of smoothing procedures, which represents the
function to be approximated by linear combination

of m known basis functions W& such as

—2am
f()_() » f(Z) - aV:]_WV (Z) pV ([8] page 273) one Of
the mostly adapted approaches to determine Pi is
the least squares of basis expansions. Various
techniques have been proposed to choose a basis to
achieve an excdlent approximation using
comparatively smal value of m. For instance,
Fourier series, polynomial bases, regression spline
bases and Wavelet bases, or explicitly localized
smoothing methods such as kend and loca
polynomia smoothing are to serve this purpose [7].
In some engineering aspects the basis functions
themselves can become interesting descriptors of the
dates from a substantive point of view, like in a
probabilistic extension or even in the case of fuzzy
logic that takeovers the use of tight mathematical
framework to indicate the semantic and linguistic
meaning of the approximation. The rapidly
incressing complexity of ordinary systems to be
controlled forces engineers to face the inevitable

changing of points Pi into various type components
(models, behaviours, knowledge-bases etc.) that
may be complex in itself. This paper focuses on the
widely adopted approximation of non-linear models
in a given parameter space. Regarding the limited
size of this paper, instead of sdlecting from the
uncountable number of publications let us mention
only various topics where the mentioned concepts
are popular: behaviour fusion techniques in the topic
of behaviour based control, multi objective

behaviour based control, multi objective decision
making, robot guiding based on superposition of
behaviours, fuzzy and B-spline approximations
[2,3].

Despite the widely spreading use of the above
techniques, they are however strongly restricted by
their exponential complexity problem, namely, their
calculation  complexity  requirement  grows
exponentially with the number of model points (see
section 3). The calculation time is a crucia quest in
real time applications. The main problem is that
there is no standardised framework regarding the
design, optimality, reducibility for defining the
model points in general. The mode points, be it
generated from expert operators or by some training
or identification schemes, may contain redundant,
weakly contributing, or outright inconsistent model
points. Moreover, in pursuit of good approximation,
one may be tempted to overly assign the number of
model points, thereby resulting in problems of
computation time and storage space. A mode
approximation, hence, has two important objectives.
One is to achieve a good approximation. The other
is to reduce the number of modd points. The main
difficulty is that these two objectives are
contradictory. A formal approach to extracting the
more pertinent mode points, hence, is highly
desirable. The present paper is an attempt in this
direction. The reduction technique proposed in this
paper finds the minimal moded points and their new
weighting, which defines the same approximation.
The proposed method finds the minima common
basis for model points. Another way to reduce the
caculation complexity is to find a minima common
gpace for the egquations defined a all model points.
In this case the input values are transformed into the



reduced space and the calculation of the output
values is done in the reduced eguation space with
smaller computation effort. The real output values
are finally transformed back to the origina space.
An important advantage of the proposed reduction
technique is that there is a forma measure to
filtering out not only the redundant, but the weakly
contributing components as well. This implies that
the degree of reduction can be applied according to
the maximum acceptable eror of the mode
approximation. The key idea of SVD based
reduction applied in this paper is proposed by Yeung
Yam for fuzzy approximation in 1996 [1].

2 Definitions

This section gives the definitions of some widely
adopted non-linear model approximation techniques
what the reduction is proposed for.

Definition: Model M. In this paper the
following model M is investigated:
X(t) = Ax(t) +Bu(t)i

y(®) = Cx(t) + Du(t) -
where the numbers of elements in vectors Y,

X Y are M, ™ and "Y, respectively.

Definition: Non-linear model MP M(E) in

the parameter space P. Let us suppose that the
model defined in (3) is non-linear in the N

dimensional parameter space P, namely,
. A B C D . .
matrices =, =, = and = are non-linear in
respect of PPl i=1.n gichas
ffl(p) - 1R (9)
S
40 - (p
ML= “‘“" and similarl
=lfa,j<9>l c-liso] 4 o=lide
(4)
Therefore
X(t) = A(p)x(t) + B(D)U(t)p M)
y(® = CE)x® + D),
M(p) ._ . .
Let us suppose that model =" is identified at

some certain points Pv ( =L.m where m is the

words the non- M{®) is known and
linearised at points Pv,
My =M
Definition: Model point ¥ ®) L M

be the v-th model point of non-linear model M
as:
x()=Alp, )x®)+B(p, Jub)i
M(p, )P y=
vy =C(p )x® +D(p )U(t)b
x(t) A x(t)+B u(t)y

yP
y(t) C x(t)+D u(t)b 1 )

R
Ev:lb\/i i~ fibj(p )J c :ICV,i,j =

Idw j=fi. J(p )J

fi(,:J (EV)J
and —V

Having the identified model points MV the non-
linear model is approximated in the whole parameter
space:

X(t) = A(p)x(t) + B(p)u(t)fl > ) = f(M y p)
= L Mm,
y(t) = C(P)X(t) + D(p)u(t)b - m:E

The approximation is done like any function
approximation  technique since al eements

contained in matrices é, E, ¢ and D of modd M

are functions in space P see (4). According to the
introduction let us define the following
approximations:

Definition: Weighted Combination of Model
points (WCM). Model approximation based on
the weighted combination of given model points.
The weighting is determined by weighting

functions ") defined for each given model
point.

ME)= & w@My =4 wEME,)
v=1 v=1 . (6)

3 Complexity investigation

The main objective of this section is to show that the
defined approximation techniques have exponential
complexity problem. According to the introduction,
the exponentia explosion of the complexity is
investigated in respect of the number of modd



points and the number of elements in vectors %, y

and Y. Let us omit the calculation -effort
requirement of add, but consider the product

operation in the followings.
Lemma 1. The calculation complexity of WCM
grows exponentially with the number of model

points, ", ™ and Y (see 3). The
calculation power requirement is proportional
to the number of product operation in (3 and
6):

- 2
Ravem = m(ng +nyng + NyNy +nyny +Tw) e

where Tw

needed for weighting function

indicates the calculation effort
W (P)

4 Reduction

This section is to propose a method capable of
generating a minima form of WCM (6) in the sense
that the resultant agorithm utilises the minimal
number of basis functions and model points for the
same approximation. This section considers only
exact reductions. Inexact reduction will be treated at
the end of this section. The main concept of the
reduction is based on singular value decomposition
(SvD) [8]. Methods of numerical computation of
SVD can be found in [4,5,6]. Note that, in the
following agorithms any kinds of minima matrix
decomposition can be used instead of SVD. The
SVD has important role in the case of inexact
reduction since it provides the importance of the
components. Therefore the following agorithms
will be introduced applying SVD. To effectuate an
easier understanding, the reduction agorithm will be
introduced in two steps. The first outlines an off-line
transformation of the whole model, hence, the model
points into a common minimal space. The benefit of
the transformation is that the calculation of the

Mt

model ("tr" means "transformed") in the
reduced space requires reduced calculation effort.
As a matter of fact, the input values of the modd is
on-line transformed into the reduced space as well:

xT=Nx®) u"®)=Nju@ |

d
. N N - ar
where the sizes of =land =2 are ™ ™ and

s ar r r
"’ M respectively, and ™ EMx, MuEny

(subscript "r" means "reduced"). The calculation of

- tr tr

O and ¥ O hence, is done in the reduced
gpace and findly the output values are transformed
into the original space:

. _ .t
XO=NKTM L YO=NYTO

. N N ny n'
where the sizes of =3and =4 ae * d and

ol r r

Ny ny1 " ively, and nd£nx1 ny£ny_
tr

Consequently, the model points My , hence, modedl

MV are defined in the reduced Space as.

0 =N A N30+ BY N )
Y0 =N, 6! NI x0+DY N o)

AT ey ATt tr tr i
£ @ =AY X" (0 +B u" @

P v tr tr it oy P My
y"(t)=C  x" (t)+D_u" (1)
= =V =V ID , (11)
tr tr tr tr
where the sizes of A , B , ¢ and b are

né’n)r(1né’nlrjin§,’n)r(and n{,’n&ir vely.

The transformation may lead to caculation

reduction regarding Lemma 1 and 2, see (9).

The second gtep finds the minimal number of model
: M!

points =V,

corresponding  weighting

- r r .
v=lm ~ m £m  gnd ther

functions from the

tr
transformed model points Mv  Let us assume the
above discussed reduction steps in the followings:

Theorem 1. Model points Mv can always be
transformed into a common minimal space as:

o=ATxTO+BIu O

= = vb M
Yy Y
tr iy — ~Ir 1 tr tr gy
y' O =cyx" ©+Dyut O]

tr ottt tr

. A B C D
wherethesizesof = ,= ,= and = are
ro.r ro.r ro.r ro.r
Ny nX1 Ny nu1 Ny M ad Y nu1

r r r

respectively, and "™ EMx M £ny Mg Enx.
r

ny £n i N, N N N
Y=Y, Matrices =1, =2, =3and =4 can



always be found in such way that the result of

using models Mv and My are equivalent if
X" (©) =N x(©) u'" (1) =N u(t)

. _ -t _
XM =NTW L yO=Ny" )

Theorem 2. The function (6) can always be
transformed into the following form:

r

M(p) = a Wv(p)Mv =4 Wv (p)Mv
v=l v=l (12)

r Mh
where M £M and =v s generated form

MV , so it till has the reduced size;

1Xtr(t) Ar tr(t)+Br tr(t)

M{/D tr l’ tr r,.tr
iy @ =Cl x" )+ D u" (1)
r r r r
where the sizes of A ,E ,g and D are
_ aAlr gt ctr
the same as the sizesof = , = , = and
=, respectively.

Proof: The proof of Theorem 1, 2 can be inferred
from Method 1, 2 to be introduced in the followings.
Method 1 is for finding the minimal space for the
model approximation. Method 2 is to define the
minimal number of modd points and weighting
functions. First of dl let us define the singular value
decomposition [5,6,7]:

Definition: SVDR: Sngular Value Based

B ; = ..

Reduction. Suppose that matrix =" n2) i j]
is given. Applying singular value decomposition
yields:

AP
B=A DA, =[A' |Ad]g§ JAL AT
= =1==2 =1'=1"3 =2'=2

"UJQ_"O
COYONC

(14)

Here, matrix 0 contains zero elements, matrices

A A . .
=1 and =2 are orthogonal, and diagonal matrix

D . . . .
= contains the singular values in decreasing
magnitude. The zero or the smallest of singular

values (smaller than singular value threshold TO,
say) can be discarded to yield a simpler system.

_Bf : : .
Matrix = thus contains the retained singular

d
values and B contains the discarded ones. The

result of SVDR is therefore:
B=ATB'A"  =A"B
="1= 22 T=1=

- H =layoutl\d,L ,,---,L )
Definition: = 4 ( =1 =Z). Matrices
L _ . . . .
=k, k=1.Z gren dimensional with the size of

C L "k =
%1 7 %N =k must hold that < ox.d = °d
.The layout function generates two dimensional

matrix H by placing all the vectors of the d-th

. . . L
dimension of n matrices =K as column vector

. H . . .
into = with the size of €. So, the size of
Z n
&g a O e
H=1lh . —1i=1: ’ .
= ol is k=Li=Li*d " The ordering of

the vectors ho isarbitrary.

Example: Let us suppose that the size of three

L =]l , ,
dimensiona matrices =k ler sl s(el €2 e3)

. L , :
Let us layout matrices =K for the second dimension:

:|ayout(2,£1,~wgz)_ The

2(92’ e.].%) :lhOJ1 O:1e1e31 Where h0 :lhO,SJ and
hO

resulted

s = |k,r,s,V1 s=1€ The ordering of the vectors
ois arbitrary:  °Y (k’r’v)1
0=(k-Dejez +(r- Deg+v.

for instance

L,,--,L_)=rebuildH
Definition: COTRRLS (=)
Function rebund(ﬂ) is the inverse of

:Iayout(d,£1,~~~,hz)

H ) .
= and results in matrices
L

k=1.z |t

Kk,
00 (k.r.v) applied in the layout function. So,
rebuild(H)

requires the ordering

function generates n-dimensional

. L
matrices =k  from the column vectors of two

dimensional matrix ﬂ:lhoj based on the
ordering of the wvectors used in
:Iayout(d,£1,~~~,hz)



s ooy~
Example: Let us suppose — (2 %) "°
h

is given,
where ho=lo1 - Mg

Executing
L, = rebuild(H)

k:l__Z, with 00 (k,r,V)1

matrices Ly = ll k’r’s’VJ,

lk,r,sv =ho,s

are obtained, where

Definition:

N,L' -, L") =reduct(d,L,---,L _
®L L) = reduct(d. L, =Z). This
function reduces the size of n-dimensional

L . . L _ .
€K1 KN sized matrices =k, K=1.Z in d-

i : L "kieyq =€
th dimension. =k must hold that kd ~==d

, reduct(d,L ,,---,L
The results of function @LymLy) are
. N Lr!...!Lr
matrices = and =1 =z ("r" denotes
: N . “ef
reduced), where the sized of = is ® g

r

r ’ ’
£ . L
a0 =% and the size of =k are 1 Ckn
where "K,i,it d:Ck,i :ek,i and "k:ck,d :eé-
Let us define the algorithm

reduct(d,L ,---,L
or ( =1 =Z) as.

f
H =layout\d,L ,,---,L ) i
1) = y ( =1 =Z), the size of H is
L Z 00
eg a4 O e
k=li=1,id

2) Applying SVDR on matrix H the following

reduction is obtained: H=NH : where the size of
p, 2000
. ST € a O &
Noand B are ® ©d ang k=li=itd

.
. £
respectively, where €a =€
Ll - :
3) Matrices =k, k=1.Z  are determined by

function rebuild(ﬂ') .

The main goa of this Method 1 is to find the
transformed form that is defined in Theorem 1 see

(11). For convenient notation let us form three
- . i A=la,:

dimensona matrix: = [aV,I,JJ,
A, =lavij]

from matrices

defined in (5). In the same way let us

. ) . . D
define three dimensional matrices E, ¢ and =.

Finding common minima space for the model
points (algorithm for Theorem 1).

N N
Method 1: 1) Determination of =land =2:

N.,A",C") =reduct{3 A,C . N '
Let (N, ANC)=r UC( ==).Thesz&sof =1 A

and € ae MM MM gpg ™ ny,n’r‘,
respectively.
N_,B',D') =reduct|3,B, D . N
Let (N,.B'.D) ( ==).The5|zesof =2,
' ' , , , - N
E andg arenu nLG,m Ny n{J andm ny nu1
respectively.
_— N N
I1) Determination of =3and =4
(N, A" B') = reduct(2, A", B) _
Let =3= = = ="' The sizes of
tr tr . PN e
23, A" ad B ae ™ Mg M Mg M gng
PN N ¢
™ Mg " resnectively.
(N ,,C" D) = reduct(2,C", ') _
Let =4'= "= = =', The sizes of
tr tr . [N G
Ny S ad D e ™ Ny, My 0k o
PN SV ¢
m n n .
YU respectively.

r r
Note that nd£nx, n>r<£n><, Ny ENy ang M ENy

that isin full accordance with Theorem 1.

The eIemeTts ]of two-dimensiona  matrices
Atr = al:/r. .
= r-.r AN tr

V(g M) defined in MV | see (12), are

t
Atr_ltr Br

_ e | B
determined from = Vi.il Matrices  V(d n“),
Ctr Dtr
=v,(ny" ) and =v,(ng" ng)

way.

are defined in the same

Finding the minima number of mode in the
minimal space for WCM (Algorithm for Theorem
2).

Method 2: For this purpose let
(l’ér ,Er ,gr ,Er) - reductb.,étr ,Etr ,gtr ’2”)

. N . . .
The size of matrix = is M m' . The size of matrices

I gt ~f r ro . r-.r ro . r-r
A,B".C andB arem Ny nx,m Ny nu1
re . r-.r re . re.r
m “ny’n m “ny’n .
Y X and YU respectively.



.
Functions ™ ® are transformed from "t ® by i
as:

@ W Eh=lne - el

(15)

Consequently, the number of modd points and

weighting functions are reduced: m" £m.

The €dements of two-dimensonad  matrices

r _I r
o
v,(ng" ny) i defined in MV see (12), are
Br
Ar = r- . = r- .r
defined from = laV"’JJ. Matrices (M n“),
r Dr
=v,(nf," nf) and =v,(nf" n})

way.

are defined in the same

If non-zero singular values are discarded then the
reduced model approximation differs from the
origind one, however, the effectiveness of the
reduction is increased. This difference is the
reduction error. In order to save calculation effort, it
would be useful if the final reduction error could be
estimated during the reduction process. Therefore an
error controllable reduction technique is highly
desirable. This motivates the main objective of our
next publication that is to show the error bound of
the reduction algorithms. The key point of the error
estimation is based on the sum of the discarded
singular values.

5 Conclusion

The complexity problem of non-linear mode
approximations techniques motivates the agorithms
proposed in this paper. These agorithms utilize
SVD that helps with defining the importance of the
model components, which fact offers the forming of
an error controllable inexact reduction. The
algorithms are used off-line to compress the
information in the models, hence, decrease the
dimensionality. The compressed form is used on-
line in the applications.
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