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Abstract: - This paper is motivated by the fact that though weighted component based non-linear model 
approximation techniques are popular engineering tools, their utilisation is being restricted by their 
exponential complexity caused by the number of components. Even in case when the components are 
generated by some expert operator, the approximations usually have redundant or weakly contributing 
components resulting in exponentially growing unnecessary calculation. The main objective of this paper is to 
propose a complexity reduction technique capable of finding the minimal number of components of a given 
approximation.   
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1   Introduction 
The calculation power offered by computers 
considerably gained the role of numerical techniques 
of smoothing procedures, which represents the 
function to be approximated by linear combination 

of m known basis functions )(xw  such as: 

∑=≈ =
m
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 ([8] page 273). One of 

the mostly adapted approaches to determine ip  is 
the least squares of basis expansions. Various 
techniques have been proposed to choose a basis to 
achieve an excellent approximation using 
comparatively small value of m. For instance, 
Fourier series, polynomial bases, regression spline 
bases and Wavelet bases, or explicitly localized 
smoothing methods such as kernel and local 
polynomial smoothing are to serve this purpose [7]. 
In some engineering aspects the basis functions 
themselves can become interesting descriptors of the 
dates from a substantive point of view, like in a 
probabilistic extension or even in the case of fuzzy 
logic that takeovers the use of tight mathematical 
framework to indicate the semantic and linguistic 
meaning of the approximation. The rapidly 
increasing complexity of ordinary systems to be 
controlled forces engineers to face the inevitable 

changing of points ip  into various type components 
(models, behaviours, knowledge-bases etc.) that 
may be complex in itself. This paper focuses on the 
widely adopted approximation of non-linear models 
in a given parameter space. Regarding the limited 
size of this paper, instead of selecting from the 
uncountable number of publications let us mention 
only various topics where the mentioned concepts 
are popular: behaviour fusion techniques in the topic 
of behaviour based control, multi objective 

behaviour based control, multi objective decision 
making, robot guiding based on superposition of 
behaviours, fuzzy and B-spline approximations 
[2,3]. 
 
Despite the widely spreading use of the above 
techniques, they are however strongly restricted by 
their exponential complexity problem, namely, their 
calculation complexity requirement grows 
exponentially with the number of model points (see 
section 3). The calculation time is a crucial quest in 
real time applications. The main problem is that 
there is no standardised framework regarding the 
design, optimality, reducibility for defining the 
model points in general. The model points, be it 
generated from expert operators or by some training 
or identification schemes, may contain redundant, 
weakly contributing, or outright inconsistent model 
points. Moreover, in pursuit of good approximation, 
one may be tempted to overly assign the number of 
model points, thereby resulting in problems of 
computation time and storage space. A model 
approximation, hence, has two important objectives. 
One is to achieve a good approximation. The other 
is to reduce the number of model points. The main 
difficulty is that these two objectives are 
contradictory. A formal approach to extracting the 
more pertinent model points, hence, is highly 
desirable. The present paper is an attempt in this 
direction. The reduction technique proposed in this 
paper finds the minimal model points and their new 
weighting, which defines the same approximation. 
The proposed method finds the minimal common 
basis for model points. Another way to reduce the 
calculation complexity is to find a minimal common 
space for the equations defined at all model points. 
In this case the input values are transformed into the 



reduced space and the calculation of the output 
values is done in the reduced equation space with 
smaller computation effort. The real output values 
are finally transformed back to the original space.  
An important advantage of the proposed reduction 
technique is that there is a formal measure to 
filtering out not only the redundant, but the weakly 
contributing components as well. This implies that 
the degree of reduction can be applied according to 
the maximum acceptable error of the model 
approximation. The key idea of SVD based 
reduction applied in this paper is proposed by Yeung 
Yam for fuzzy approximation in 1996 [1]. 
 
 

2   Definitions 
This section gives the definitions of some widely 
adopted non-linear model approximation techniques 
what the reduction is proposed for. 
 

Definition: Model M. In this paper the 
following model M  is investigated: 
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where the numbers of elements in vectors u , 
x , 

y
 are un , xn  and yn

, respectively.  
 

Definition: Non-linear model 
)(pMM ⇒
 in 

the parameter space P. Let us suppose that the 
model defined in (3) is non-linear in the n  
dimensional parameter space P, namely, 

matrices 
A

, 
B

, 
C

 and 
D

 are non-linear in 

respect of 
][ ip=p
, ni ..1=  such as:  
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  and similarly 
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Let us suppose that model 
)(pM
 is identified at 

some certain points v
p

 ( m..1= , where m is the 

words the non-
)(pM
 is known and 

linearised at points v
p

.  
 

Definition: Model point 
)(

vv pMM =
. Let vM  

be the v-th model point of non-linear model M 
as: 
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where 
[ ])(,,, v

a
jijivv

fa pA ==
, 

[ ])(,,, v
b

jijivv
fb pB ==

, 
[ ])(,,, v

c
jijivv

fc pC ==
 

and 
[ ])(,,, v

d
jijivv

fd pD ==
.  

 

Having the identified model points vM  the non-
linear model is approximated in the whole parameter 
space: 
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The approximation is done like any function 
approximation technique since all elements 

contained in matrices 
A

, 
B

, 
C

 and 
D

 of model M 
are functions in space P see (4).  According to the 
introduction let us define the following 
approximations: 
 

Definition: Weighted Combination of Model 
points (WCM). Model approximation based on 
the weighted combination of given model points. 
The weighting is determined by weighting 

functions (.)w  defined for each given model 

point.  
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3   Complexity investigation 
The main objective of this section is to show that the 
defined approximation techniques have exponential 
complexity problem. According to the introduction, 
the exponential explosion of the complexity is 
investigated in respect of the number of model 



points and the number of elements in vectors x , 
y

 

and u . Let us omit the calculation effort 
requirement of add, but consider the product 
operation in the followings. 
 

Lemma 1. The calculation complexity of WCM 
grows exponentially with the number of model 

points,  un , xn  and yn
 (see 3). The 

calculation power requirement is proportional 
to the number of product operation in (3 and 
6): 
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where wT  indicates the calculation effort 

needed for weighting function 
)(ptw
. 

 
 

4 Reduction 
This section is to propose a method capable of 
generating a minimal form of WCM (6) in the sense 
that the resultant algorithm utilises the minimal 
number of basis functions and model points for the 
same approximation. This section considers only 
exact reductions. Inexact reduction will be treated at 
the end of this section. The main concept of the 
reduction is based on singular value decomposition 
(SVD) [8]. Methods of numerical computation of 
SVD can be found in [4,5,6]. Note that, in the 
following algorithms any kinds of minimal matrix 
decomposition can be used instead of SVD. The 
SVD has important role in the case of inexact 
reduction since it provides the importance of the 
components. Therefore the following algorithms 
will be introduced applying SVD. To effectuate an 
easier understanding, the reduction algorithm will be 
introduced in two steps. The first outlines an off-line 
transformation of the whole model, hence, the model 
points into a common minimal space. The benefit of 
the transformation is that the calculation of the 

model 
trM

 ("tr" means "transformed") in the 
reduced space requires reduced calculation effort. 
As a matter of fact, the input values of the model is 
on-line transformed into the reduced space as well: 
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where the sizes of 1
N

and 2
N

 are 
r
xx nn ×  and 

r
uu nn × , respectively, and x

r
x nn ≤ , u

r
u nn ≤  

(subscript "r" means "reduced"). The calculation of 

)(ttrx&  and 
)(ttry
, hence, is done in the reduced 

space and finally the output values are transformed 
into the original space: 
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where the sizes of 3
N

and 4
N

 are 
r
dx nn ×

 and 
r
yy nn ×

, respectively, and x
r
d nn ≤

, y
r
y nn ≤

. 

Consequently, the model points 
tr
vM , hence, model 

vM  are defined in the reduced space as: 
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where the sizes of 
trA

, 
trB

, 
trC

 and 
trD

 are 
r
x

r
d nn ×

, 
r
u

r
d nn ×

, 
r
x

r
y nn ×

 and 
r
u

r
y nn ×

, respectively. 
The transformation may lead to calculation 
reduction regarding Lemma 1 and 2, see (9). 
The second step finds the minimal number of model 

points 
r
v

M
, 

rmv ..1= , mmr ≤ , and their 
corresponding weighting functions from the 

transformed model points 
tr
vM . Let us assume the 

above discussed reduction steps in the followings: 
 

Theorem 1: Model points vM  can always be 
transformed into a common  minimal space as: 
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where the sizes of 
trA

, 
trB

, 
trC

 and 
trD

 are 
r
x
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r
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, 
r
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r
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 and 
r
u

r
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, 

respectively, and x
r
x nn ≤ , u

r
u nn ≤ , x

r
d nn ≤

, 

y
r
y nn ≤

.  Matrices 1
N

, 2
N

, 3
N

and 4
N

 can 



always be found in such way that the result of 

using models vM  and 
tr
vM  are equivalent if 
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Theorem 2: The function (6) can always be 
transformed into the following form: 
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where mmr ≤ , and 
r
v

M
 is generated form 

tr
vM , so it still has  the reduced size: 
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where the sizes of 
rA

, 
rB

, 
rC

 and 
rD

 are 

the same as the sizes of 
trA

, 
trB

, 
trC

 and 
trD

, respectively. 
 
Proof: The proof of Theorem 1, 2 can be inferred 
from Method 1, 2 to be introduced in the followings. 
Method 1 is for finding the minimal space for the 
model approximation. Method 2 is to define the 
minimal number of model points and weighting 
functions. First of all let us define the singular value 
decomposition [5,6,7]: 
 

Definition: SVDR: Singular Value Based 

Reduction. Suppose that matrix 
][ ,)( 21
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×
B

 
is given. Applying singular value decomposition 
yields: 
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Here, matrix O  contains zero elements, matrices 

1
A

 and 2
A

 are orthogonal, and diagonal matrix 
D

 contains the singular values in decreasing 
magnitude. The zero or the smallest of singular 
values (smaller than singular value threshold T0, 
say) can be discarded to yield a simpler system. 

Matrix 
rB

 thus contains the retained singular 

values and 
dB  contains the discarded ones. The 

result of SVDR is therefore: 

'ˆ
1

T
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Definition: 
( )

z
dlayout LLH ,,,

1
L=

. Matrices 

k
L

, zk ..1= ,  are n dimensional with the size of 

nkk ee ,1, ××L
. k

L
 must hold that ddk eek =∀ ,:

 
.The layout function generates two dimensional 

matrix 
H

  by placing all the vectors of  the d-th 

dimension of n matrices k
L

  as column vector 

into 
H

  with the size of de .  So, the size of 

[ ]ohH =
 is 

∑ ∏×
= ≠=

z

k

n

dii
ikd ee

1 ,1
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. The ordering of 

the vectors oh is arbitrary. 
 
Example: Let us suppose that the size of three 

dimensional matrices 
[ ]vsrk

k
l ,,,=L

, is ( )321 eee ×× . 

Let us layout matrices k
L

 for the second dimension: 
( )

z
layout LLH ,,,2

1
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. The resulted 

( ) [ ]oeee
hH =

× 312 , 31..1 eeo = , where 
[ ]soo h ,=h

 and 
vsrkso lh ,,,, =

, 2..1 es = . The ordering of the vectors 

oh is arbitrary: ( )vrko ,,⇔ , for instance 
vereeko +−+−= 331 )1()1( . 

 

Definition: 
( )HLL rebuild
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 Function 
( )Hrebuild

 is the inverse of 
( )

z
dlayout LLH ,,,

1
L=

 and results in matrices 

k
L

, zk ..1= . It requires the ordering 
( )vrko ,,⇔  applied in the layout function. So, 

function 
( )Hrebuild

 generates n-dimensional 

matrices k
L

  from the column vectors of two 

dimensional matrix 
[ ]ohH =

 based on the 
ordering of the vectors used in  

( )
z

dlayout LLH ,,,
1
L=

. 
  



Example: Let us suppose ( ) [ ]oeee
hH =

× 312  is given, 

where 
[ ]T,1, 2eooo hh L=h

. Executing 
( )HL rebuild

k
=

, zk ..1= , with ( )vrko ,,⇔ , 

matrices 
[ ]vsrkk
l ,,,=L

, are obtained, where 
sovsrk hl ,,,, =

.  
 

Definition: 
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function reduces the size of n-dimensional 

nkk ee ,1, ××L
 sized matrices k
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, zk ..1= , in d-

th dimension. k
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 must hold that ddk eek =∀ ,:
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The results of function 
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N
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r
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reduced), where the sized of 
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2) Applying SVDR on matrix 
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3) Matrices 
r
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function 
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The main goal of this Method 1 is to find the 
transformed form that is defined in Theorem 1 see 
(11). For convenient notation let us form three 

dimensional matrix: 
[ ]jiva ,,=A

, from matrices 
[ ]jivv
a ,,=A

 defined in (5). In the same way let us 

define three dimensional matrices 
B

, 
C

 and 
D

. 
Finding common minimal space for the model 
points (algorithm for Theorem 1). 
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Note that x
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that is in full accordance with Theorem 1. 
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Finding the minimal number of model in the 
minimal space for WCM (Algorithm for Theorem 
2). 
 
Method 2: For this purpose let  

( )trtrtrtrrrrr reduct DCBADCBAT ,,,,1),,,,( =
. 

The size of matrix 
T

 is 
rmm× . The size of matrices 

rrr CBA ,,
 and 

rD
 are 

r
x

r
d

r nnm ××
, 

r
u

r
d

r nnm ××
, 

r
x

r
y

r nnm ××
 and 

r
u

r
y

r nnm ××
, respectively.  



 

Functions 
)(pr

tw
are transformed from 

)(ptw
 by 

T
 

as: 
 

[ ]Tpppp )()()()( 11 m
r

m

r wwww r LL =





 (15) 
 
Consequently, the number of model points and 

weighting functions are reduced: mmr ≤ .   
 
The elements of two-dimensional matrices 
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If non-zero singular values are discarded then the 
reduced model approximation differs from the 
original one, however, the effectiveness of the 
reduction is increased. This difference is the 
reduction error. In order to save calculation effort, it 
would be useful if the final reduction error could be 
estimated during the reduction process. Therefore an 
error controllable reduction technique is highly 
desirable. This motivates the main objective of our 
next publication that is to show the error bound of 
the reduction algorithms. The key point of the error 
estimation is based on the sum of the discarded 
singular values. 
 

5 Conclusion 
 
The complexity problem of non-linear model 
approximations techniques motivates the algorithms 
proposed in this paper. These algorithms utilize 
SVD that helps with defining the importance of the 
model components, which fact offers the forming of 
an error controllable inexact reduction. The 
algorithms are used off-line to compress the 
information in the models, hence, decrease the 
dimensionality. The compressed form is used on-
line in the applications.  
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