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Abstract: This paper presents an approach to Simultaneous Localization and Mapping (SLAM) based on
stereo vision. Standard stereo techniques are used to estimate 3D scene structure (point clouds). Point clouds
at subsequent times are registered to estimate robot motion, and used to build a global environment map.
Preliminary experimental results are also presented and discussed.
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1 Introduction
Simultaneous Localisation And Mapping (SLAM),
also known as Concurrent Mapping and Localisation
(CML), is the process by which an autonomous mo-
bile robot can track its pose relative to its environ-
ment, while incrementally building a map of the en-
vironment itself. SLAM is clearly a critical factor for
successful navigation in a partially or totally unknown
environment, and has therefore been a highly active
research topic for more than a decade.

Many of the existing approaches to SLAM are
based on the Extended Kalman Filter (EKF) (e.g.
[1, 2, 3, 4]). These approaches assume that the robot
is moving within a stationary environment, providing
some distinctive landmarks whose position relative to
the robot can be measured by some sensor (typically,
sonar rings or laser scanners). The problem is then re-
formulated in terms of estimating the state of the sys-
tem (robot and landmark positions) given the robot’s
control inputs and sensor observations.

The EKF approach implies a stochastic model with
independent Gaussian noises. Other probabilistic ap-
proaches do not make such assumption, e.g. the par-
ticle system proposed in [5], where the robot pose is
estimated by maximizing its probability conditioned
on past sensor data.

Both EKF and particle-system based SLAM, how-
ever, need a model of robot motion and of sensor mea-
surement. In contrast, there are approaches that can
estimate directly the robot’s egomotion from sensory
data. This is the case e.g. when using vision sen-
sors. Indeed, even using a single onboard camera, it
has been shown [6] that localisation and map building
can be achieved by standard Structure-from-Motion
methods.

Monocular vision has, however, the drawback that
it cannot estimate absolute scale, a problem that can

only be overcome either by knowing the size/position
of some recognizable predetermined landmarks, or re-
lying on odometry. By contrast, using a calibrated
stereo head the robot can determine metric 3D struc-
ture, including absolute scale, from vision data alone.

This paper presents some results from a stereo-
vision based approach to SLAM we are currently de-
veloping. From each image pair of the sequence ac-
quired while the robot is moving, features are ex-
tracted to serve as visual landmarks. Such features
are both left-right matched and tracked along the se-
quence. Stereo matches allow to determine 3D struc-
ture as a point cloud. Clouds generated at different
times are then recursively registered in order to ob-
tain an estimate of robot pose and of 3D point coordi-
nates in a global reference. The latter are used to build
a 2D occupancy grid map. The paper also presents
some preliminary results obtained with our ActivMe-
dia P3-DX mobile robot equipped with a Videre De-
sign STH-MDCS stereo head.

2 SLAM by stereo vision
Our approach can be summarised as follows:

• extraction of features from the image pairs and
left-right matching, allowing to determine local
3D structure as a cloud of 3D points;

• tracking of the features along the sequence and
registration of point clouds from subsequent im-
age pairs into a same global reference, allowing
to determine robot motion;

• building of a global occupancy grid map from the
visual measurements;

• possible correction of accumulated errors by
comparison of submaps.



2.1 Features

From each frame of the image sequence acquired
while the robot is moving, various kinds of features
can be extracted to serve as visual landmarks: corners,
edge segments, textured patches etc. Our current im-
plementation uses Shi-Tomasi features [7], i.e. small
textured image patches, whose centers yield pointwise
measurements useful for motion/structure estimation.
A significant advantage of Shi-Tomasi features is that
their definition implicitly provides an efficient frame-
to-frame tracking algorithm; other approaches may re-
quire independent feature extraction from each image
and a costly search for matching pairs. The same al-
gorithm can be used for left-right matching as well,
and moreover, since the tracking algorithm allows for
affine distortion, such features can be successfully fol-
lowed over large relative displacements in the image.

Features are extracted in the first frame of the se-
quence, and thereafter at more or less regular inter-
vals; the frames from which new features are ex-
tracted are calledkey frames. The spacing between
key frames is chosen as a compromise between the
required frequency of pose/map updating on one side,
and the computational load on the other, since most
computations are done at key frames.

2.2 Stereo

At every key frame, new features are extracted from
the left image, possibly keeping old features tracked
from the previous frame, and matched against the
right image. Shi-Tomasi features provide excellent
localisation accuracy, provided that the centre of the
matched area lies within the window defining the tem-
plate feature. With stereo, this may not be the case for
features corresponding to near objects, which exhibit
a larger stereo disparity. For this reason, a rough es-
timate of feature disparity is computed from a dense
disparity map over the whole image, obtained by a
standard correlation method; this coarse estimate is
used to predict the right image position of each fea-
ture so that the Shi-Tomasi algorithm can be safely
applied. It must be noticed that, since only a rough
estimate of disparity is needed, the map can be com-
puted on a lower (e.g. half) resolution image, so sub-
stantially reducing computational load.

From stereo matches, an estimate of the 3D posi-
tions of the features is then obtained by triangulation,
using the approach by [8], which minimises the im-
age plane error between observed features and back-
projected points. The result of this step is a cloud of
3D points in the reference frame of the stereo head.

2.3 Tracking and registration
The features detected at a key frame are tracked along
the sequence, separately for left and right image fea-
tures, up to the next key frame. At this point, a new
3D reconstruction is made from the tracked left/right
features, and registered against the previous one in or-
der to get an estimate of the robot motion between the
two key frames.

As said above, the frame-to-frame tracking algo-
rithm expects limited feature displacements between
subsequent frames. This is seldom the case, especially
when the robot is rotating. However, since each fea-
ture has attached to it an estimate of the corresponding
3D position relative to the robot, combining the latter
with the known planned robot motion the image posi-
tion of the feature in the new image can be predicted
with sufficient accuracy to allow reliable tracking.

At this point, we have a set ofN featuresFi, left-
right matched and tracked from key framek to the
next onek + 1, to which are attached pairs of 3D po-
sition estimates, namelyX′

i from the initial recon-
struction at key framek andX′′

i from the last one.
An estimate of robot motion fromk to k + 1 is then
obtained as the rototranslation(Rk, tk) that minimises
a suitable fitting criterion

J =
N∑

i=1

fi(‖di‖2)

with
di = X′′

i − (RX′
i + t)

With regard to the choice of fitting criterion, it must
first be observed that the errorsdi cannot be equally
weighted, as estimates of points farther away have
much greater uncertainty (the variance grows roughly
with the square of distance from the stereo head).
Moreover, the unavoidable presence of manyoutliers
in the sample (e.g. false matches) makes the sample
deviate considerably from the Gaussian error assump-
tion that could justify the use of a standard sum-of-
squares cost function. We have empirically found, in-
stead, that satisfactory results can be obtained using a
Lorentzian cost, i.e.

fi(‖di‖2) = log(1 +
‖di‖2

σ2
i

)

where theσi take into account the aforementioned de-
pendence of the uncertainty on the distance from the
sensor.

2.4 Map building
When the robot motion is constrained to be planar, as
in a typical indoor environment, the 3D measures ob-
tained from the vision algorithm can be used to build



a 2D occupancy grid map [9, 10, 11]. The latter is a
2D metric map of the robot’s environment, where each
grid cell contains a value representing the robot’s sub-
jective belief whether or not it can move to the cen-
ter of the cell. Grid maps are a convenient way of
representing the global structure of the environment;
matching a local map with the previously built global
map allows an easy estimation of the robot location.
Moreover, grid maps allow easy integration of mea-
surements from different sensor types.

Since vision yields full 3D measurements, however,
it is possible to build a 3D grid map by layering 2D
maps, where each layer corresponds to some range
of height above the ground plane. The map building
approach used in our test follows the FLOG (Fuzzy
Logic-based Occupancy Grid) approach proposed in
[12]. In this approach, for each grid cellC several
fuzzy set membership functions are defined, namely
µE(C) for the empty fuzzy setE, µO(C) for the
occupiedset O, plus aconfidencemeasureµK(C).
Map updating is performed by suitably modifying the
membership functions of cells traversed by the rays
going from the stereo head to the estimated 3D points.
A map value for each cell is then obtained by a suit-
able combination ofµE , µO andµK .

Map updating is performed at every key frame, by
first building a “local” occupancy map, i.e. a map
which, although built in the global reference frame,
only uses point data accumulated since the last update,
and then adding it to the global map.

3 Experimental results
3.1 Simulated navigation
We did some preliminary experiments by simulating
robot navigation with our Samsung AW1 robotic arm.
The latter is a lightweight 6-DOF manipulator, whose
end effector carried a Sony XC55 progressive cam-
era yielding non-interlaced B/W images at a resolu-
tion of 640 × 480, 30 fps. Stereo was simulated by
acquiring, at each planned position, a pair of images
laterally shifted. Due to the limited range of arm mo-
tion, both the stereo baseline and the environment size
were suitably scaled down, namely using 20mm for
the baseline and keeping the camera at a distance of
the order of 1 m from the observed objects.

Fig. 1 shows a frame (left image) from a sequence,
and Fig. 2 the corresponding disparity map. Fig. 3
displays a top view of the final estimated trajectory
and point cloud. Robot pose is indicated by a dot for
position and a segment for heading. Fig. 4 shows the
corresponding final occupancy map. These figures are
to be compared against the model of the scene shown
in Fig. 5 together with the planned trajectory (note that

the reconstruction reference frame is aligned with the
initial robot position, in the left hand corner of Fig. 5).

Figure 1: A (left) image from the simulated naviga-
tion.

Figure 2: Dense disparity map.

3.2 Mobile robot
This section presents some results obtained by pro-
cessing sequences of images acquired with our Activ-
Media Pioneer 3-DX robot, equipped with a Videre
Design STH-MDCS stereo head (Fig. 6). The latter is
a low-cost commercial product nominally capable of
yielding pairs of1280× 960 colour images at7.5 fps,
or lower resolution images (640×480 and320×240)
at higher speeds, up to 30 fps. A serious limitation of
this device is its small stereo baseline (88 mm, non-
adjustable). Since the error in distance estimation in-
creases quadratically with the ratio distance/baseline,

In the experiment described here, the robot was
programmed to follow a trajectory, comprising sev-
eral arcs and a short straight segment, through a large
(about 14m×9m) laboratory room with several desks
and various instruments (see Fig. 7). About 1500



Figure 3: Top view of the estimated trajectory and
point cloud. Robot pose is indicated by a dot for posi-
tion and a segment for heading.

stereo pairs were acquired at640×480 resolution and
a frame rate of about 7.5 fps.

Fig. 8 shows the final trajectory estimate and point
cloud, while Fig. 9 displays the final global occupancy
map. Note that many of the points visible in Fig. 8 at
the center of the room are actually either reflections
from the shiny floor, or feature points from the ceiling,
and do not contribute to the map (which is restricted
to points between 0m and 2m height).

From these pictures it can be observed that stereovi-
sion based SLAM compares favorably with methods
based on different kinds of sensors. As all incremen-
tal methods, however, also this one is affected by the
loop-closing problem caused by error accumulation,
as indicated by the doubling of the upper wall in Figs.
8 and 9. In a previous work [6] the authors proposed
the use of reference visual landmarks, stored by the
robot during its navigation, which in case of loop clos-
ing can be used to estimate the accumulated error and
to modify the estimated trajectory and map by back-
propagating the correction.

However, the estimated shape of the environment
appears rather good for what concerns wall angles, in-
dicating a good accuracy in the estimate of changes in
the robot heading. Indeed, the most critical part in
the trajectory estimation lies in the determination of
the robot displacement; the latter depends upon the
estimates of feature distances, which are inaccurate at
larger distances. This inaccuracy can only be reduced
by increasing the size of the stereo base, which is im-
practical beyond a certain limit (and was not even pos-
sible in our setup), and/or increasing the accuracy of
the calibration of the stereo head (which also implies

Figure 4: Final occupancy map.

Figure 5: Model of the scene and planned trajectory.

the use of better and more costly lenses).
Another possible way of reducing the accumulated

error in the estimate of robot motion, that we are cur-
rently implementing and testing, consists in correcting

Figure 6: The mobile robot with stereo head.



Figure 7: A (left) image from the actual navigation
sequence.

the estimated robot displacement by registering the lo-
cal map against the stored global map, and adding the
former to the global map only after this registration
step. Due to the limited camera field of view, the lo-
cal map may not have enough structure for a reliable
registration; this drawback can be overcome, if the
stereo head is mounted on a pan-tilt unit, by “look-
ing around”, i.e. by combining several views of the
environment from the same robot position into a more
informative local map.

Figure 8: Top view of the estimated trajectory and
point cloud for the navigation sequence.

4 Conclusion
The above results indicate that stereo vision can be
used profitably for SLAM. With respect to other kinds
of sensors, a stereo head has the advantage of provid-

Figure 9: Final occupancy map for the actual naviga-
tion sequence.

ing direct 3D measurements without the need to make
an explicit model of the robot and its environment,
and without relying on accurate odometry. Moreover,
vision yields a much greater quantity of information
about the environment, that can be used e.g. to recog-
nize previously visited places in order to disambiguate
localisation. On the other hand, the accuracy obtain-
able using off-the shelf components is not as satisfac-
tory as one could expect, and the computational bur-
den is still rather large even using up-to-date process-
ing technology. More work is therefore needed in this
respect.
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