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ABSTRACT
This paper is based on an alternative approach to system
theory and deals with optimal filters for continuous linear
dynamic systems with measurements disturbed by a ”col-
ored” noise or a ”white” noise vector with a singular co-
variance matrix. It is shown that the optimal filter proposed
in this paper is a slight modification of the Kalman-Bucy
filter which can generally contain integrators as well as
(backward) differentiators. The classical formulation was,
however, reformulated in order to obtain a tractable math-
ematical interpretation of stochastic differential equations
describing given processes and random errors.
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1 Introduction

The linear (optimal) filtering problem was successfully
treated in the past for discrete-time systems [6], [9] as well
as for continuous-time systems [3], [7], [8], [18] techni-
cally as a part of all classical approaches to system theory.
In particular, the work of R.E. Kalman [6], [7], [8] has been
accepted by professional and scientific community. De-
spite an optimal filter for a general continuous-time linear
dynamical system was explicitly proposed [8] in case that
every measurement contains additive white noise (i.e. addi-
tive random disturbances with correlation times short com-
pared to times of interest in the system), there may exist
practical systems in which the correlation times of the ran-
dom measurement errors are not short compared to times
of interest in the system (so called colored noise). Also,
some measurement may be so accurate that it is sometimes
reasonable to assume they are perfect (i.e. they contain no
errors). Both of these cases (no or colored noise) are sin-
gular problems within the framework of the Kalman-Bucy
filtering theory and they need a special treatment. There-
fore, we need a solid background of a system theory that is
in a good agreement with real observations and supported
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by modern scientific methods. With respect to the impor-
tance of optimal filtering, a significant effort was made on
the singular problems in the past. Some of the proposed so-
lutions are discussed in [12]. Other authors presented their
work based on different approaches on the topic, e.g. [4],
[5], [10], [11], [14], [15] and [16]. This paper deals with
the singular filtering problem solution to which is proposed
on the basis of an alternative, fundamentally new approach
to system theory [22].

2 System Theory

Although the general system theory is a natural basis of
cybernetics [19], [20], [21], no theory has been generally
accepted by professional community so far. The fact that
there are strong contradictions with observations in known
system theories is considered to be a main reason for it.
This is also why some authors define a system rather by
examples than by an exact definition and why others have
abandoned the system approach completely and use ad hoc
models with no claim to cope with general system proper-
ties at all. Cybernetics thus loses its firm foundation and
become rather a set of service instructions than a serious
theory.

A significant reason for unsatisfactory results of con-
temporary system theories can be seen in the fact that they
do not discern directional and non-directional causation
between system variables [22], [20]. The system can be
meaningfully defined as an assemble of all interconnected
subsystems including all signal sources. The recently sub-
mitted alternative system theory [22] is based on the as-
sumption that

• the system is an abstract concept purpose of which is
to model such a part of the real world that is not influ-
enced by its surroundings

• the system processes are driven by an internal system
mechanism governed by a newly viewed principle and
law of causality

• the system behavior is generally stochastic and can
be reduced to deterministic one only when stochastic
properties can be really neglected



• the system contains only a finite number of variables
taking on only a finite number of values. This assump-
tion can be extended to infinite cases when some con-
sistency conditions are fulfilled

• the system is composed of subsystems (corresponding
to the systems in contemporary system theories) mu-
tually interconnected only by directional connections,
which can be canceled or restored by an external in-
tervention.

These paradigms lead to axioms that define directly the
discrete-time systems only. The continuous-time system
is then defined as a limit of an suitable sequence of previ-
ously defined discrete-time systems for their time periods
converging to zero. According to our knowledge of physics
it is supposed that the system behavior is generally stochas-
tic and may be approximated by deterministic behavior in
justified cases.

3 Singular Kalman Filtering

As stated in the Introduction, there are two possible types
of singular problems within the framework of the Kalman-
Bucy filtering theory discussed in literature in the past. In
the first case, some measurement may be so accurate that,
from technical point of view, it is reasonable to assume
they are perfect. Such measurements theoretically contain
no noise (deterministic measurements) when the filtering
problem is being formulated. Hence, the correlation ma-
trix of the measurement noise is singular whilst the matter
of deterministic systems existence is a part of the general
system theory. Classical system theories enable to define
such systems that contain measurement random errors with
correlation times not short compared to times of interest
in the system. This is the case of colored noise in some
of the measurements; the noise can often be simulated by
an auxiliary linear dynamic system with white noise inputs
(sometimes called a shaping filter). With this approach the
colored noise vector becomes part of an augmented state
variables. From the systemic point of view within the al-
ternative system theory, the stochastic causal system is to
be modeled as a whole entire that primarily includes the
shaping filter in the system model. Thus the shaping fil-
ter approach makes the (augmented) system appear as a
stochastic causal system which contains perfect measure-
ment. Hence, the correlation matrix of the measurement
noise is again singular.

We shall discuss another aspect of the singularity of
the measurement noise covariance matrix now. Apparently,
when two or more measurements are disturbed by a linearly
dependent combinations of the random errors then the co-
variance matrix of measurement noise appears as singular
again. In such a case, the corresponding measurements are
affected by the same disturbances (linear combinations of
the ”same” white noise), which is very unlikely from both
the technical and theoretic point of view; obviously two

or more gauges can never contain identical random distur-
bances. However, thanks to the linear dependency, this case
of measurement can be transformed into the case that some
measurements are perfect.

Subsequently, it follows from the above discussed,
that the case of some theoretically perfect measurements is
sufficient to be considered as the reason for the singular co-
variance matrix of the measurement noise. This is merely
a consequence of the proper definition of the stochastic
causal system within the framework of the alternative sys-
tem theory.

Before we proceed to the problem formulation, we
shall make some remarks on the known solutions men-
tioned in the Introduction. Some of the authors who were
involved in the matter of singular filtering problem were in-
terested in spectral factorization and z-transformation, see
e.g. [15], [16]. However, should the authors of this paper be
interested in an application of the alternative system theory
to the singular filtering problem, they are more interested in
solution derived in time domain. From the problem analy-
ses given e.g. in [4] and [12], it follows that using contin-
uous differentiators to produce ideal derivatives of perfect
measurements, in order to obtain required estimations, is
inevitable. Merely, this was rather intuitively postulated
than based on a deeper analysis. Moreover, some scholars
are reluctant to the use of differentiators from the reasons
for their practical inapplicability. The goal of this paper is
to present a solution (based on the alternative system theory
with the application of a continualization method – see [1])
that should clarify the need for differentiators. As we shall
see later, the presented method can lead to both derivative
and integrative character of the optimal filter, see example
in section 7.2.

4 Problem formulation

A standard problem of linear filtering is the following: it
is required to estimate the state variables of a continuous
process in the usual state-space form

ẋ(t) = Fx(t) + GW (t), (1)

where x(t) is the state vector of dimension n, F is a matrix
of known time functions describing dynamics of the sys-
tem, G is a square matrix, W (t) is a white noise vector of
dimension n. The observations are given by

z(t) = Hx(t) + JV (t), (2)

where z(t) is an m−dimensioned observation vector, H

and J are matrices of appropriate dimensions, V (t) is a
white noise vector of dimension m. It is also assumed that
the initial condition x(t0) is a Gaussian random variable of
zero mean and known covariance matrix P0 and that the
noise characteristics are given as

E{W (t)}=0, E{GW (t)W T (τ)GT }=GGT δ(t − τ),

E{V (t)}=0, E{JV (t)V T (τ)JT }=JJT δ(t − τ),



where δ is the Dirac delta function. If the matrix JJT is
positive definite, the solution is simply a Kalman-Bucy fil-
ter [8]. If JJT is singular, the filtering problem becomes
singular. The problem stated as above is not formulated in
a precise mathematical way. Note, the state-variables and
measurements are disturbed by additive white noise, i.e.
random errors with infinite standard deviations. To obtain
a tractable mathematical formulation of (1) and (2) we shall
use the Itô interpretation of stochastic differential equations
[13] and reformulate the filtering problem.

5 Problem reformulation

As discussed in [13] the Itô interpretation of (1) and (2) is

dx(t) =Fx(t)dt + Gdw(t), (3)
dy(t) =Hx(t)dt + Jdv(t), (4)

where w(t) is n−dimensional Brownian motion indepen-
dent of x(t0), v(t) is m−dimensional Brownian motion
independent of w(t) and x(t0)

1. Note that only the sig-
nal y(t) is measured in the equation (4). The reformulated
problem is again singular if matrix JJT is singular.

The equations (3) and (4) can be generalized as a sys-
tem that contains measurements,

ds(t) = FFFs(t)dt + GGGdwww(t), (5)

where s(t) = [xT (t), yT (t)]T , matrices FFF , GGG are obvi-
ously block-composed of matrices F , H and G, J respec-
tively and www(t) = [wT (t), vT (t)]T is a vector of fictive ran-
dom errors2. Moreover, following the system paradigms of
the alternative system theory [22], the estimation problem
should be reformulated as the synthesis of an estimation
system Σ (Figure 1) which is composed of a given sub-
system Σ(1) and an optimal estimator Σ(2). The filtering
problem then consists in finding an optimal estimator from
a class of admissible subsystems Σ(2) so that the system Σ
is well defined. Σ(2) produces required optimal estimations
µ(t) = E{x(t)|y(τ)}, τ ≤ t of the state vector x(t) in the
least square sence,

µ∗(t) = argmin
µ(t)

E{|x(t) − µ(t)|2}. (6)

Having found the mathematical formulation of the filter-
ing problem, which coincides with the correct definition of

1A precise mathematical treatment is presented in [13]. There is also
given an explanation of the need to transform measurement z(t) into
y(t) =

R t

0
z(s)ds with no loss or gain in information and thereby to

obtain the stochastic integral representation of observation y(t) in (4).
2 The stochastic characteristics of stochastic causal systems are given

by probability density functions or by cumulative distribution functions.
Vectors of random variables do not represent any state variables and do
not correspond to any attributes of a given system. They were introduced
into system description to model stochastic characteristics within state-
space models as part of transformation from probability description to
state-space description of causal systems, see e.g. [1], [22]. Naturally,
causal dependencies of systems or their properties cannot be changed only
by different description of a given system.

Σ(1) Σ(2)

Σ

x(t)

y(t) µ(t)

v(t)

Figure 1. Estimation system

the stochastic causal system within the alternative system
theory, we can start to study the properties of the optimal
estimation µ(t).

6 Problem solution

To be able to focus on the main ideas in the solution to
the singular filtering problem, we will first consider 1-
dimensional measurement case. The extension to multi-
dimensional case of equation (4) is technical, but does not
require any essentially new ideas.

From now on, we will assume with no loss in gen-
erality that the subsystem Σ1 is given in the observability
canonical form (there is always a regular transformation to
the observability canonical form for every linear system).
For a single output, the filtering problem is singular iff J in
equation (4) is a zero row,

J = [0, 0, · · · , 0]. (7)

With respect to the fundamental ideas of the alternative sys-
tem theory, the solution will be presented in the following
steps:

6.1 Sequence of discrete subsystems Σ
(1)
k

At this stage we need to find an appropriate sequence of
time-invariant discrete-time subsystems Σ

(1)
k that will for

k → ∞ converge to the given time-invariant continuous-
time subsystem Σ(1) described by equation (5), see e.g. [2]
for details. Such a sequence can be described by

sk(t+hk) =eFFFhksk(t) +

hk∫

0

eFFF (hk−τ)GGGdwww(τ) =

=ÃAAksk(t) + Γ̃kξk(t + hk), (8)

with a generally stochastic initial condition sk(t0) of the
Gaussian (normal) distribution,

sk(t0) = s(t0) ∼ N {mmm , R} , (9)

t, t + hk ∈ Tk, hk =
hk−1

2 , where ÃAAk = eFFFhk ,

Γ̃kΓ̃
T

k =
hk∫
0

eFFF (hk−τ)GGG · GGGT eFFF (hk−τ)T dτ (Itô isometry),

ξk(t + hk) = ∆w(t+hk)
√

hk

, t + hk ∈ Tk is a sequence



of fictive3 random, mutually independent variables (also
independent of the initial condition sk(t0)) with normal
distribution ξk(t + hk) ∼ N {0 , I }. For a very small
hk (hk = h0

2k → 0 for k → ∞) we can approximate
(ÃAAk

.
= AAAk, Γ̃k

.
= Γk)

AAAk =I + FFF ·hk, (10)

ΓkΓ
T
k =GGGGGGT · hk. (11)

The state vector sk(t) naturally consists of two components
sk(t) = [xT

k (t), yT
k (t)]T , where xk(t) is again of dimen-

sion n and yk(t) is a scalar (single) output. The sequence
of discrete subsystems Σ

(1)
k can then be rewritten for given

AAAAAAAAAk =

[
Ak Bk

Ck Dk

]
, Γk =

[
Γk 0
0 0

]

as

xk(t + hk) = Akxk(t) + Γk ·ξk(t + hk), (12)
yk(t + hk) = Ckxk(t) + Dkyk(t), (13)

where

Ak = I + F · hk, Dk = 1, Bk = 0,

Ck = H ·hk =
[

0 0 · · · 0 hk

]
,

Γk =

[
Γk

0

]
=

[
G·√hk

0

]
.

Remark: It is easy to show that the sequence of discrete-
time systems Σ

(1)
k does converge to the originally given

continuous-time system Σ(1) for k → ∞, see e.g. [2].

6.2 Synthesis of discrete estimation system

The synthesis of the discrete-time estimation system con-
sists in the synthesis of a standard discrete Kalman filter
for a given sequence of discrete subsystems Σ

(1)
k in every

step k = 0, 1, 2, · · · for each hk = hk−1

2 , crucially for a
very small time-period hk. Thus, we assume that Σ

(1)
k is

given by equations (12) and (13). The equations of stan-
dard Kalman filter are given as

x̂k(t + hk) =Akµk(t),

ŷk(t + hk) =Ckµk(t) + Dkyk(t),

µk(t) =x̂k(t) + Kk(t)·
(
yk(t) − ŷk(t)

)
,

where µk(t) = E{xk(t)|yk(0..t)}, x̂k(t+hk) = E{xk(t+
hk)|yk(0..t)}, ŷk(t + hk) = E{yk(t + hk)|yk(0..t)} with
appropriate initial conditions, t, t + hk ∈ Tk. The error
covariance matrix is then, for the perfect measurement y(t)
from equation (13), given by

Pk(t+hk)=AkPk(t)AT
k +ΓkΓT

k− (14)

−
(
AkPk(t)CT

k

)
·
(
CkPk(t)CT

k

)−1·
(
CkPk(t)AT

k

)
,

3See footnote No. 2.

with an initial condition Pk(t0) and similarly the Kalman
gain is given as

Kk(t+hk)=
(
AkPk(t)CT

k

)
·
(
CkPk(t)CT

k

)−1
(15)

for t > 0 and with an initial condition Kk(t0) for t = t0.
Taking an advantage of the observability canonical form of
Σ(1) and the perfect measurement (13) it will be useful to
study the optimal estimation of the n−the component of the
state vector xk(t) of Σ

(1)
k ; therefore let xk(t) be partitioned

as

xk(t)=

2
6666664

x
(1)
k (t)

...
x

(Nx−1)
k (t)

−−−−−

x
(Nx)
k (t)

3
7777775
=

2
4

x
(1...Nx−1)
k (t)
−−−−−

x
(Nx)
k (t)

3
5 . (16)

Hence, we can also partition Pk, Ak, µk(t), Ck, ΓkΓT
k

with corresponding dimensions,

Pk(t)=

"
P

(1,1)
k (t) P

(1,2)
k (t)

P
(1,2)
k

T
(t) P

(2,2)
k (t)

#
, Ak =

"
A

(1,1)
k A

(1,2)
k

A
(2,1)
k A

(2,2)
k

#
,

µk(t)=

"
µ

(1...Nx−1)
k (t)

µ
(Nx)
k (t)

#
, Ck =

ˆ
0 · · · 0 hk

˜
,

ΓkΓT
k =

"
Γ

(1)
k Γ

(1)
k

T
Γ

(1)
k Γ

(2)
k

T

Γ
(2)
k Γ

(1)
k

T
Γ

(2)
k Γ

(2)
k

T

#
for Γk =

"
Γ

(1)
k

Γ
(2)
k

#
.

Consequently, the error covariance matrix in equation (14)
can be rewritten as

Pk(t + hk) = Ak · Sk(t + hk) · AT
k + ΓkΓT

k , (17)

where

Sk(t + hk) =

»
S

(1,1)
k (t + hk) 0

0 0

–

and

S
(1,1)
k (t + hk) = P

(1,1)
k (t)−P

(1,2)
k (t)P

(2,2)
k

−1
(t)P

(1,2)
k

T

(t).

Hence, we can calculate the error covariance matrix

Pk(t) =

"
A

(1,1)
k S

(1,1)
k (t)A

(1,1)
k

T
+ Γ

(1)
k Γ

(1)
k

T
,

A
(2,1)
k S

(1,1)
k (t)A

(1,1)
k

T
+ Γ

(2)
k Γ

(1)
k

T
,

A
(1,1)
k S

(1,1)
k (t)A

(2,1)
k

T
+ Γ

(1)
k Γ

(2)
k

T

A
(2,1)
k S

(1,1)
k (t)A

(2,1)
k

T
+ Γ

(2)
k Γ

(2)
k

T

#

with respect to

S
(1,1)
k (t + hk) =A

(1,1)
k S

(1,1)
k (t)A

(1,1)
k

T

+ Γ
(1)
k Γ

(1)
k

T

−

−

“
A

(1,1)
k S

(1,1)
k (t)A

(2,1)
k

T
+ Γ

(1)
k Γ

(2)
k

T
”
·

·

“
A

(2,1)
k S

(1,1)
k (t)A

(2,1)
k

T
+ Γ

(2)
k Γ

(2)
k

T
”
−1

·

·

“
A

(2,1)
k S

(1,1)
k (t)A

(1,1)
k

T
+ Γ

(2)
k Γ

(1)
k

T
”



where the initial condition S
(1,1)
k (t0) equals to the given

P
(1,1)
k (t0).

Remark: The last equation is the discrete Riccati
equation of the (n-1)th order.

Similarly, the Kalman gain can be computed as

Kk(t) =

"
eK(1)

k (t)
eK(2)

k (t)

#
·

1

hk

,

where

eK(1)
k (t) =

= A
(1,1)
k ·

“
A

(1,1)
k S

(1,1)
k (t − hk)A

(2,1)
k

T
+Γ

(1)
k Γ

(2)
k

T
”
·

·

“
A

(2,1)
k S

(1,1)
k (t − hk)A

(2,1)
k

T
+ Γ

(2)
k Γ

(2)
k

T
”
−1

+A
(1,2)
k

and

eK(2)
k (t) =

= A
(2,1)
k ·

“
A

(1,1)
k S

(1,1)
k (t − hk)A

(2,1)
k

T
+Γ

(1)
k Γ

(2)
k

T
”
·

·

“
A

(2,1)
k S

(1,1)
k (t − hk)A

(2,1)
k

T
+ Γ

(2)
k Γ

(2)
k

T
”
−1

+A
(2,2)
k .

The optimal discrete-time estimations are then given as

µ
(1...Nx−1)
k (t) = bx(1...Nx−1)

k (t)+

+ eK(1)
k (t)·

“
yk(t) − yk(t − hk)

hk

− Hµk(t − hk)
”
,

µ
(Nx)
k (t) = bx(Nx)

k (t)+

+ eK(2)
k (t)·

“yk(t) − yk(t − hk)

hk

− Hµk(t − hk)
”
.

Having found the discrete-time solution, we can proceed
to continuous-time filter now.

6.3 Continuous filter

To derive the continuous-time solution to the singular filter-
ing problem, we need to follow the principles of the con-
tinualization method presented e.g. in [2].

The continuous error covariance matrix is given by an
equation gained from its discrete version (17) by limiting
for hk → 0,

P (t) = lim
k→∞

Pk(t + hk) =

[
P (1,1)(t) 0

0 0

]
,

differential equation of which is given by

Ṗ (t) =

»
Ṗ (1,1)(t) 0

0 0

–
,

where

Ṗ
(1,1)(t) = lim

k→∞

P
(1,1)
k (t + hk) − P

(1,1)
k (t)

hk

=

= F
(1,1)

P
(1,1)(t) + P

(1,1)(t)F (1,1)T
+ G

(1)
G

(1)T
−

−

“
P

(1,1)(t)F (2,1)T
+ G

(1)
G

(2)T
”
·

“
G

(2)
G

(2)T
”
−1

·

·

“
F

(2,1)T
·P

(1,1)(t) + G
(2)

G
(1)T

”

and G was partitioned similarly to partition (16),

G =

[
G(1)

G(2)

]
. Subsequently, we can compute the

Kalman gain of the continuous filter by the following limi-
tation

eK(t) = lim
k→∞

"
eK(1)

k (t)
eK(2)

k (t)

#
=

=

" “
P (1,1)(t)F (2,1)T

+ G(1)G(2)T
”
·

“
G(2)G(2)T

”
−1

1

#
.

Finally, the continuous optimal estimations of state vector
x(t) are given as

µ
(1...Nx−1)(t) = l.i.m.

k→∞

µ
(1...Nx−1)
k (t) =

= bx(1...Nx−1)(t) + eK(1)(t)·
“
ẏ(t−) − Hµk(t−)

”
, (18)

µ
(Nx)
k (t) = l.i.m.

k→∞

µ
(Nx)
k (t) = ẏ(t−), (19)

where ẏ(t−) = dy(t)
dt−

= l.i.m.k→∞
yk(t)−yk(t−hk)

hk

(l.i.m.

denotes the ”limit in the mean”).
Due to the perfect measurement y(t) and the observ-

ability canonical form, estimation of the state x(Nx)(t) is
precise (P (2,2)(t) = 0) and given by a ”backward” deriva-
tive of the measurement y(t). Therefore, ”backward” dif-
ferentiators are needed as a part of the filter. Note, that this
is possible only if the measurement is really perfect.

In the next section, we shall demonstrate advantages
of the new approach to singular filtering problem on some
examples.

7 Examples

7.1 Example 1

Consider a continuous subsystem Σ(1)

ds(t) = F · s(t) · dt + G · dw(t), (20)

with an initial condition s(0) ∼ N {m , R}, s(t) ∈ R3,
t ∈ T = 〈0 , ϑ〉, dw(t) represents the Wiener Lèvy pro-
cess, E {dw(t)} = 0, E

{
dw(t)2

}
= dt. The system is

given in the observability canonical form with matrices

F =

2
4

0 0 0
1 0 0
0 1 0

3
5 , G =

2
4

g

0
0

3
5 .

The state vector consists of unmeasurable variables
x(t) ∈ R2 and a scalar measurement y(t) ∈ R,

dx
(1)(t) = g ·dw(t)

dx
(2)(t) = x

(1)(t)·dt

dy(t) = x
(2)(t)·dt,

where the apparent matrices F , G, H (see e.g. equa-
tions (3), (4)) and their dimensions are given by parti-
tioning F and G for the partitioned state vector s(t) =



[
xT (t), yT (t)

]T . An appropriate sequence of discrete sys-
tems converging to the given continuous plant can be given
as

xk(t + hk) =Akxk(t) + Γkξk(t + hk)

yk(t + hk) =Ckxk(t) + Dkyk(t),

with initial conditions sk(0) =
[
xT

k (0), yT
k (0)

]T ∼
N {m , R}, where Ak = I + F ·hk and Γk =

√
hk ·G;

hence Ak = I + F · hk, Γk =
√

hk ·G, Ck = H · hk,
Dk = 1 and ξk(t) ∼ N {0 , I } (independent of the initial
condition sk(0)).

The steady solution to equation (14) for the covari-
ance error matrix Pk(t) is given as

Pk(t) =

[
2·g2 ·hk g2 ·h2

k

g2 ·h2
k g2 ·h3

k

]

and the steady-mode Kalman gain from eq. (15) as

Kk(t) =

[
1

h2

k

2
hk

]
=


 ˜̃

K
(1)

k (t) · 1
hk

K̃
(2)
k (t)


 · 1

hk

.

The optimal discrete estimations are then given by formu-
las

µ
(1)
k (t)=

1

hk

„
yk(t) − yk(t − hk)

hk

−

yk(t − hk) − yk(t − 2hk)

hk

«
,

µ
(2)
k (t)=hk · µ

(1)
k (t)+

yk(t)−yk(t − hk)

hk

.

The optimal continuous filter will be derived by taking
k → ∞ (hk = h0

2k → 0). Merely, the steady error co-
variance matrix of the continuous filter is given by the limit

P (t) = lim
k→∞

Pk(t) =

[
0 0
0 0

]
.

Similarly, we obtain the steady-mode Kalman gain

K(t) = lim
k→∞

[
˜̃
K

(1)

k (t)

K̃
(2)
k (t)

]
=

[
1
1

]
.

The optimal continuous estimations are given by limits (in
the square mean) as follows

µ(1)(t) = l.i.m.
k→∞

µ
(1)
k (t) =

dy2(t)

dt−
2

µ(2)(t) = l.i.m.
k→∞

µ
(2)
k (t) =

dy(t)

dt−
,

which represent ”backward” derivatives of the perfect mea-
surement y(t).

7.2 Example 2

This example deals with the classical formulation of the
singular filtering problem, stated e.g. in paragraph 4 or in

[4], [5], [12]. Consider a continuous system Σ(1) given by
the linear differential equation

ẋ(t) = F · x(t) + G · ẇ(t) (21)

with measurement

y(t) = H · x(t) + J · v̇(t). (22)

Suppose the system matrices are given as

F =

[
a 0
0 b

]
, G =

[
λ1 0

0 λ2

]
,

H = [1 , 0] , J = [λ3] .

The filtering problem is singular for λ3 = 0. An appropri-
ate sequence of discrete systems can be described by

xk(t + hk) = A · x(t) + Γk · ξk(t + hk)

with measurement

yk(t) = Ck · xk(t) + ∆k · ηk(t),

where Ak = I + F · hk, Γk =
√

hk ·G, Ck = H , ∆k = λ3

and ξk(t) ∼ N {0 , I } , ηk(t) ∼ N
{
0 , I · 1

hk

}
(ξk(t)

and ηk(t) are mutually independent and independent of the
initial condition xk(0)). The steady solutions for the error
covariance matrix Pk and the Kalman gain Kk with taking
λ3 → 0 are given as

Pk =

[
0 0

0
λ2

2

d(2+dhk)

]
, Kk =

[
1
0

]
,

which gives the discrete estimations as

µ
(1)
k (t) =a·hk ·µ(1)

k (t − hk) + y(t),

µ
(2)
k (t) =hk ·µ(1)

k (t − hk)+(1 + d·hk)·µ(2)
k (t − hk).

The limits of Pk and Kk for k → ∞ are trivial. The con-
tinuous (steady-mode) estimation µ(1)(t) of x(1)(t) is, ac-
cording to the error covariance matrix P

P (t) = lim
k→∞

Pk(t) =

[
0 0

0
λ2

2

2d

]
,

perfect and it is given in the (derivative) form

µ(1)(t) = l.i.m.
k→∞

µ
(1)
k (t) = y(t). (23)

Note that the variable x(1)(t) is measured directly through
the perfect measurement y(t). However, the continuous es-
timation µ(2)(t) of x(2)(t) is gained in the steady mode
with a constant error given by λ2

2

2d
as the variable x(2)(t)

contains additive random errors. The formula for µ(2)(t) is
derived with respect to [1] as follows,

µ̇
(2)
k (t) = l.i.m.

µ
(2)
k (t) − µ

(2)
k (t − h)

h
=y(t) + d ·µ(2)(t),

which represents the integrative part of the continuous fil-
ter.



8 Conclusions

The objective of this paper is to introduce a new approach
to singular Kalman-Bucy filtering problem and to make an
attempt to overview other solutions. This work is based
on an alternative system theory and gives results in a good
agreement with real observations. The class of admissible
estimators is supplemented with backward differentiators
which can produce physically realizable (i.e. backward)
derivatives of smooth signals when necessary. This is pos-
sible only after introducing the newly reviewed principle
and law of causality as well as so called continualization
method into general system theory. As shown here, the op-
timal filter can generally be of the integrative as well as
derivative character. We shall point out, that the singularity
of the problem is caused by technical simplifications when
the measured data are so accurate that they appear to be
perfect. However, practically every measurement contains
random errors. Thus, if we claim no noise contained in a
signal, the filter can propose derivatives in real time which
leads to the use of backwards differentiators.

References
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