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Abstract: - A new approach to general system theory enables to correctly design an optimal controlling subsystem for 
a controlled subsystem with a possible use of non-dynamic interactions between some input and output variables. The 
design of the optimal control system is divided into 2 steps. The first step is to determine a set of admissible 
structures of the controlling subsystem for a given structure of the controlled subsystem. The second step is to 
determine an optimal behavior of the discrete stochastic control system. The determination of the set of all admissible 
controller structures is solved with using the graph theory where graphs present the structures of the controlling and 
controlled subsystems. The optimal behavior of the control system is given according to the Bellman principle. 
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1   Introduction 
The theory of optimal systems [1,2,3] etc. deals with 
systems which embody optimal behavior. The term 
optimal means that the behavior of control systems (CS) 
minimizes some given quality index. This paper is based 
on a theoretic background given by the system theory 
formulated in [4], which enables to solve the problem of 
the optimal behavior of the stochastic CS in general 
because the controlled subsystem can be possibly 
described with non-dynamic interactions between some 
input and output variables. 

The new approach to the system theory [4] shows that 
the design of the optimal CS has to be generally divided 
into two steps. The first is to define the set P of all 
admissible controller structures for the structure of a 
given plant. Only the knowledge of the complete set P 
guarantees finding of the optimal CS. The second step is 
the calculation of the optimal behavior of the control 
system Σ with the knowledge of the set P. The term 
optimal controller structure denotes controller structure 
which produce the optimal behavior of the CS (this 
structure can be time variable).  

The determination of the optimal controller structure 
is evident if the plant includes only output variables 
whose values are generated (directly or indirectly) by no 
values of input variables at the same time instant (static 
dependence). This leads to the well known controller 
structure with static dependencies between each input 
and each output variables. 

If the plant is a MIMO subsystem with some static 
dependencies, the determination of the optimal controller 
structure is more complicated. This problem is 
mentioned in [3] and it will be shown here that the 
proposed optimal controller structure may include some 

static dependencies in this case too. The controller 
structure without acceptable static dependencies and the 
given MIMO plant do not necessary constitute the 
optimal CS. 

The aim of this paper is to design the discrete optimal 
CS for a general plant, i.e. for a plant that includes some 
static dependencies. 

This paper is organized as follows. A discrete control 
system is described in the section 2. The problem of the 
standard design of the optimal control strategy is 
formulated in the section 3 and the generalized problem 
of the optimal control is formulated in the section 4. The 
section 5 presents the applications of graph theory in 
system theory. Rules delimitative the set of admissible 
"static input-output structures" (this term is explained in 
the definition 2) of the controller are formulated in the 
section 6 and a design of the optimal control is solved in 
the section 7. The illustrative example is given in the 
section 8 followed by the conclusion. 

 
 

2   Discrete control system 
The presented problem of the optimal control system 
design is based on a new approach to system theory [4] 
because this approach enables a correct design of an 
optimal controlling subsystem. The CS is composed of a 
given controlled subsystem Σ1 (plant) and a controlling 
subsystem Σ2 (controller) which is to be proposed. Σ1 
and Σ2 are interconnected only by informational 
interconnections; precisely defined in [4]. This situation 
is illustrated in the Fig. 1 where xk is vector of non-
measurable vk of inner and yk and uk of measurable 
variables of the CS Σ at the time k. 



 
 

Figure 1: Stochastic control system 
 

The CS Σ will be studied on a finite time set 
  }...,,1,0{ FT = , (1) 
where  F  is a control horizon. 

 
 

3 Standard problem of the optimal 
control 

The controlled subsystem is usually described by so-
called causal probability density functions (pdf) 
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where the parametric part of fk(·) represents a complete 
immediate cause of variables x(k) and y(k) of the plant at 
the time k. 

The aim of the optimal control design is to choose 
such an admissible controller that minimizes the mean 
value J of the loss function L 
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where F
0u denotes the sequence ( ))(),...,0( Fuu  and 

accordingly FF
00 , yx . 

It is possible to prove that the controller (or 
controllers) minimizing the formula (3) is generally 
described by (deterministic) functions 
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The design of the discrete optimal CS can be solved e.g. 
with using mathematical programming  [5,6] or with the 
Bellman principle [1,3]. General basses of this principle 
are mentioned in sections 7 and 8. 

The application of the Bellman principle is nontrivial 
and leads to solutions that are not analytically solvable in 
a many cases. In a special case (linearity of the CS, 
additive quadratic loss function, Gaussian causal pdf) the 
problem of the minimization of the expression (3) leads 
to the LQG problem solvable with using the Riccati 
equation [1]. Another special case is the LnQ problem 
(Linear non-quadratic problem). This problem is solved 

for example in [7,8]. 
 
 
4 Generalized problem of the optimal 

control 
Thanks to appropriate definition of the system in the 
system theory [4], it is possible to precisely specify the 
sets of input variables U(Σq)={u1,…,um} and of output 
variables Y(Σq)={y1,…,yn} of the subsystem Σq at the 
time instant k. 

In the general, the controller and the plant can include 
some static dependencies. This property of the 
subsystem leads to the introduction of a relation (A:B). 
This relation means that each variable from the set A  at 
the time k is determined by each variable from the set B 
at the same time k. With this relation, it is possible to 
describe static dependencies of the subsystems and thus, 
to avoid causal (algebraic) loops in the discrete CS. 

Suppose the plant Σ1 with some static dependencies. 
That the sets ( )1

ˆ Σ⊂ UU i , ki ,...,1= , and ( )1
ˆ Σ⊂ YY j , 

lj ,...,1= , exist with the property )ˆ:ˆ( ij UY  for some i 
and j. The problem is that the equation (4) makes it 
possible to create the controller with property (U:Y). It 
holds 
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and at least one causal (algebraic) loop exists within the 
CS and it is in a contradiction to the causality law 
because the given plant and the controller described by 
the equation (4) can form unrealistic CS. 

Therefore, we need to find another description of the 
controlling subsystem. The simplest way to avoid the 
creation of the causal (algebraic) loop in the CS is to 
design the controller without any static dependencies. 
However, it will be shown that such controller does not 
necessary lead to the optimal CS because the optimal 
controller structure can generally contain some static 
dependencies. 
 
5  The graph theory in the system theory 
Definition 1 Consider a subsystem Σ1 with m input 
variables {ui; i = 1,…,m} and n output variables {yj;   j = 
1,…,n}. Suppose that the output variable yj at the time k 
depends (directly or indirectly) on the input variable ui at 
the same time instant k. This dependence is called a 
"static input-output dependence" (SI-OD) of the 
subsystem. 
Definition 2 A set of all static input-output dependencies 
of the subsystem Σ1 is called a "static input-output 
structure" (SI-OS) of the subsystem. 

 



Only the SI-ODs of subsystems Σ1 and Σ2 must be 
watched to prevent causal (algebraic) loops in the 
discrete CS. This is why the set P can be found by the 
determination of the set Q  of all admissible SI-OSs of 
the controller Σ2. Each controller structure with the SI-
OS beeing an element of the set Q is an element of the 
set P. 

The delimitation of the complete set Q is not a trivial 
problem and it seems that the graph theory is an 
appropriate instrument for the solving of this puzzler. A 
disadvantage of the graph theory is a multivalent 
terminology. This paper uses the terminology defined in 
[9]. 

The SI-OS of the subsystem Σl can be represented by 
a bigraph  ),()( EVB ll =Σ  where the set )( lBV  is the 

set of vertices and the set )( lBE  is the set of edges. 
Remark 1 Bigraph is a bipartite graph with directed 
edges only and its mathematical specification is 

),( EVBl =  where );()()( lll BYBUBV ∪=  

{};)()( =∩ ll BYBU  )()()( lll BYBUBE ×= . 
 
The set )( lBU   of the bigraph lB  represents the set 

U(Σl) of the input variables of the subsystem Σl and the 
set )( lBY  constitutes the set Y(Σl) of the output variables 
of the subsystem Σl. The edge 

)(),( ljiij BEyue ∈= represents the SI-OD between 

variables ui and yj  and the set )( lBE  represents SI-OS of 
the subsystem lΣ . 

It is reasonable to determine that the number of the 
input values of the Σ2 is identical as the number of the 
output values of the Σ1 and the number of the input 
values of the Σ1 is identical as the number of the output 
values of the Σ2, hence U(Σ2)=Y(Σ1) and U(Σ1)=Y(Σ2). 
This fact means in the graph theory, that 

VBVBV ≡Σ=Σ ))(())(( 2211 and all SI-ODs of the 
controller and the plant can be represented by one 
directed graph (digraph) ,(ˆ)( 21 VBBG ≡∪=Σ  

))()( 21 BEBE ∪  (illustrated in the Fig. 2). 
The SI-OS of the plant is given and the SI-OS of the 

controller is to be found. When the SI-OS of the 
controller is being proposed, the causality law must be 
respected. It means that the CS Σ cannot contain causal 
(algebraic) loops [4], hence, the graph )(ΣG  must be a 
digraph without directed cycles (directed acyclic graph 
(DAG)). 
 

 
 

Figure 2: Description of the CS Σ by the DAG 
 
 

6 Set of all admissible SI-OSs  of the 
controller 

Consider the controller Σ2 with n input and m output 
variables. Suppose a set Q with elements iQ  where each 

iQ  is a bigraph describing the SI-OS of the controller Σ2  
admissiable to control the plant Σ1. The set Q is finite 
and its cardinality is 

nmQ ⋅≤ 2 . 
Some elements of the set Q are major than the others. A 
set of these major elements is denoted by S (S ⊂ Q) with 
elements iS  (i = 1,…,l; l≤ Q ). Elements iS are 

bigraphs and each bigraph iQ )( QQi ∈  is a subgraph of 

some bigraph jS )( SS j ∈ . The bigraphs from the set S  
are major because SI-OSs of the subsystem Σ2 
represented by bigraphs from the set Q \ S  do not use all 
available information at the time k which can be used. 

The SI-OS of the optimal controller structure at the 
time instant k is an element of the set S but it is not 
generally simple to determine which particular element 
from the set S  it is. This is a reason why all elements of 
the set S must be discovered. Each element 

))(),(( iii SESVS =  of the set S  has to satisfy both of 
the rules: 

1. iSBG ∪= ˆ1  is the DAG. 

2. The graph rs
i

rs SBG ∪= ˆ1  is the directed cyclic 

graph for each admissible r, s. rs
iS is a bigraph, 
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The Elements iS  can be denoted as maximal elements 
of the set Q (the rule 2 associates this title). 



The finding of one element of the set S is a 
polynomial problem with complexity 
≤ O((m+n)2(m+n)3) (common using of a "hungry" 
algorithm [10] and the Floyd's algorithm [11]) but it 
seams that the finding of all elements of the set S is an 
problem with complexity m! (m is the number of the 
input variables of the plant and “!” denotes factorial). 

 
 

7   Bellman principle 
The Bellman principle is used for the design of the 
optimal behavior of the CS. In a standard case (plant 
without SI-ODs) the Bellman principle has the well 
known form [3]  
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The function Wk(·) is called the generalized Bellman 
function and it is derived from the equation 
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If the loss function is additive, 
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the optimizing recursion (5) has the well known form 
[1,3] 
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The function Vk(·) is called the Bellman function. 
In general, when the plant includes some SI-ODs the 

application of the Bellman principle is a little different 
because the equation (6) must be specified precisely. It is 
necessary to determine an order of a computation of  the 
Σ2 output variables at time k (at first, the SI-OS of the 
controller Σ2  must be determined). 

This order is given by the DAG 1 1ˆ( )G B B= ∪
ur uur uur

 

where 1B
uur

 represents the SI-OS of the plant Σ1 and 2B
uur

 

represents some element from the set S . It is possible to 
use the following algorithm to find this order: 

1. Consider DAG 1 1ˆ( )G B B= ∪
ur uur uur

 with m nodes 
from the set U  and n nodes from the set Y; 

( )V G U Y= ∪
ur

; set i=1 and iG G≡
uur ur

. 

2. Find a node with no input edge in the graph iG . 

Remove this node from the graph iG  with all 
output edges of this node. Denote the obtained 
graph by 1+iG  and the removed node by bi. Set 
i=i+1. 

3. if i>(m+n) then end the algorithm else go to the 
step 2 

Remark 2 The edge (ai, aj) is called the input edge of 
the node aj and the output edge of the node ai. 
 
Now, the set )(GV can be divided into subsets Aj, 
j=1,…,J ≤ m+n by the algorithm: 

1. Set i=1, j=1, A1={}. If  b1∈Y then J=Y else 
J=U. 

2. if bi∈J then Aj={Aj, bi}, set i=i+1 else begin if  J 
is Y then J=U else J=Y. set j=j+1,  Aj={bi}, 
i=i+1, end. 

3. if i>(m+n) then end the algorithm else go to the 
step 2. 

Now, it is possible to derive more detailed equation 
 then (6) 
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where aj,k  is the vector of elements of the set Aj at the 
time instant k and J is the number of sets Aj, j=1.. ,J. 

Now, the slightly modified Bellman principle is used 
to minimize the function (8).  The modification consists 
in partitioning of the Bellman function Vk into its parts 
Vi,k(·) (k constitutes the time instant and i constitutes the 
set Ai with input elements of the plant). This problem is 
illustrated in the section 8. 

 
 

 



8   Illustrative example 
Consider a plant Σ1 described by: 

1 1 1
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where ξ  is a noise of a Gaussian distribution ),0( 2σN . 
The given quality index is 

 2 2
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0
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If the controller structure does not include direct 
dependencies (mentioned in the section 4) the relevant 
description of the behavior of the controller which 
minimizes function (9) is 
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and the value of the function (9) is J(Σa)=5Fσ2. 
Now the behavior of the CS Σ will be computed with 

using the method presented in this contribution. 
A bigraph 1 1( )B Σ

uur
 of the SI-OS of the plant Σ1 is 

1 1 1 1 2 2( ) ( ,{( , ), ( , )})B V u y u yΣ =
uur

, 
where V={u1, u2, y1, y2} is the set of nodes. The set S has 
2 elements 
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Let 2 2 1( )B SΣ =
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. 
b1 = u2,   b2 = y2,   b3 = u1,   b4 = y1 

and 
A1 = {b1},   A2 = {b2},   A3 = {b3},   A4 = {b4}. 

The equation (8) is in this case 
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The estimation of the value x(k) is 
1 1
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The resulting  behavior of the controller which 
minimizes function (9) is 
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and the value of the function (9) is J(Σb)=Fσ2. 
Let 2 2 2( )B SΣ =

uur uur
 

b1 = u1,   b2 = y1,   b3 = u2,   b4 = y2 
and 

A1 = {b1},   A2 = {b2},   A3 = {b3},   A4 = {b4}. 
The principle of the calculation of the partitioned  
Bellman functions is analogous as in previous case of 

2 2 1( )B SΣ =
uur uur

 and the resulting behavior of the controller 
which minimizes the function (9) is 

*
2 1 1 1

*
2 1 1
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( ) 0,5( ( ) ( )).

c u k y k u k
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The value of the function (9) is J(Σc)=4Fσ2 in this case. 
It is shown that 

( ) ( ) ( )a c bJ J JΣ > Σ > Σ  
and J(·) depends only on 2σ  hence the optimal structure 
is 1S

uur
 and the optimal controller is the subsystem 2

bΣ . 
 
 
9   Conclusion 
The problem of the discrete optimal CS design  when the 
plant include SI-ODs  was presented in this contribution. 

A determination of the set of all admissible controller 
structures for the given structure of the plant is necessary 
for a design of the optimal CS. This determination can 
be transformed into the determination of the set of all 
admissible maximal SI-OSs of controller Σ2 (set S). The 
problem is solved by using the graph theory. 

A problem of the determination of the set S is that it 
is necessary to find all elements of this set for a design 
of the optimal CS because it is not generally possible to 
determine which element of the set S will produce the 
optimal control strategy. 

The behavior which minimizes given quality index 
for each SI-OS from the set S must be computed whereas 
more detailed Bellman principle which was presented in 
sections 7 and 8 is used for the determination of these 



behavior. Now, it is possible to choose the optimal 
behavior of the CS Σ from these behavior by using 
Bellman principle. 

It seams that the determination of the set S is 
complicated algorithmic problem but it was shown that 
finding of one element of the set S is polynomial 
problem only and the controller with the SI-OS from the 
set S produces better or equal behavior of the CS Σ that 
controller without acceptable SI-ODs. 

The problem with time variable structure of the 
controller Σ2 is mentioned in the section 1. This problem 
is very complicated and it is solved at present. 
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