
Support Vector Machines for shade identification in urban areas 
 

PAJARES G., CRUZ, J.M. and BELMONTE, M.  
Arquitectura de Computadores y Automática  

Universidad Complutense.- Facultad Informática 
Juan del Rosal 8, 28040 Madrid 

SPAIN  

 
Abstract: - The aim of this paper is the identification of shades in urban areas for remote sensing images. The 
final goal consists in the risk minimization for image change detection algorithms. Correct shade identification 
help us to discard urban shades as urban changes. The main contribution of the paper is to focus the problem as a 
classification problem using the well founded Support Vector Machines theory. A comparative analysis is carried 
out against other classical existing classification methods where the performance of the proposed approach is 
verified. 
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1 Introduction 

The high resolution provided by the remote 
sensing sensors has opened a new field in remote 
sensing applications: the urban dynamic analysis. A 
final goal of any urban dynamic analysis is to detect 
urban changes. Our shade identification approach is 
focused under such goal. Indeed, when we try to 
detect the changes in urban areas, we find that the 
shades are labelled as urban changes. This is because 
the images are captured under different illumination 
conditions (different days and hours) and different 
view points. Once the shades are identified, they 
should be discarded as urban changes and the risk for 
any erroneous decision is minimised.     

With such purpose we use the well known 
Support Vector Machines (SVM) [1,2] theory for 
shade identification. This implies that the shade 
identification becomes a classification problem. This 
is the main contribution of the paper under the 
performance of the SVM framework. SVMs are one 
type of large margin classifiers which have proved 
highly successful in a number of classification 
studies.  

We compare the SVM performance against two 
well-founded statistical strategies: (1) the Bayesian 
Statistical Decision (BSD) theory [2,3]; (2) the 
Parzen´s window decision (PWD) theory [3] 

This paper is organised as follows: in section 2 we 
formulate the classification problem under the SVM 
theory. In section 3 a comparative analysis between 
SVM, BSD and PWD is carried out. Finally in 
section 4 the conclusions are presented. 

 
2   The classification problem 

. The classification problem can be viewed as a 
learning machine problem where the role and the 
problem of the learning machine is to select a 

function that best approximates the system’s 
response. The learning machine is limited to 
observing a finite number (n) example patterns in 
order to make this selection. 

Our goal is concerned with the shade distinction in 
urban areas. Hence, the unique class of interest in the 
input images is that produced by the building shades. 
This implies that the classification problem is a two-
classification (c1, c2) approach, where the shades 
belong to the unique class of interest (c1) and the 
remainder areas belong to the other class (c2). The 
output of the system takes on only two symbolic 
values { }1,1 −+=y  corresponding to the two 
mentioned classes respectively. Therefore, we have a 
trainable pattern classifier that learns to differentiate 
between patterns from the two classes.  

The remote sensing images are panchromatic 
images acquired by the IKONOS sensor from Madrid 
with spatial and radiometric resolutions of 1 meter 
and 11 bits respectively [4]. We use as pattern 
samples the pixel radiometric information. Hence, 
each pattern sample i is a 1-dimensional 
vector { }ii x≡x , where its component is the 
radiometric pixel value. The finite set of n training 
data under the SVM formulation is 
 

( ) niyii ,...,1      ,, =x  (1)

where each xi vector denotes a training data, 
i.e. ℜ∈ix  and { }1,1 −+=iy . 

Hereinafter, the samples shall be denoted as 
xi, avoiding the vector notation. 

Given the set of training samples defined in 
(1), the goal is to find a decision function (D) 
into the classes c1 and c2 as follows, 
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Fig. 1. (a) urban shading area; (b) training 
pattern samples 

The equation (2) establishes a representation of the 
decision function D as a linear combination of 
kernels centred in each data point. Using different 
kernels ),( zxH  [2] we get different functions. We 
have used Gaussian Radial Basis functions of the 
form { }22

exp),( σzxzxH −=  where σ defines the 
width of the kernel, set to 2.5 after different 
experiments.  

The parameters nii ,...,1  ,  =α , in Eq. (2) are the 
solution for the following quadratic optimisation 
problem: Maximise the functional  
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subject to constraints 
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given the training data ( ) niyx ii ,...,1  ,, = , the inner 
product kernel H, and the regularization parameter C. 
As stated in [2], at present, there is no well-
developed theory on how best to select C, in several 
applications it is set to a large fixed constant value, 
set to 2000 in our approach.  
A remarkable property of SVMs is that the data 
points xi associated with the nonzero αi are called 
support vectors. If all data points which are not 
support vectors were to be discarded for the training 
set the same solution would be found, an interesting 
perspective on SVMs is to consider its information 
compression and storage properties. The support 
vector represent the most informative data points and 
compress the information contained in the training 
set. This implies that only the support vectors need to 

be stored. Once the support vectors have been 
determined, the SVC decision function has the form 
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The SVC generates a scalar output f(x) whose 

polarity, sign of f(x), determines the class 
membership. The magnitude can usually be 
interpreted as a measure of belief or certainty in the 
decision made. As BSD and PWD use posterior 
probabilities, we use a warping function that maps f(x) 
to a posterior probability. This is carried out assuming 
that posterior probabilities take the form of a sigmoid 
and directly estimating the sigmoid [5], 
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In order to avoid severe bias in the distances for the 

training data, the parameters a and v are estimated 
experimentally and set to 0.2 and 0 in our 
experiments.  
 
3   Comparative Analysis and 
performance evaluation 

We verify the performance of our SVM approach 
comparing the results against two classical existing 
classification approaches: BSD and PWD. 

BSD is a parametric estimation method assuming 
that the data follow a known probability density 
Gaussian function with two parameters to be estimated: 
the mean µ and the variance σ2. 

The estimation process is carried out via likelihood 
minimization and the resulting function is  
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In order to avoid severe bias in the distances for 

the training data, the parameters a and v are estimated 
experimentally and set to 0.2 and 0 in our experiments.  

PWD is a non-parametric density estimation based 
on the Parzen’s window, 
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h is the smoothing parameter, often expressed as 
a function of the number of patterns knhh −= 0  with 

5.00 ≤≤ k . The choice of the band-width h0 is very 



critical in Parzen´s density estimation [6]. An overlay 
small h gives a spiky or noise estimate of p(x), we 
have carried out several experiments according to the 
guidelines in [3] and finally h0 is set to 4 with k = 0.3. 

 
a) Training phase 
 

We have used a set of 5 remote sensing images, 
captured under different illumination conditions 
(different days and hours) and different view points. 
Figure 1(a) shows an example. We have selected the 
training samples for the classes c1 and c2 according to 
the following process: a) select interactively several 
samples from different shading areas; b) with these 
samples compute the mean value m; c) extract the 
remainder training sample patterns x if Tmx <− ; 
where T is a threshold value set to 40 in our 
experiments. With this criterion we get 410 *25≈n  
training samples for class c1. We select a similar 
number of training samples for class c2 (from the 
remainder samples), Figure 1(b) shows in black and 
white the sets of samples for classes, c1 and c2 
respectively. With both sets of training samples we 
obtain 2868 support vectors ( 0≠iα ), achieving a 
considerable reduction with respect the number of 
initial training pattern samples. With the above n 
shading pattern samples, we estimate the parameters 
for the BSD approach, as required by the equation 
(7), achieving 8.147=µ  and 6.17=σ . This set of n 
shading pattern samples is also used in equation (8) 
for the PWD. We have proved two type of kernels in 
the equation (3): polynomials of degree 2 and Radial 
Basis with 2=σ . The best performance is achieved 
with the last. The iα  parameters range from −18.3 to 
+25.8. 
 
b) Decision phase 
 

We have now available the functions given by 
equations (6), (7) and (8). So, for each new x pattern, 
we compute the corresponding probability according 
to such equations and classify x as belonging to class 
c1 if p(x) > 0.5, i.e. x it belongs to a shading area.  

We have used 6 remote sensing images for 
classification purposes, figure 2(a) shows an 
example of a new remote sensing image and figure 
2(b) the samples classified as shading areas by the 
our SVM approach.  

Table 1 shows, on average for the 6 remote 
sensing images, the performance for SVM, BSD and 
PWD. This is verified under the expert human 
criterion, which selects the samples interactively, 

following the criterion explained in the above 
section.  

To clarify the behaviour and performance of the 
SVM approach, we have designed the following test 
strategy. We have arranged the support vectors so 
that their absolute values are in increasing order, i.e. 
from less to greater relevance. Figures 3(a) and (b) 
show the performance of the SVM approach 
(circles), against BSD (triangle down) and PWD 
(diamond) according to the percentage of successes. 
In Figure 3(a) we have used the number of support 
vectors in the x-axis starting from the minimum 
value in the arranged set. In Figure 3(b), we have 
used the indicated number of support vectors but in 
reverse order, so that now the most relevant support 
vectors are firstly used. 

 

 
(a) 

 
(b) 

Fig. 2. (a) new urban shading area; (b) classification 
results from SVM 
 
Table 1. Percentage of successes for SVM, BSD and 
PWD for the 6 remote sensing images  

 SVM BSD PWD 
% successes 0.95 0.89 0.92 

 
Taking as pattern samples the number of support 
vectors given in the x-axis, we use them for 
estimating the functions given in equations (5), (7) 
and (8), i.e. they are now the training samples for 
BSD and PWD.  
 
From the results in table 1 and figure 3, the following 
conclusions can be inferred: 

 
1. The best performance is achieved with SVM. This 

is obvious in table 1 and also in figure 3, where the 
percentage of successes for SVM overpasses 
always the percentage of BSD and PWD. 

2. The slope for SVM is greater than the slopes for 
BSD and WD. This means that SVM achieves 
quickly a better performance with a reduced 
number of support vectors.  

3. PWD achieves better results than BSD, i.e. the 
estimation of a density function without the 
assumption of a know distribution is well suited. 



4. The most relevant support vectors are the last 
1500 according to the arrangement. This can be 
derived from figure 3(a) where only SVM 
reaches a high performance once this number is 
over passed and from figure 3(b) where SVM 
achieves a high performance with the first set of 
support vectors, which are the most relevant. 
Then a slight improvement is achieved with the 
remainder support vectors. 

5. The improvement in BSD and PWD is only 
achieved as the number of training patterns 
increases, without the influence of relevant 
support vectors.  

 
(a) 

 
(b) 

Fig. 3. Percentage of successes for SVM, BSD and 
PWD obtained with the support vectors arranged: (a) 
in increasing order and (b) in decreasing order. 
 
 
4   Conclusion 

We have shown the ability of SVM for shade 
classification in urban areas for remote sensing 
images, as compared with other classical existing 
approaches, with encouraging results. We have 
verified that the relevant support vectors are decisive 
for this achievement and that using a reduced 
number of support vectors this performance is still 
reachable. This implies that SVM only requires a 
reduced number of sample patterns as compared 

with the number of pattern samples required by BSD 
and PWD. 

In summary, we can conclude that the SVM 
method is suitable for shade identification in the 
panchromatic remote sensing images. So, this is a 
useful tool that helps to minimize the error in image 
change detection applications. 

We have carried out some previous experiments 
with a BSD approach [7], and in this paper we have 
proven the better performance of SVM with respect 
to the previous BSD results. The performance is also 
verified against the PWD classical strategy. 
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