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Abstract: — A novel algorithm is developed to update the rule base of the fuzzy gain scheduling of the PID
controller. The algorithm fulfills the following requirements: all data needed are stored in a rule base, this keeps
the rule base small so that it can also be maintained manually, and it stores the PID parameters with a common
base of operation points.
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1 Introduction
Fuzzy control is successfully used for feedback control
in many applications, see e.g., [7, 1, 21, 5, 12]. How-
ever, because of the lack of general tuning methods,
tuning is done experimentally. Thus there is no guar-
antee to obtain a good performance within certain time
and effort limits for a particular application.

When fuzzy control is considered, an attractive al-
ternative is to utilize fuzzy computing as a supervi-
sory block for a conventional controller. This approach
takes full advantage of the combination because fuzzy
computing can thus be more easily applied in different
control applications. Therefore the fuzzy system adds
power to design methods of linear controllers.

Fuzzy gain scheduling can take the form of three
different schemes. The fuzzy system can schedule the
controller parameters with changing operation condi-
tions, e.g., according to the process output as is done
by Ling and Edgar [11]. They used two fuzzy sets for
the input which was the measurement signal, i.e., the
output of the process. Due to the low number of fuzzy
sets, their proposal cannot be considered as a full scale
gain scheduling scheme applicable for different non-
linear processes. Tan et al. [16] extended the scheme
to neuro-fuzzy techniques by optimizing the shape of
the two membership functions with respect to several
operating point and parameter value pairs. It seems
less applicable in practice than the previous approach.

Fuzzy gain scheduling can also mean a scheme that
the controller parameters are changed as a function of
the control error and change in the error, e.g., [23].
This approach differs considerably from the conven-
tional gain scheduling, e.g., [3, Section 6.3], because
the controller parameters are changed during transients

even if the operation conditions are not changed.
The third meaning for the fuzzy gain scheduling is a

fuzzy controller with Sugeno type rules [8]. Thus, the
consequence of each rule can be interpreted as a lo-
cal controller for the operating point that the premises
define. Usually the structure of the controllers is the
same for each rule, e.g., a textbook PID controller or a
state feedback controller, e.g., in [13].

In practice, even the simplest PID control algorithm
is much more complex than the textbook version of
it. Thus it is very inefficient to perform the con-
troller function for each rule separately as is done with
Sugeno type rules. It is more natural to separate the
fuzzy supervisor and the PID algorithm. It is also eas-
ier in design and tuning. Therefore Mamdani type rea-
soning [6] is utilized to obtain current parameter values
for the PID controller. Additionally the controller pa-
rameters are usually needed to update more rarely than
the controller output, and it also advocates Mamdani
type fuzzy rules.

The presentation is organized as the following. The
gain scheduling is described in Section 2. The method
to update the rule base of the scheduler is developed in
Section 3. The results are summarized in Section 4.

2 Problem Statement
This study considers a controller driven approach of
gain scheduling implemented by fuzzy logic. Con-
troller driven means that the scheduling block is in-
terested in the tuning parameters of the controller and
not in the design method of the controller and possi-
ble process model behind the design. The approach
is mainly aimed for simple controllers like PID con-
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Figure 1: Gain scheduling with fuzzy logic. The fuzzy su-
pervisor

�
above the process controller

�
detects the cur-

rent operation point of the process
�

. The reference signal
is used as a scheduling variable too.

trollers widely used in process control.
If the controller must be retuned at different opera-

tion conditions, it is natural to store the new parameters
in a table. During the control the current parameters
can be selected from the table according to the current
operation conditions. Because the operating range of
the parameters cannot be outlined exactly, the schedul-
ing problem is suitable solving using fuzzy logic. Here
the main benefit of fuzzy logic is that it provides a flex-
ible and transparent mechanism for gain scheduling.

Usually the scheduling is performed according to
the variable, which mostly affects the dynamics of the
system [4]. It is called the scheduling variable. There
can also be several scheduling variables. Most typical
variable is the operation point. Disturbances can also
change the dynamics. In this study the system output
is utilized as a scheduling variable.

Although the controller parameters are scheduled
based on the system output, the reference signal is also
utilized as a scheduling variable (Fig. 1) in order to
achieve better response immediately after the set-point
changes. Thus, the fuzzy system provides tighter or
looser tuning based on the next operating point as pre-
sented in [20]. If the set-point is usually kept constant
or it is changed only slowly, it is not necessarily needed
as a scheduling variable.

The parameters of the controller are assumed to be
functions of the system output and the reference signal������� �"!$#%�'&(� �"!%!

. Thus the fuzzy logic rule base must
include rules of the form

if
�

is medium and
��&

is big then )+* is small
and ,�- is medium and ,�. is big.

Because the controller parameters are tuned at several
separate operating points, the system output will have
the same number of fuzzy sets as the number of the
tunings. The membership functions can be triangles,
the cores of which are the operating points where the

parameters of the controller are tuned. The fuzzy sets
and the membership functions of the reference signal
will be identical with the system output. Singletons
are used as membership functions for the output of the
fuzzy system. The parameterization

� -0/ ,
�21�3540687

,
�29 3;:

suggested in [22, 19] is adopted in this study.
The rule base is composed of the table of the tuning

parameters. The operation points where the tuning is
performed are stored in a knot vector

<�=?>A@ ��B�CEDF ��BHGIDF JKJKJ � BMLON;DF P2Q (1)

which defines the membership functions of the process
variable. The operation points

� BSRTDF must be stored in an
increasing order. The membership functions of the ref-
erence signal are chosen to be the same, <�=IUV>W<X= . Ac-
tually, the signals describe the same information about
the operation conditions and therefore there is no rea-
son to have unequal fuzzy sets. Different values of the
tuning parameters

� BSRTD are stored in the matrix� >ZY � B[CED Q � BSGID Q JKJKJ � BSL N D Q]\ Q (2)

correspondingly, where
� BMR^D denotes the _ th row of

�
.

Now we have two alternatives to build up the fuzzy
system. The supervisor block can have a two-input
fuzzy system or can consist of two one-input fuzzy
systems. In the latter case, both fuzzy systems have
exactly the same parameters,

� -0/ >`< Q= ,
� BMR^D1�3540687 > _

( _ >ba #dce# JKJKJ #%f = ), and
�29 3;: > �

. The parameter value
applied to control is a weighted sum��� �"! >hgi=2j ����� �"!$#I� -0/ #I� 1�3540687 #I� 9 3;: !k gi=IU5j ���'&(� �"!$#I� -0/ #I� 1�3540687 #I�29 3;: !$#

(3)

where gi= and gi=IU are the weighting factors for the
process variable and the reference signal, and j �mlM!
stands for fuzzy computing. Usually the effect of the
reference signal is retained to be slight by selectinggi=onhp Jrq and gV= U >batsugi= .

The weights gV= and gV=IU can be adjusted such that
first check if the scheduling works with gv=w>xa andgi=IUy>zp with small setpoint changes relative to the
changes in

� -0/ . If that is acceptable but larger set-
point changes cause remarkable overshoot or under-
shoot in the response, adjustment of the weights is nec-
essary. Reduce the effect of the system output decreas-
ing gi= slightly and compute g{=IU respectively until the
response is acceptable. This makes the scheduling al-
gorithm predict the near future operating point.

The fuzzy system provides the parameters of the
controller according to the current values of the refer-
ence signal and the system output, based on the fuzzy



parameters
� -0/ ,

��1�3540687
and

�29 3;:
at each sampling instant.

The rule base is computed from < = and
�
. The rule base

can be formed when the controller is tuned at different
operation points. The problem how to restrict the size
of

� -0/ ,
�21�3540687

and
�29 3;:

is addressed in the next section.

3 Updating of Rule Base
The maintenance of the rule base of the fuzzy gain
scheduler needs more detailed consideration.

One idea is that the operator is supervising the sys-
tem. When the performance is observed to be less suc-
cessful, the controller is retuned for the current oper-
ation point. The tuning task can be automated. The
automatic tuning is not dealt here because many well-
known methods exist [2, 15]. To obtain the whole ben-
efit of fuzzy gain scheduling, the new tuning parame-
ters at the new operation point should be added auto-
matically to the rule base.

The problem is reduced to an update of the scalar ap-
proximation between the operation point and the tun-
ing parameter. Fuzzy logic is utilized to implement a
piece-wise linear approximation. The approximation
parameters are updated when a new controller tuning
is obtained. The tuning task cannot be performed of-
ten. Thus, sample points of the mapping are obtained
only rarely and they cannot be selected arbitrarily.

An adaptive approximation [10] is a method where
new knots, i.e., new elements for <�= in (1), are selected
based on the maximum deviation. Interpolation inter-
vals are subdivided to smaller subdomains in order to
obtain more accurate approximation. The function to
be approximated must be known or a huge amount of
sample points are needed. Thus, the adaptive approxi-
mation is not suitable for this application.

The objective of this research is to develop a sim-
ple method for the updating. The requirements for the
method are the following. The amount of needed data
must be small. The number of accepted knots must
be restricted so that the maintenance of the rule base
can also be performed manually. The method must
take care of addition, replacement and update of tun-
ing points, i.e., the elements of the knot vector (1). All
stored values in the rule base should be untouched, i.e.,
they must be actual values obtained from the procedure
of the controller tuning. The developed method is pre-
sented in more detail in the next section.

3.1 Updating of piece-wise linear approxima-
tion

Consider the problem where an unknown function� > � ����!$#
(4)

where
� #%�����

, must be approximated by a piece-
wise linear approximation. The approximation is
parametrized with the knot vector

� > Y � B[CED � BSGID JKJKJ � BSLOD \ Q (5)

and the corresponding ordinate vector� > Y � B[CED � BSGID JKJKJ � BMLtD \ Q (6)

where
� BSR^D > � ��� BSRTD ! . The elements of the knot vector

are stored in an increasing order.
The approximation is implemented with fuzzy logic

so that vector
�

includes the cores of the input mem-
bership functions and vector

�
includes the places of

the output singletons. The approximation is piece-wise
linear interpolation between the knots.

The fuzzy logic gain scheduling can be utilized after
the controller is tuned at least at two distinct operation
points. Thus even in the simplest case, two knots are
needed. From the practical point of view, the number
of the knots must also be limited. The memory require-
ments and the computational load must be considered,
but the most important aspect is the maintenance of the
rule base. It must be also possible manually. Thus, the
maximum number of the knots � is relatively small.

Consider first a situation where only two knots have
been obtained. The method can add new knots to the
rule base until the maximum � is reached. The new
knot

�	�
is stored in the knot vector

�
so that the increas-

ing order of the knots is preserved. The new ordinate�
�
is stored in the ordinate vector

�
respectively. If

���
is

the same with some old knot
� BSRTD , then the correspond-

ing ordinate
� BSRTD is replaced with the new ordinate

���
.

When the maximum number of knots � has been
reached and a new tuning, i.e., a new knot

�
�
and a new

ordinate
���

, is obtained, the basic method cannot be ap-
plied. Now there are several alternatives: the new knot
could be ignored, an old knot could be replaced with
it, or the nearest knot could be updated. The selec-
tion of the cases must be based on a criterion. Because
function

�
is unknown except for the stored knots and

ordinates, the criterion must depend only on the obser-
vations. The developed criterion is described next.

The new observation is firstly appended to the knot
vector and to the ordinate vector. Thus, the size allo-
cated for the vectors must be � k a elements. Then



each knot and ordinate are removed from the approx-
imation, and the difference between the long and the
short approximation is evaluated at the removed knot� BMR^D > � BMR^D

s � � BMR�� CED s � BSR���CED
� BMR�� CED s � BSR���CED�� � BMR^D s � BMR���CED
	 k � BMR���CED��

(7)

for _ > ce# JKJKJ # � , where the first term,
� BSRTD , is the

value of the long approximation and the remaining part
is the interpolated value of the approximation if the
data pair

��� BMR^D #%� BSRTD ! is ignored. The criterion for ig-
noring the first and the last data pair is expressed as� B�CED > � B�CED s � BSGID

(8)� B�
�� CED > � B�
�� CED s � B�
 D #
(9)

because the approximation is implemented with fuzzy
logic where the first and the last membership functions
saturate to one outside the knots.

Criterion (7)–(9) is utilized so that the data pair��� BSR^D #%� BMR^D ! , for which the absolute value of � is the
smallest, is removed. Thus the approximation accu-
racy deteriorates the least. Therefore the method is
called the principle of the slightest detriment.

The algorithm can be further improved so that the
new knot is directly accepted to the approximation, if
some of the input membership functions exceed the ad-
justable threshold value � :��51

. Thus the corresponding
old knot is directly replaced with the new knot

� BMR^D > �	�d# � BSRTD > �
�d#
if � BMR^D ��� � !�� � :��51

(10)

for _ > ce# JKJKJ #%f s a , where
f

is the number of the
knots and � :��51 � � CG # a�� . If � :��51 > a , the direct re-
placement is not performed. When � :��51 nbp J�� , a new
knot is nearly always accepted. An advantage of the
improvement is that a randomly disturbed observation
or an obsolete knot can be forgotten when new infor-
mation is obtained. In the basic criterion, an incorrect
observation can be preserved, if the criterion is not the
smallest for the knot. On the boundaries, the satura-
tion of the membership functions must be taken into
account and the direct replacement is allowed only if� BMR^D ���	� ! >������� � � B � D ���	� !%!! 

�#"�$ � � BMR^D ���	�%!$# � BMR^D � c � BMR^D s � �%!%!�� � :��51
(11)

for _ > a #%f . Thus the smallest and the largest fuzzy
sets are interpreted as symmetric triangles and the ob-
servation far from the saturation point does not distort
the approximation.
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Figure 2: An old observation ( & ) is ignored and the new
observation (

�
) is added to the approximation.

3.2 Numerical example
The updating is illustrated with an example where a
function (MATLAB function humps)

� ����! > a��� sWp J�' ! G k p J p a
k a��� s p Jrq ! G k p J p)( s+* (12)

will be approximated in the interval , s{p J�� # a J�� � . The
number of knots is restricted to � >.- . The straight-
forward replacement is not utilized ( � :��51 >ba ).

Firstly, let the knot vector be
� > , s{p J�� # s{p J ( � � .

Then the function (12) is evaluated with the step size
of p J p � up to value

�	� >xa J�� . The interval , p J ( # p J -/�
is skipped at this stage. The algorithm performs the
updating very well and all significant observations are
stored in the knot and the ordinate vectors.

Then the input is decreased step-by-step to the value� � > svp J�� with slightly different values. This checks
if the order of the observations affects the selection of
the knots. In this example it does not.

After that function (12) is evaluated in the interval, p J ( # p J -/� . Thus the algorithm must select an old ob-
servation which could be ignored. In Fig. 2, the new
observation is updated to the approximation and the
approximation accuracy does not deteriorate between
the fourth and the fifth knots. In Fig. 3, the sixth knot
has been moved to the left of the local minimum and
the new observation cannot be utilized. The approxi-
mation accuracy would deteriorate more in any other
knot than it will be improved at the observation point.
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Figure 3: The new observation (

�
) cannot be added to the

approximation.

3.3 Combination of gain scheduling and up-
dating method

Now we have a concept of fuzzy gain scheduling and a
method to update scalar piece-wise linear approxima-
tion automatically. When PID control is considered,
three parameters should be scheduled. This affects an
extra requirement for the updating algorithm. It is nat-
ural that the tuning values are kept consistent. It means
that the array of the operation points is the same for
each tuning parameter and therefore

� BSR^D > ��BSRTDF and� BMR^D > Y ) * BSRTD , - BMR^D ,�. BSR^D \ in (5) and (6). Thus the
automatic update mechanism must be adopted slightly.

The problem is that now there are three criteria� > Y�� � * ��� � - ��� � . � \ instead of one,
� > � � � . The

point to be removed is suggested based on the prin-
ciple of the slightest detriment. In the case of the PID
parameters, the principle is applied by means of Pareto
optimality. Otherwise, the selection criteria must be
reformulated to be a scalar criterion. The other choices
might be a linear combination of the criteria or a totally
different approach like a loss function of the closed
loop response.

The linear combination depends on the weights and
therefore it has no unique solution. The loss function
approach evaluated from the closed loop step response
is computationally more demanding. The method
needs the process model for each tuning and its per-
formance index in the form of, e.g., sum of squared
errors between the reference and the output. Addition-
ally, the performance index must be evaluated for each
removed knot in order to achieve the final selection
criteria. This might mean simulations for the perfor-
mance index [9]. The selection of the performance in-
dex affects also the time domain performance of the

closed loop system. Some methods allow, e.g., more
overshoot than others [9].

Therefore, the three criteria are not converted to
a scalar criterion, but the selection is done based on
methods well-known in multiple criteria optimization.

3.3.1 Multiple criteria optimization
In the optimizing tasks there are often multiple objec-
tives to be considered. In general the objectives are
conflicting and no solution exists which is the best with
respect to all objectives. Hence a trade-off cannot be
avoided [18].

The treatment of a multiobjective optimization
problem leads to Pareto optimal solutions. The solu-
tion of the multiobjective optimization problem

��"�$R���� � BMR^D #	� >�
�a #dce# JKJKJ # � k a
� (13)

can be considered to consist of the set of non-inferior,
or Pareto optimal, points [14]. A solution _�� ���

is a
Pareto optimal solution of the problem if there exists
no other solution _ ���

such that
� BMR�� � D�� � BMR���� � D #����

and
� BSR�� � D�� � BMR���� � D for at least one

�
. Thus a non-

inferior solution to the problem has the property that it
is not possible to reduce any of the objectives without
making at least one of the other objectives worse [18].

The set of Pareto optimal points are the points which
are of interest in multiobjective optimization, and the
search for a satisfactory point should be made in this
set of points. The point which should be chosen from
the set of Pareto optimal points depends on the prefer-
ences of the decision maker [17].

An algorithm for solving a multiobjective optimiza-
tion problem should assist the decision maker to find
a satisfactory Pareto optimal point in an efficient way.
Clearly, an algorithm for multiobjective optimization
should be able to generate Pareto optimal points [17].

In this case, the values of the criterion function can
be obtained easily, and the number of them � k a is
relatively low. Therefore, a rather crude algorithm is
adequate to search for Pareto optimal candidates. In
this study, the non-inferior alternatives are searched by
checking each solution with respect to others, if any
of them are Pareto dominant to the current alternative.
If no Pareto optimal rival candidates exist, the cur-
rent alternative is Pareto optimal. The algorithm needsc
� ��� � k a ! � comparisons, where

�!�
is number of

the scheduled parameters [19].



3.3.2 Updating example
The Pareto optimal selection is illustrated with the fol-
lowing example. Let the controller parameters be poly-
nomial functions of the operation point as follows��� 	 %e
������
	 � %
� ��� 	 ��� %
� � ����	�� %
� � � 	���� %
���� 	 � � % � ����	 �!#" 	 %e
������
	 � %
� � � ��	�� %
� � �
	 � � %
� ��� 	 � � %
�� ��	���� % � �
	 ���!#$ 	 %e
�� � ��	 � � % � � ���
	 � % � � ����	 � % � � ���
	%� % �� ��	 � � % � ��	 �'&'	

(14)

The parameters are approximated with the fuzzy
system given by� " ( �*) �+�
	%�,��	�� 	-	�	.�-/��021-3 465 � )2�7� 	-	�	,��� /98

��: 19; �

<================
>

����	 �.�
	 ��� ��	 �?&����	 �@&�	 � �@��	��A�������	��B&�	 � �B��	�� � �����	 �@&�	 � �@��	 � � �����	 � &�	 � �@��	 ��&A�����	 � &�	 ���@��	 ������ � 	 �+&�	 � � ��	 � � ����
	 �.�
	 ���@��	 ��� �����	��C��	 � �B��	 ��� ��?&'	 �7�
	 � &C��	 �-�'&� ��	��D�
	 ���@��	 �����

EGFFFFFFFFFFFFFFFF
H

(15)

One of the rules _ � > 
 ' # ( # � # * # q # aKp � can be re-
moved by the means of the Pareto optimality and thus
the approximation accuracy would deteriorate

� BMR��%D >
IJJJJJ
K
��	 �������C��	 �������C�
	 �'& � ���	 �������C��	 �������C�
	 ���������	 �������C��	 �?&A���C�
	 �
� � ���	 �������C��	 �������C�
	 ���������	 � �����C��	 �������C�
	 ���������	L&A�����C��	 � � ���C�
	 �
�-�'�

M NNNNN
O (16)

with respect to the original approximation (15). Rule
number 5 is selected to be removed. The output of the
system before and after the removal is shown in Fig. 4.

The concept of Pareto optimality can be used to
eliminate the possible candidates to a smaller set. In
this example, eleven potential candidates are elimi-
nated to six non-inferior solutions, among which the
user selects one.

3.4 Limitations of the updating method
The method developed to update the rule base has
some limitations. It
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Figure 4: Output of the fuzzy system before (thin
�

) and
after (thick & ) the removal of rule number 5.

V needs the intervention of human operators (to se-
lect one of the non-inferior solutions),V is not suitable for processes where an auxiliary in-
put is needed as a scheduling variable in addition
to the process output (can not handle rule base of
multi-dimensional Cartesian grid), andV may preserve erroneous tuning parameters.

The first limitation is not serious. Traditionally hu-
man operators check the controller parameters before
accepting them. When the selection of a point to be
removed is combined with the checking, it should not
restrict the operator too much. This also has an advan-
tage. The concept is controller driven not model driven
gain scheduling. If the new controller parameters are
acceptable, they are stored in the rule base, and during
control, the actual values of the parameters are calcu-
lated on-line from the rule base. If gain scheduling in
general works with the process, then probably the con-
cept works also.

The second issue limits the feasibility of the method.
If more than one scheduling variable is needed (the
process output and the reference signal are regarded
as one here), a Cartesian grid of tuning points is nec-
essary. However, the tuning points can not be placed
arbitrarily, and therefore the Cartesian grid is impossi-
ble to cover. Also the updating algorithm as such does
not fit with a multi-dimensional problem. Further work
is needed in order to solve the problem.

The latter disadvantage is related to the selection cri-
teria which tends to retain knots that are far from a
straight line between its neighboring knots. Thus pos-
sible outliers are not suggested to be removed from the
rule base. Therefore the algorithm has the threshold
parameter which is used in the check, if there is any



old knot near to the fresh observation, and if it should
be replaced directly. But in this case outliers should
be rare because the new parameters are checked by the
operator before any further analysis.

4 Conclusion
The controller driven approach of the gain scheduling
is implemented by fuzzy logic. The main benefit of
fuzzy logic is that it provides a flexible and transparent
mechanism for gain scheduling. The reference signal
is suggested for use as a scheduling variable with the
system output in order to predict the near future operat-
ing point. A new method to automate the updating of
the piece-wise linear approximation is proposed. An
advantage of the method is that it requires only small
amounts of data and it is stored in the knot informa-
tion, i.e., in the rule base. The method is integrated to
the fuzzy gain scheduling of the PID controller. The
concept of Pareto optimality is utilized in the multiple
criteria optimization needed in the integration.
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