

Redwood: A Visual Environment for Software
Design and Implementation

BRIAN T. WESTPHAL, FREDERICK C. HARRIS Jr., SERGIU M. DASCALU

Department of Computer Science
University of Nevada, Reno

Reno, NV 89557
USA

Abstract: - This paper presents the main characteristics of Redwood, an integrated software development
environment that proposes a novel solution for supporting software design and implementation activities via
extensive use of predefined graphical templates (snippets), direct manipulation of programming constructs, and
enhanced visual representation of program structure. The main design principles used in building the Redwood
environment as well as the environment’s overall organization and principal components are described. The current
status of the Redwood project and several planned directions of future work are also presented in the paper.

Key-Words: - visual environment, software development, design, implementation, direct manipulation, snippets,
graphical user interface, open source code, design tree, Redwood.

1 Introduction
The direct writing and manipulation of computer
programming language source code is inefficient
when dealing with a large number of abstractions.
Most programs could be built by combining pieces
of code that have previously been used successfully.
However, the bulk of computer programming still
involves rewriting again and again such pieces of
code.
 Through the use of open source software, part of
this problem can be avoided. For example, if a new
web browser package is to be developed, through
open source software the developers can have access
to a significant amount of code already written. In
this particular example a package such as kHTML
[1], developed for KDE [2] and used by systems
such as Apple’s Safari browser [3], can be used as a
foundation. Thus, the developers can avoid rewriting
large pieces of code and focus instead on the
innovative aspects of their software.
 Still, with open source software, developers are
required to know a lot about the software they need
to use and customize. Open source code is widely
available over the Internet but, inconveniently, it is
also widely spread over numerous sites. In practice,
there are often several competing flavors of the same
package. Moreover, development using an open
source foundation is typically complicated by the

lack of proper documentation. These problems make
using open source packages impractical in many
cases. For corporate use, open source software is
insufficiently supported and not stable enough. For
novice programmers or individuals that work in
other fields (such as chemistry or physics) and resort
to coding to increase their productivity, dealing with
undocumented open source packages or even simply
finding that a particular package exists requires
significant effort. Such programmers do not have
the knowledge of general resources and often do not
know where to look to find software packages that
can be trusted. To complicate things further, even
when suitable software is available, it is typicallly
undocumented to the point of incomprehensibility,
except by expert programmers [4].
 The Redwood environment, developed at the
University of Nevada, Reno, USA, attempts to solve
some of the previously mentioned problems. It also
aims to handle several specific design and
implementation issues. Redwood was primarily
inspired by the visual programming systems Alice,
created at Carnegie Melon University by the Stage3
research group [5, 6]. By making use of a graphical,
drag-and-drop interface, a programmer can largely
avoid implementation solutions that are platform
and/or language dependent. Unlike Alice, however,
Redwood strives to be a more complete solution for

general programmers. Alice took the idea of drag-
and-drop programming and geared it towards
education, towards teaching programming and
computer-based problem solving to students.
Redwood is not specifically designed for students, it
is designed for the wider community of
programmers, including novice and occassional
programmers, intermediate programmers, and
experienced professional programmers.
 Because the main concept on which the
Redwood solution for software development support
was founded is that of a design tree (an arborescent
structure for abstract representation of program
organization which is suitable for describing both
functional and object-oriented code) we decided to
give the name of a tree to this software development
environment that supports both design and
implementation. By envisioning it as open source
code, we hope that the Redwood environment will
grow to become as strong and reliable as its “natural
counterpart” from which it took its name.
 When the design process for Redwood began in
Spring 2003, several goals were identified for the
environment, namely: support for design hierarchy
(hence, reliance on design tree structures), capability
of direct manipulation via drag-and-drop,
algorithmic independence, support for object-
oriented design, support for parallel programming,
open/shared source code, and support for
documentation. In addition, it has been considered
very important that the environment should be easy
to understand, learn, and use. Later in the paper a
concise evaluation of the degree to which these
development goals have been achieved is included.
 The remainder of this paper is organized as
follows: Section 2 presents the main design concepts
and principles used in the construction of Redwood,
Section 3 provides details of the environment’s
interface and functionality, Section 4 points to a
number of related research and development areas
that we intend to explore further, and Section 5
concludes the paper with a summary of the
environment’s main characteristics.

2 Design Concepts and Principles
A major abstraction related to Redwood’s visual
design space is the tree structure that can be used to
describe any program. Any program can be broken
down into a tree-like structure and viewed at a “big-
picture scale” (or high-level of abstraction, where
only the program’s major components are shown), at

a “small-picture scale” (or low level of abstraction,
where some specific details of the program’s
structure are visibile), or somewhere in between, at
an intermediate level of abstraction. The direct tree
manipulation mechanism present in Redwood makes
viewing and editing complex code significantly
more manageable. Through its graphical support for
representing and manipulating design and
programming constructs, Redwood, whose main
window is shown in Figure 1, is meant to offer its
users the known advantages of visual environments
[7, 8], making it faster for developers to complete
their tasks.
 As a software engineering tool, Redwood can be
used for fast corporate development as both the
design and implementation aspects of a program can
be built in a single space. In fact, the tree structure
can be used to represent only the basic functions of a
program, without implementing any code (that is, it
can be used for design only). After the design tasks
are completed, the programmers can fill in the
implementation details in the tree. When design
changes are needed, the design and the
implementation (the details of the code) can be
modified in a single place, thus eliminating the need
to revisualize the design or the implementation
spaces characteristic to more traditional types of
software development environments.
 The design principles employed in Redwood’s
construction allow a programmer to move easily
between the large-scale representation of a
problem’s solution and its smaller details. Redwood
does this by relying on several mechanisms and
techniques, including templating via snippets,
disclosure triangles and dots, and drag-and-drop
manipulation. These are described next.

2.1 Snippets
In the Merriam-Webster Dictionary a snippet is
defined as “a small part, piece, or thing”. In
Redwood, a snippet is used in the sense of a “a small
part” of a solution. More precisely, a snippet is a
template that describes a solution to a small part of a
problem. The Redwood system ships with several
types of snippets, most of which would be
considered at the core part of a typical programming
language. For example, function is a type of snippet
that generally represents a typical computer
program’s function with a return type, parameters,
and code. Redwood also comes with other snippets
for classes, loops, if-then-else structures, and blocks,

Fig 1. Redwood’s Main Window

among other things. Each of these concepts represent
a smaller part of the solution in a computer program.
 In the typical sense, a function is defined by a
set of rules according to a language grammar. These
vary slightly from language to language, but in
general a function has several key elements
including a name, return type, parameters, and code.
Virtually any language can be made, in one way or
another, to duplicate the effects of a function. In the

same way, while C++ has direct support for classes,
virtually any other language can be made to
synthesize class support.
 A snippet in Redwood allows a programmer to
describe an idea using functions, loops, classes, and
other structures in a language-independent way – a
very powerful feature that confers to the
environment significant flexibility and scope of
applicability.

 A snippet is defined by its parts (as a function is
defined by its name, return type, etc.) and its
mappings to various languages. Figure 2 shows an
example of XML code used to define a snippet.

<?xml version="1.0"?>
<!DOCTYPE SNIPPET>
<DEFINE-SNIPPET NAME="Function" BGCOLOR="210, 240, 210"
TITLE="name">
 <COMPONENTS>
 <COMPONENT TYPE="CommentEditor" NAME="COMMENTS"
 TITLE="COMMENTS"></COMPONENT>
 <COMPONENT TYPE="TypeEditor" NAME="RETURNTYPE"
 TITLE="RETURN TYPE" HASCOMMENT="TRUE"></COMPONENT>
 <COMPONENT TYPE="ParameterListEditor"
 NAME="PARAMETERS"
 TITLE="PARAMETERS"></COMPONENT>
 <COMPONENT TYPE="VariableDeclarationEditor"
 NAME="DECLARATIONS"
 TITLE="VARIABLE DECLARATIONS"></COMPONENT>
 <COMPONENT TYPE="CodeEditor" NAME="CODE"
 TITLE="CODE"></COMPONENT>
 </COMPONENTS>
 <PROTOTYPE LANGUAGES="C++">
$RETURNTYPE $FUNCTION.titleForIdentifier ($PARAMETERS);
 </PROTOTYPE>
 <TEMPLATE LANGUAGES="C++">
/**
$COMMENTS.formatForBlockComment
 *
$PARAMETERS.formatForBlockComment
 *
$RETURNTYPE.formatForBlockComment
 */
$RETURNTYPE $FUNCTION.titleForIdentifier ($PARAMETERS)
{
 $DECLARATIONS

 $CODE
}
 </TEMPLATE>
</DEFINE-SNIPPET>

Fig 2. XML Description of the Function Snippet
with Support for C++ Output.

 Due to their flexibility, snippets provide to
developers a wide range of tools, including editors
for code, data types, expressions, parameters,
comments, and declarations.

Furthermore, snippets can be used to represent
significantly more complex concepts than simple
programming language constructs. For example, a
snippet can be written to describe an algorithm such
as one used for sorting. By encapsulating an
algorithm into an object it is then possible to
manipulate it in ways that are unavailable in
traditional editing environments. With a sorting
algorithm, for instance, a programmer may initially
write code for a simple, easy to implement solution.
Then, because of speed and efficiency requirements,
it may be beneficial to replace the initial solution
with a more complex, improved algorithm.
Snippets, in such a case, allow the user to move the
“algorithm object” around as if it were a physical
object, dragging-and-dropping the new solution in to
replace the initial algorithm. Further details on
snippets creation and manipulation are given later in
this paper.

2.2 Disclosure Triangles and Dots
After taking time to properly write and comment a
piece of code, a developer may want to see only the
comment attached to this piece of code. During the
construction of the program, such a feature allows a
developer to abstract away details of certain portions
of code. Thus, with such an option, a programmer
could better see the “big picture” of his or her
solution, stepping away from minute details of the
code and focusing on the overall logic of program.
Redwood handles this concept through the use of
disclosure triangles (a tool popular in many Apple
software applications) for all snippets. The use of
disclosure triangles at the snippet level allows
programmers to reduce code into varying levels of
complexity and depth by a simple click of a button.
 In addition to disclosure triangles, a new
visualization mechanism is used in Redwood to
further customize the representation of a snippet.
This mechanism that we have designed, denoted
disclosure dots, allows a user to disclose or hide
each individual part of a snippet. For example, a
programmer may choose to see only the comments
and code parts of a function, hiding the parameters
and variable declarations parts of that function.
Figures 3 and 4 demonstrate the use of disclosure
triangles and dots.

Fig 3. Using Disclosure Triangles and Dots:
All Compartments Shown in Function Factorial

Fig 4. Using Disclosure Triangles and Dots:
Two Compartments Hidden in Function Factorial

Specifically, the disclosure triangle can be seen in
the upper left hand corner of each snippet. The
disclosure dots are to the right of the disclosure
triangles. The disclosure triangle of the main
function is set to hide the contents of this function,
whereas the disclosure triangle of the factorial
function is set to show this function’s contents.
Further, the disclosure dots for the factorial
function in Figure 3 are set to show the entire set of
contents for the factorial function snippet,
whereas the disclosure dots in Figure 4 are hiding
the variable declarations and code sections of the
same snippet. (Note that due to space limitations we
have limited the complexity of the example to a
simple factorial program.)

2.3 Drag-and-Drop Manipulation
One of the key elements to quickly manipulating
large-scale objects is the ability to physically move
them on the screen using the mouse. In contrast to
traditional code editors, in Redwood programming
constructs such as functions, classes, and algorithms
can be manipulated on the screen an treated as
individual “physical” objects. These objects can be
dragged around on the screen to place, re-order, and
replace components within the environment. In
addition to being able to drag-and-drop snippets,
programmers can also construct program statements
and expressions almost entirely without the use of
the keyboard. A programmer can drag a function call
object, drag-and-drop the parameters for this
function and then have a piece of code that can be
easily “moved around” in the program design space.

This compelling ability of “dragging algorithms”
not only increases the developers’ productivity but

also supports language-independent programming
solutions, as verified code can be broken into
individual pieces that can then be separately
translated into other output languages.

3 Interface Details
As shown in the previously introduced Figure 1, the
Redwood interface is composed of two major
graphical areas. On the left, the editing pane
provides the main space for manipulating programs.
On the right, the tools pane is placed, supporting the
actions perfomed in the editing pane by providing
access to various drag-and-drop components.

3.1 Editing Pane
The editing pane of the Redwood environment takes
up the majority of the screen real estate to show the
structure and the details of the software being
developed. The editing pane is built upon a nested
tree structure in which each programming construct
is placed in a snippet. Snippets can contain other
snippets, and the level of complexity increases as
one gets deeper into the tree. A programmer can
flatten the depth of the tree and see only the desired
level of detail by controlling the visual represen-
tation of the snippets via disclosure triangles and
disclosure dots.

3.2 Tools Pane
The tool pane is currently made up of four tool sub-
panes (several additional sub-panes, such as for
accessing online libraries, will be included in future
versions of the environment). These sub-panes allow
programmers to select and manipulate multiple files
within a project, handle favorite components (a kind
of advanced clipboard for most commonly used
items), and provide access to various draggable
components, namely statement pieces and snippets.
 The following subsections describe each of the
current tool sub-panes in further detail, except for
the file chooser sub-pane. The file chooser tool has
been left out as its functions are similar to typical
file manipulation tools found in traditional software
packages.

3.2.1 Favorites
The favorite tools sub-pane can be used by the
developer as an advanced clipboard. He or she can

group favorite and repeatedly used items so that he
or she can have a quicker, more convenient access to
such items. Both statement pieces and snippets can
be dropped onto the favorites tools sub-pane.

3.2.2 Statement Builder
The statement builder tools sub-pane provides the
programmer with the ability to drag-and-drop
statement pieces such as identifiers, literals, and
assignment operations as physical objects on the
screen. These are typically dragged from the
statement builder tool and dropped into either the
editor pane or into the favorite tools sub-pane. Once
a statement piece is dropped, it can then be dragged
from that point, creating a duplicate of the object
when dropped. A snapshot of the statement builder
sub-pane is shown in Figure 5.

3.2.3 Snippet Chooser
The snippet chooser tools sub-pane organizes
snippets into directories based on relationships
between items. A snapshot of this tools sub-pane is
also shown in Figure 5.

Fig 5. The Statement Builder and Snippet Chooser
Tools Sub-Panes

4 Future Work
Currently available as a beta version, downloadable
from [9], Redwood offers an opportunity for
collaboration on open source projects. Also, within
corporations large projects are often split between

many programmers, and Redwood can efficiently
help manage this type of internally shared code.
 At this point in time, we assess that six out the
eight major development goals for the environment
mentioned in the Introduction section of this paper
have been largely accomplished, namely: support for
design hierarchy, capability of direct manipulation
via drag-and-drop, support for object-oriented
design, open/shared source code, familiarity of use
(easy to understand, learn, and use), and support for
commenting and documentation. Currently, we are
working on the remaining two major objectives,
support for parallel programming and algorithmic
independence.
 There are several directions in which Redwood
can be improved. Perhaps the most urgent of these is
concerned with the environment’s usability. For
example, it has been found that a pure drag and drop
system is cumbersome to use when dealing with
small tasks. The inclusion of shortcuts and/or
automatic translation from typed syntax to Redwood
structures could improve the tool’s usability,
especially for expert programmers who are skilled at
rapidly typing source code into the computer.
 Additional enhancements need also to be made
to the editing system. For example, the use of cut,
copy, and paste features is not yet available in the
environment. Fortunately, the use of the favorite
tools can reduce some of this need, but for increased
convenience these tools will be added soon.
 Another direction of further work relates to
supporting additional languages and libraries.
Currently, development support is available only for
C and C++ programs, but we plan to extend in the
near future this support to languages such Objective
C/C++, Java, and Perl.
 In addition to support for more programming
languages, Redwood can also be equipped to
formally handle pseudo-code level development as
well as, to some extent, UML diagrammatic
modeling and other software engineering notations
and techniques [10].
 Elements of other approaches for developing
software and for building integrated development
environments that we have suggested recently in
other projects [11, 12], for example elements of
stratified programming, could also be integrated to
Redwood.
 An improved version of Redwood could also
incorporate hooks into several popular source code
management systems such as the Concurrent
Versioning System (CVS) [13], thus allowing

sharing and managing of shared source documents.
In addition, Redwood could help enforcing corporate
documentation standards, optionally requiring, for
example, that developers fully document their code
before being able to check it into the CVS server.
 Finally, Redwood could include support for an
integrated online library of snippets. Even though
the user community is expected to provide most of
the support for extending the snippet library, a wide
variety of powerful tools could also be included in
the environment. Basic collections of frequently
used data structures, sorting techniques, and
input/output procedures are examples of packages
that could be included in the environment.

These additions will make the Redwood
environment a more complete design tool, giving
developers a single platform on which they can
productively build designs, prototypes, and
implementations.

5 Conclusions
Redwood, a new visual environment for software
design and implementation has been presented in
this paper. The environment distinguishes itself
through its advanced support for visual
representation of program structure, direct
manipulation of programming constructs via drag-
and-drop, and extended support for program
development based on the novel and powerful
concept of snippets. In addition, the Redwood
environment provides the foundation for a number
of very interesting and challenging avenues of
further research and development.

References:
[1] KDE HTML Widget, kHTML Library,

accessed October 30, 2003 at http://devel-
home.kde.org/~danimo/apidocs/khtml/html/in
dex.html

[2] KDE Homepage, accessed October 30, 2003
at http://www.kde.org/

[3] Apple – Safari Website, accessed October 30,
2003 at http://www.apple.com/safari/

[4] The Ganssle Group, Open Source Quality?,
accessed October 30, 2003 at
http://www.ganssle.com/articles/opensrc.htm

[5] Alice: Free, Easy, Interactive 3D Graphics for
the WWW, accessed March 10, 2003 at
http://www.alice.org/

[6] Pausch, R., et al., A Brief Architectural
Overview of Alice, a Rapid Prototyping
System for Virtual Reality, IEEE Computer
Graphics and Applications, May 1995.

[7] Green, T.R.G., and Petre, M., Usability
Analysis of Visual Languages: a Cognitive
Dimensions Framework. Journal of Visual
Languages and Computing, Vol.7, 1996, pp.
131-174. Academic Press.

[8] Levialdi, S., Visual Languages: Concepts,
Constructs, and Claims, Proceedings of the
23rd International Conference on Information
Technology Interfaces, 2001, pp. 29-33. IEEE.

[9] Redwood v1.0 Beta 1 Homepage, accessed Oct.
30, 2003 at http://www.cs.unr.edu/redwood/

[10] Burnett, M.M., “Software Engineering for
Visual Programming Languages”, Handbook
for Software Engineering and Knowledge
Engineering, vol.2, pp. 77-92. World
Scientific Publishing Co., 2001.

[11] Dascalu, S.M., Pasculescu, A., Woolever, J.,
Fritzinger, E., and Sharan, V., Stratified
Programming Integrated Development
Environment (SPIDER)”, Procs. of the 12th
Intl.Conf. on Intelligent and Adaptive Systems
and Software Engineering (IASSE-2003), July
2003, San Francisco, CA, USA, pp. 227-232.

[12] Westphal, B.T., Harris, F.C., Jr., and Fadali, S.
Graphical Programming: A Vehicle for
Teaching Computer Problem Solving,
accepted at the Frontiers in Education
Conference (FIE '03), Boulder, CO, USA,
November 2003.

[13] Concurrent Versions System, accessed
October 30, 2003 at http://www.cvshome.org/

