
Optimal Topological Design of Communication Networks Using
Generational/Steady-State and Struggle Genetic Algorithms

HAMEIDA SAYOUD, KENZO TAKAHASHI, BENOIT VAILLANT, NICOLAS TAILLADE
Center of High Speed Broadband Networking, Faculty of Engineering

Multimedia University
63100, Cyberjaya

 MALAYSIA

Abstract: This paper presents three variants of the simple Genetic Algorithm (GA) with specialized encoding,
initialization and constraints handling mechanisms to optimize the design of topologies and capacity assignment (TDCA)
problem of broadband communication network. This NP-Complete problem is often a highly constrained optimization
problem that is better solved using GAs combined with specialized, problem specific genetic operators. A network of 20
nodes is used to test the developed algorithm. Improved results, both in network performance and computation speed, are
obtained when comparing with existing heuristic approaches. Similar methodology can be applied for the design of other
communication networks.

Key-Words: Genetic Algorithms, Asynchronous Transfer Mode, Topology Design, Capacity Assignment.

1 Introduction
In broadband ATM networks, the design of an optimal
minimum cost network of N nodes can be considered to
consist of two sub-problems; (1) topology identification
and, (2) capacity assignment of the chosen links. The
presence of multiple routes between each origin and
destination nodes requires the solution of complicated
routing and capacity allocation problems. The installation
of the physical link is associated with a number of cost
figures. The geographical layout, types and capacity of
the links determine the cost of setting up a network. After
defining the optimal network topology, the capacity
assignment has to be so as to ensure that the predicted
traffic on the network can be accommodated. In addition
to the cost economics, routing and capacity concerns, the
network designer has to guarantee that the designed
network will meet some performance characteristics.
Studies of network design generally seek to optimize
average network delay, throughput or reliability
[1][2][3][4][6][8][9][10][11]. Therefore the ATM
network design problem presented in this paper can be
summarized as an optimization of cost parameters subject
to the traffic requirement and performance criteria.

Because of the combinatorial nature of the TDCA
problem, it has been classified as NP-Complete [22]
problem; that is a problem that belongs to a class of
problems for which no polynomial-time algorithms are

known which can guarantee exact solution. Due to their
complexity, requirement for organized search through the
solution space and exponentially growing calculation
time, this type of problems are best solved using heuristic
algorithms. GA [23][24], a promising heuristic search
procedure that applies natural genetic ideas such as
natural selection, mutations and survival of the fittest for
solving large combinatorial problems has been chosen.

GAs have been applied to a variety of
communication network optimization problems with
different degree of success. Theses problems range from
bandwidth allocation of embedded ATM networks
[4][12], routing and wavelength allocation [22], to
survivable network design [13]. For the topological
design, Kumar et al. [13] developed a GA considering
diameter, distance, and reliability to design and expand
computer networks. Deeter and Smith [10] presented a
GA based approach to design network considering all-
terminal reliability with alternative link options, allowing
edges to be chosen from different components with
different costs and reliabilities. Walters and Smith [16]
proposed an evolutionary algorithm for the optimal layout
design of networks with a tree structure. Dengiz et al.
[8][9] focused on large backbone communication network
design considering all terminal network reliability and
used a GA, but appreciably customize it to the all-
terminal design problem to give an effective and efficient

optimization methodology. Elbaum and Sidi [3] used GAs
based on a Huffman tree to solve the topological design
of LAN networks. Gen et al. [5] proposed a GA for
solving bicriteria network design problems considering
connection cost and average message delay without
considering network reliability. Jong Ryul et al. [21]
proposed a GA for solving the same problem considering
network reliability and using Prüfer number and cluster to
represent chromosomes. Pierre and Elgibaoui [7]
presented a Tabu-search approach for designing computer
network topologies with unreliable components.

To the knowledge of the authors, there have been
few published works [1][2] [15] dealing with the solution
of the TDCA using genetic or other similar evolutionary
algorithms. The purpose of this paper is to present three
different GA approaches to the solution of this problem.
Section 2 introduces the statement and the mathematical
formulation of the problem. Section 3 overviews the three
GA variants as well as genetic operators and repair
mechanisms. Section 4 analyses computational
experience, and compare the performance of the
presented approaches with other heuristics methods.

2 Statement of the Problem
Given:

• Node locations
• Traffic requirements
• Fixed and variable link costs
• Nodal costs

Objective:
Select links and their capacities to minimize the total cost.
Subject to:

• Traffic flow constraints
• Reliability constraints
• Traffic requirements.

A mathematical formulation for the topological design
and capacity assignment problem is as follows:
Variable definition:
sd: source destination pair; D: set of destination hosts; N:
set of all nodes; S: set of source hosts

=
ijsd

ijsd
x sd

ij link chooses n destinatio source 1

link choosenot does n destinatio source 0

sd
ijy = bandwidth assigned to link ij from source

destination pair sd; sdt = average traffic requirements for

source destination pair sd; kjc = variable cost of link kj

per unit bandwidth; f
kjc = fixed cost for link kj; n

kc =
nodal cost for node k. In mathematical form, the TDCA
can be stated as follow:

()∑ ∑ ∑ ++
i j sd

f
ij

sd
ij

sd
ij

n
i

sd
ijij cxycyc Minimize (1)

Subject to:

∑ ∈∈≥
j

sdsd
sj DdSsty , (2)

∑ ∈∈≥
i

sdsd
si DdSsty , (3)

∑ ∑ ∈∈∉∉∈=
j j

sd
ji

sd
ij DdSsDiSiNiyy , , , , (4)

DdSsNji y sd
ij ∈∈∈≥ , ,, 0 (5)

DdSsNji yx sd
ij

sd
ij ∈∈∈== , ,, 0 if (6)

The objective function (1) is to minimize the total cost,
which consists of link cost and nodal cost. The link cost
consists of fixed and variable costs. The fixed cost does
not depend on the capacity of the link, and depends only
upon the decision of whether to set up a link or not. The

variable sd
ijx will be either 1 or 0, even if multiple routes

choose the same link. Thus the fixed cost will not be
counted multiple times. The variable cost of a link is
proportional to the capacity of the link. So, the link cost is
modeled as a piecewise linear function. Equation (2) and
(3) represent constraints on the traffic. Since this problem
is solved in the planning stage, the available link capacity
may not be the exact amount of the traffic requirement.
Therefore, the link capacity could be greater than the
traffic requirement. Equation (4) specifies that the traffic
is conservative. Equation (5) forces the bandwidth to be
positive and (6) associates the decision variable sd

ijx with

the bandwidth variable sd
ijy .

3 The Genetic Algorithm
Although much theoretical work on GAs exists, and much
more is currently being pursued by the GA community,
there does not yet exist a complete theory for GAs that
says which GA operators and their parameter values are
best. Often when implementing a GA, practitioners rely
upon a large body of empirical research that exists in the
literature. In some cases this work is theoretically guided;
in others it is the result of extensive experiments or
specific application case studies.

3.1 GA Variants
One way to classify GAs is by the percentage of the
population that is replaced each generation. Two choices
are common in the literature, the Generational
Replacement GA (GRGA) and the SteadyState GA
(SSGA) [23]. A third emerging choice is a class of GAs
commonly known as niching methods that allow to
allocate and maintain multiple different
optimal/suboptimal solutions in a population [17][18][19]

Fig. 1, The simple GA, this algorithm uses non-overlapping
populations; the entire population is replaced each generation.

The GRGA uses non-overlapping populations. As
depicted in Fig. 1, in each generation, the entire
population is replaced with new individuals. Typically,
the best strings carrying the important building blocks are
carried over from one generation to the next using some
sort of elitism so that the algorithm uses what is already
regarded as the best that it found.

Since the entire population is being replaced, the
crossover plays a very important role in determining the
capability of the GRGA to find an optimal solution. If the
crossover accurately conveys good genetic materials from
the parents to their offspring, then the population will
improve. On the contrary, if the best strings are not
allocated any reproductive trails or the crossover/mutation
operators destroy or alter important bit values in a
chromosome, than the population will not improve and
the GA will perform no more than a random walk.

The SSGA, is an alternative to the GRGA and
uses overlapping populations. In each generation, only
few individuals are replaced at a time by the newly
generated individuals. This process is illustrated in Fig. 2.
The SSGA has a build-in elitism since only the lowest
ranked string is deleted. The percentage of population that
is replaced, i.e. overlap amount, plays an important role in
the convergence behavior of the algorithm. At one
extreme, a nearly 100% overlap is obtained by replacing
one or two individuals each generation. At the other
extreme, the SSGA becomes a simple GRGA if the entire
population is replaced i.e. 0% overlap.

Fig. 2, The Steady-State GA. This algorithm uses overlapping
populations; only few individuals are replaced each generation.

In the case of small population size, the SSGA suffers
from premature convergence to sub-optimal solutions
because the more fit individuals are more likely to be
selected and the population quickly converges to a single
individual.

As depicted in Fig. 3, the Struggle GA (SGGA)
[17][19] is similar to the SSGA except that rather than
replacing the worst individual in a population, the SGGA
replaces an individual by a new one most similar to it if
this new individual has a score better than that of the one
to which it is most similar. This requires a distance
function to measure the similarities between two
individuals in terms of their actual structure (genotype) or
their characteristics in the problem space (phenotype).

Fig. 3, The Struggle GA. This algorithm replaces the most
similar individual; replaces an individual by a new one most
similar to it if this new individual has a score better than that of
the one to which it is most similar.

If the similarity function is properly defined, the
SGGA has the capability to maintain high diversity
among solutions. However, like other GAs, performance
is tightly coupled to genetic operators. For example,
without any robust mechanism to introduce new diversity,
the algorithm converges to a single solution. When all
individuals in a population have converged to a single
genotype, crossover does not contribute to the search
since all the information it can process is equal. In this
case mutation can be very helpful in exploring (large
mutation probability) and exploiting (small mutation
probability) the search space. As mutation rate increases
more blind diversity will be introduced, thereby
preventing the GA from premature convergence.
However, the randomness introduced by mutation may
not be practical all the time. On the other hand, if there is
enough diversity in a population, the crossover operator
can provide adequate exploration and exploitation of the
search space. If we want to rely on crossover for
exploration and exploitation rather on high mutation rates,
useful diversity is required [16]. This diversity may be
maintained by preserving all promising solutions. Since
the population has no prior knowledge of the search
space, loosing promising solutions might lead to genetic
drift to the easily found promising areas and thus loose
important information that may help in locating more new
promising areas.

It is important to note here, that once lost, the
chance that a mutation will regain that desired
information is quite low. The SGGA has the ability to
maintain this diversity by minimizing the erroneous
replacement of unique and potential promising solutions.

Genetic
Operations

Genetic
Operations

Genetic
Operations

Genetic
Operations

Genetic
Operations

3.2 GA Components
As described in [23], the major components of a GA
implementation are as follow:

1. a means of encoding solutions to the problem as
chromosomes

2. a means of obtaining an initial population of
solutions

3. a function that evaluates the fitness of a solution
4. reproduction operators for the encoded solutions
5. appropriate settings for GA control parameters,

In addition to these five components, problem specific
operators are needed, these include:

6. a mechanism to repair the network topology in
case of absence of bi-connectivity, and

7. a mechanism to deal with dense graph created by
GA operators.

3.2.1 Chromosome Encoding
In order to optimize the topology of the network with a
GA approach, a chromosome encoding scheme is needed
that can represent a general graph. Any graph can be
uniquely represented as a node-node incidence matrix
[15]. This provides the simple basis for the chromosome
representation used in this paper. Since we are assuming
that all links are bi-directional, we will consider the upper
triangle portion of the matrix only. This matrix can be
converted to a vector without loss of information. If n is
the number of nodes in the graph, then:

2
1

length chromosome
)n(n-

=

It is important to note that the search space of the problem
is proportional to the number of nodes:

1)/2-n(n2 spacesearch of cardinalit =y

Fig. 4, Chromosome Encoding

3.2.2 Initialization
To enhance the efficiency of the search, the initial
population consists of networks being highly reliable. A
combination of depth-first search algorithm and repair
mechanism is used to generate the initial population by
the following procedure:
1. Specify a value k, which is the degree of the network

that we are interested to generate. Start from node 1
to n (the total number of nodes). For every node x,

determine the number of links l which are incident
upon this node. If l is less than k, determine the k-l
neighboring nodes y1, y2,…,yn-l which have the lowest
link variable costs with node x and do not have a
connection with x. make connections between x and
y1, y2,…,yn-l. Run a check for connection. After
checking the connectivities, a k-degree network
topology is obtained. Thus m initial topologies which
make the initial population can be obtained by giving
m different values to k.

2. Check the connectivity of these network topologies.
If any of the topologies is not a connected graph, add
the least-cost link which connects the disjoint
components of the topology to make it connected.

3. For all source s and destination d pairs, one at a time,
find the shortest path between s-d, increase the
capacities of all the links along the path with the
traffic requirement of this source-destination pair. An
initial solution population will be obtained after
finishing the capacity assignment.

4. Evaluate the solution generated and select candidate
for matting using Equation (7).

3.2.3 Selection
The selection mechanism allocates reproductive trials to
strings on the basis of their fitness. Depending on the type
of GA, strings selected from the old generation are either
included directly in the new generation or become the
parents of new strings created by GA recombination
operators. The results reported in this paper are based on
the binary tournament selection, where two strings are
chosen at random from the population, the more fit string
is then allocated a reproductive trial. In order to produce
an offspring, two binary tournaments are held, each of
which produces one parent string.

3.2.4 Fitness Function
A function is needed to interpret the chromosome and
produce an evaluation of the chromosome’s fitness. This
function must be defined over the set of possible
chromosome’s and is assumed to return some non-
negative value representing the fitness. In our formulation
we used the following function:

∑
=

j
j

i
i

c

c
f

/1

/1 (7)

where ci is the cost of the i-th solution in the solution
population. The parents are selected according to the
fitness value.

3.2.5 Crossover
Crossover allows elements from different chromosomes
to be combined hoping that good elements will be
recombined to produce a chromosome fitter than its
parents. We used multi-point crossover, where it is

accomplished by selecting two parent solutions, (i.e.
interchange the elements of the two topology strings) and
randomly taking a component from one parent to form the
corresponding components of the offspring.

(a) (b)

(c) (d)
Fig. 5, Two children topologies (c) and (d) created by crossover
operator from parent topologies (a) and (b)

3.2.6 Mutation
The purpose of mutation is to create diversity that may
not have been present in the initial population by taking
off or adding on some links randomly from some
offspring topologies. We used a common mutation
operator based on a random walk and is applied
differently according to node degrees of the network.

 (a) (b)
Fig. 6, Mutation of a network of five nodes and six links. (a)
Network degree k ≥ 2 before mutation; (b)Network after
mutation where link 3 to 5 has been added.

3.2.7 Repair Mechanism
Since not all chromosomes created randomly or by
genetic operators represent a network that meets the
defined constraints, a testing and repair process is needed.
Connectivity/biconnectivity is easily and cheaply tested
using a depth first search. If a network is not connected,
random links are added between components until the
graph is connected. Each node is checked for compliance
to the minimum and maximum degree constraint using
the incidence matrix. If a node breaches the minimum
degree constraint, one or more extra links must be added.
If a node breaches the maximum degree constraint, one or
more links must be removed, without destroying
connectivity.

(a) (b)
Fig. 7, Topology from Fig. 5.d that has undergone repair for
biconnectivity (a). The bold link between 1 and 5 has been
added (b).

3.2.8 Pruning
The mutation and repair mechanism operators both add
links to the network in order to comply with the imposed
biconnectivity constraint. This may create some
complications in that the population would drift towards a
set of fully connected graphs. We adopted two
approaches with closely similar results, either we penalize
dense graphs in the objective function or we detect links
that are not allocated any traffic and prune them. In this
way, the genetic building blocks being recombined in the
following generations are the links that are actually used.

3.4 Similarity Measure
The similarity measure is a function used by the SGGA to
compares two solutions and indicates the differences
between them. The Hamming distance is an appropriate
phenotype measurement of similarity for problems where
binary encoding matches the phenotypic meaning
(network topology). The Hamming distance between two
binary strings b1 and b2 of length l is defined by the sum
of the non-matching bit-values at each position. In
general, this distance dh between two bitstrings can be
written as:

() { } { }∑
=

=
i

i
h isxorvibvbbd

1
2121)()(, (8)

Where { })(ibv j is the bit-value of string j at position i.

4 Implementations
Fig. 8, 9 and 10 present the three algorithms used in this
paper, in addition to the definition of Section 3.1 the
following is a brief explanation of the SSGA algorithm.
The other two are not explained here for reasons of space.
P (t) is the population of strings at generation t. Each
generation, one new string is inserted into the population.
The first step is to pick a random string, xrandom. Next, two
parent strings, x1 and x2, are elected, and a random
number, r ∈ [0, 1], is generated. If r is less than the
crossover probability, pc, we create two new offspring via
crossover and randomly select one of them, xnew, to insert
in the population. Otherwise, we randomly select one of
the two parent strings, make a copy of it, and apply
mutation to flip bits in the copy with probability 1/n. In
either cases, the new string is tested to see whether it

3

1 2

5 4

1 2

3

45

3

1 2

5 4

3

1 2

5 4

3

1 2

5 4

1 2

3

45

3

1 2

5 4

1 2

3

45

3

duplicates a string already in the population. If it does, it
undergoes (possibly additional) mutation until it is
unique. The leastfit string in the population is deleted,
xnew is inserted, and the population is reevaluated. The
GRGA and SSGA experiments in this paper used a
population size of 20, while the SGGA was tested with a
population of 50.

t ← 0
initialize P (t)
evaluate P (t)
foreach generation

t ß t + 1
select P (t+1) from P (t)
recombine P (t+1)

 evaluate P (t+1)
endfor

 Fig. 8, The GRGA Algorithm

t ← 0
initialize P (t)
evaluate P (t)
foreach generation

select(x1, x2) from P (t)
if(r < pc) then

 xnew = crossover(x1, x2)
else

 xnew = mutate(x1 , x2)
endif

delete (xworst ∈ P (t))
while (xnew ∈ P (t))
mutate(xnew)
P (t + 1) / P (t) ∪ xnew
evaluate P (t + 1)
t ← t + 1
endfor

Fig. 9, The SSGA Algorithm

 t ← 0
 initialize P (t)
 evaluate P (t)
 foreach generation
 select (x1, x2) from P (t)
 xnew = crossover (x1, x2)

 *
newx = mutate (x1 , x2)

 Find most similar individual S to *
newx

 If () ()Sfxf new <* Replace S with *
newx

 evaluate P (t + 1)
 t ← t + 1
 endfor

 Fig. 10, The SGGA Algorithm

5 Results
The approach presented in this paper is applied to a 20-
nodes problem found in [1]. For simplicity and ease of
comparison, the traffic is considered uniformly
distributed among all nodes and the node costs are
considered proportional to the capacities of the links with
a unit cost of 3.0.

Iter. Cross.
Prob.

Mut.
Prob.

Cost
Reduction

Improvement
Over [1]

Cost for
Biconnect

3000 0.85 0.052 11.50 % 5.98 % 0.92 %
3000 0.65 0.02 11.28 % 5.89 % 0.95 %
3000 0.30 0.015 11.42 % 5.92 % 0.99 %

Table 1. GRGA final results with different settings

Iter. Cross.
Prob.

Mutat.
Prob.

Cost
Reduction

Improvement
Over [1]

Cost for
Biconnect.

3000 0.85 0.052 18.78 % 8.79 % 0.99 %
3000 0.95 0.015 18.74 % 8.74 % 0.98 %
3000 0.75 0.052 18.76 % 8.79 % 1.0 %

Table 2. SSGA final results with different settings

Iter. Cross.
Prob.

Mut.
Prob.

Cost
Reduction

Improvement
Over [1]

Cost for
Biconnect

3000 0.85 0.052 19.89 % 9.69 % 0.98 %
3000 0.65 0.020 19.72 % 9.49 % 0.99 %
7000 0.85 0.052 19.90 % 9.69 % 0.99 %

Table 3. SGGA final results with different settings

Fig. 11, Initial 20 Nodes Network Topology
To test the performance of the GRGA algorithm

under different settings, we tested several operator and
parameter value choices. In most cases we concluded that
the different options we compared all worked about the
same. The final cost of the best solution for different
settings is shown in Table 1, 2 and 3. The best results
were obtained in conjunction with uniform crossover
using 0.85 and 0.052 as the respective values for
crossover and mutation probabilities. The computational
time spent on the solution was 23 min. and 34 sec. on a
SUN Ultra 60 Workstation.

Compared to the initial topology depicted in Fig.
11, the network cost obtained using the GRGA algorithm

decreased from an initial value of $46086 to $40080 with
no violated constraints after 3000 iterations. This presents
an improvement of about 11.5% compared to the initial
topology and a 5.98% cost saving compared to [1].

Using the SSGA, after 500 iterations, the
algorithm’s solution showed a tendency to converge.
After 3000 iterations, the network cost is reduced as
shown in Fig.12 to $ 38677, this represents an 18.78 %
improvement compared to the initial cost, a 3.5%
improvement over the GRGA [2] and an 8.79% reduction
compared to [1]. This is mainly due to an enforced
diversity and small population strategies used, after
crossover, members of the population are compared, any
duplicate members will be mutated. We found that 38%
of chromosomes are identical to another in the
population, since duplicate members do not improve the
solution, they can be removed. As a result, diversity
leading to better solutions is maintained and the algorithm
is prevented from premature convergence. Additional
advantage is the reduction of the number of fitness tests
required; this in turn will reduce the overall solution time
of the solution. We found that there was no significant
difference between either fitness techniques or selection
methods. The different crossover operators and crossover
probabilities we tested also all behaved about the same.

The SGGA outperformed both the GRGA and
SSGA in convergence behavior and solution quality. An
exception is the solution time, while the GRGA and the
SSGA spent 28 min. 32sec. and 23 min. 34 sec
respectively, the SGGA spent 39 min. 51 sec on the
solution. Other than that, the network cost was reduced
from an initial $ 47802 to 38290.6 in 3000 iterations. This
represent a 19.89% compared to the initial cost, 4.46%
compared to the GRGA solution, 1% compared to the
SSGA solution and 9.69% compared to [1].

Fig. 12, Cost versus Number of Iteration

The final topologies of the optimal network
obtained by the three algorithms are shown in Fig. 13, 14
and 15. It is important to note that due to disconnected
topologies incurred after the crossover and mutation
operators, link/links are added as explained in Section
3.2.7 to connect back the topologies at an extra cost. In all
cases all constraints were respected, including the

biconnectivity constraint. We observed an increase in the
cost of nearly 0.99 % due to biconnecting the resulted
topology after the crossover and mutation operations.

We also tested the three algorithms on a network
of 70 nodes. This presented a real challenge to test the
efficiency and robustness of the algorithms. While the
GRGA failed to find any optimal/near optimal solutions;
in fact even finding feasible solution was a very difficult
task. The SSGA and SGGA converged to what we believe
at this stage is an optimal solution. The problem we faced
is the excessive time spent before the termination
condition is met. An investigation on improvement
strategies on the two algorithms in being carried out and
the results will be reported soon.

Fig. 13, GRGA Optimal Network Topology

Fig. 14, SSGA Optimal Network Topology

Fig. 15, SGGA Optimal Network Topology

6 Conclusion
The approach described here has been demonstrated to be
efficient on a variety of small to medium ATM networks

0 500 1000 1500 2000 2500 3000

38000

40000

42000

44000

46000

48000

 GRGA

 SSGA

 S G G A

C
o
s
t

Iteration Number

sizes. One early conclusion we reached was that the
GRGA, even with elitism, was not very good at finding
solutions to the TDCA problem as SSGA or SGGA. In
fact, even finding feasible solutions to relatively large
problems (networks with more than 70 nodes) proved a
difficult challenge. The primary cause of this was
premature convergence. The SSGA has proven more
successful, particularly at finding feasible solutions.
However, the SSGA still had some difficulties finding
global optimal solutions. This situation motivated us to
develop the SGGA with a large population size to see if
there is any possibility to improve the solution further.
The possible future work for ATM network planning
includes more investigation to improve the capabilities of
the SGGA and the expansion of the algorithms to more
complicated design issues. The optimal design of virtual
path of ATM networks, configuration of digital cross-
connect systems to form embedded logical networks from
physical facilities networks and survivable network
design among others are possible candidate problems to
the GA application. Another possibility is hybridizing
GAs with robust local search procedures to improve the
solution quality and CPU time, and the running of this
sequential GA in a parallel fashion, paralleling GAs help
in reducing the solution time greatly.

References
[1] Z. Qin, F. F. Wu, N. Law, “Designing B-ISDN

Network Topologies Using the Genetic Algorithm”,
Proc. IEEE-MASCOTS’97, 1997, pp. 140-145.

[2] H. Sayoud, K. Takahashi, B. Vaillant, “Designing
Communication Networks Topologies Using Steady-
State Genetic Algorithms” In Press, IEEE Comm.
Letters, 2000.

[3] R. Elbaum, M. Sidi, “Topological Design of Local
Area Networks Using Genetic Algorithms”,
IEEE/ACM Transaction on Networking, Vol. 4, No.
5, pp. 766-778, Oct. 1995

[4] K. Tang, K. Ko, K. Man, S. Kwong, “Topology
Design and Bandwidth Allocation of Embedded
ATM Networks Using Genetic Algorithms”, IEEE
Comm. Letters, Vol. 2, No. 6, June 1998, pp. 171-173

[5] M. Gen, K. Ida, J. R. Kim, “ A Spanning Tree Based
Genetic Algorithm for Bicreteria Topological
Network Design”, Proc. IEEE Intr. Conf. Evol.
Compt., pp. 15-20, 1998.

[6] D. R. Thompson, G. L. Bilbro, “Comparison of Two
Swap Heuristics with a Genetic Algorithm for the
Design of ATM Network”, Proc. 7th Inter. Conf.
Comp. Comm. & Nets, pp. 833-837, 1998.

[7] S. Pierre, A. Elguibaoui, “A Tabu-Search Approach
for Designing Computer Network Topologies with
Unreliable Components”, IEEE Trans. On
Reliability, Vol. 46, No. 3, pp. 350-359, Sep. 1997.

[8] B. Denzig, F. Altiparmak, A. Smith, “Efficient
Optimization of all Terminal Reliable Networks
using an Evolutionary Approach”, IEEE Trans.
Reliability, Vol. 46, pp. 18-26, 1997.

[9] B. Denzig, F. Altiparmak, A. Smith, “Local Search
Genetic Algorithm for Optimal Design of Reliable
Networks”, IEEE Trans. Evolu. Compt., Vol. 1, pp.
179-188, 1997.

[10] D. Deeter, A. Smith,“Heuristic Optimization on
Network Design Considering all Terminal
Reliability”, Proc. Reliab .& Maintainability. Symp.,
pp. 194-199, 1997.

[11] A. N. Ventetsanopoulos, I. Singh, “Topological
Optimization of Communication Networks Subject
to Reliability Constraints”, Problem of Contr.
Inform. Theory, Vol. 15, pp. 63-78, 1986.

[12] M. Gerla, J. A. S. Monteiro, and R. Pazos,
“Topology Design and Bandwidth Allocation in
ATM Nets,” IEEE J. Select. Areas Commun., vol. 7,
pp. 1253–1262, Oct 1989.

[13] A. Kumar, R. M. Pathak, Y. P. Gupta, “Genetic
Algorithm Based Reliability Optimization for
Computer Network Optimization”, IEEE Trans.
Reliability, Vol. 44, pp. 63-72, 1995.

[14] K. F. Man, K. S. Tang, and S. Kwong, “Genetic
Algorithms: Concepts and Applications,” IEEE
Trans. Ind. Elect., Vol. 43, pp. 519–534, Oct. 1996.

[15] L. Berry, B. Murtagh, G. McMachon, L. Welling,
“An Integrated GA-LP Approach to Communication
Network Design”, Baltzer J., pp. 1-16, Jan. 1998

[16] G. A. Walters, D. K. Smith, “Evolutionary Design
Algorithm for Optimal Layout of Tree Network”,
Engg. Optimization., Vol. 24, pp. 261-281, 1995.

[17] T. Gruninger, D. Wallace, “Multi-modal
Optimization using Genetic Algorithms”, MIT
CADlab-Technical Report: 96.02, 1996.

[18] N. Senin, D. Wallace, N. Borland, “Object-Based
Design Modeling and Optimization with Genetic
Algorithms”, Proc. GECCO-99, 1999.

[19] M. B. Wall, “A Genetic Algorithm for Resource
Constrained Scheduling”, Ph.D. Thesis, MIT, 1996.

[20] J. Hopcroft, J. Ullman, “Set Merging Algorithms”,
SIAM J. Comput. Vol. 2, pp. 296-303, 1973.

[21] K. J. Ryul, M. Gen, “Genetic Algorithm for Solving
Bicriteria Network Topology Design Problem” Proc.
Evol. Comp., CEC-99, Vol. 3 , pp. 2272–2279, 1999.

[22] M.C. Sinclair, “Minimum Cost Routing and
Wavelength Allocation using a
Genetic-Algorithm/Heuristic Hybrid Approach”,
Proc. 6th IEE Conf. Telecom., pp. 67 –71, 1998.

[23] Z. Michalewicz, Genetic Algorithms + Data
Structures = Evolution Programs. 3rd Ed., NY,
Springer-Verlag, 1996.

[24] Gen, M, R. Cheng, Genetic Algorithms &
Engineering Design, John Willey & Sons, NY, 1997.

