Design of optimal controller for discrete plant with static dependencies
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Abstract: - A new approach to general system theory enables to correctly design an optimal controlling subsystem for
a controlled subsystem with a possible use of non-dynamic interactions between some input and output variables. The
design of the optimal control system is divided into 2 steps. The first step is to determine a set of admissible
structures of the controlling subsystem for a given structure of the controlled subsystem. The second step is to
determine an optimal behavior of the discrete stochastic control system. The determination of the set of all admissible
controller structures is solved with using the graph theory where graphs present the structures of the controlling and
controlled subsystems. The optimal behavior of the control system is given according to the Bellman principle.
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1 Introduction

The theory of optimal systems [1,2,3] etc. deals with
systems which embody optimal behavior. The term
optimal means that the behavior of control systems (CS)
minimizes some given quality index. This paper is based
on a theoretic background given by the system theory
formulated in [4], which enables to solve the problem of
the optimal behavior of the stochastic CS in general
because the controlled subsystem can be possibly
described with non-dynamic interactions between some
input and output variables.

The new approach to the system theory [4] shows that
the design of the optimal CS has to be generally divided
into two steps. The first is to define the set P of all
admissible controller structures for the structure of a
given plant. Only the knowledge of the complete set P
guarantees finding of the optimal CS. The second step is
the calculation of the optimal behavior of the control
system S with the knowledge of the set P. The term
optimal controller structure denotes controller structure
which produce the optimal behavior of the CS (this
structure can be time variable).

The determination of the optimal controller structure
is evident if the plant includes only output variables
whose values are generated (directly or indirectly) by no
values of input variables at the same time instant (static
dependence). This leads to the well known controller
structure with static dependencies between each input
and each output variables.

If the plant is a MIMO subsystem with some static
dependencies, the determination of the optimal controller
structure is more complicated. This problem is
mentioned in [3] and it will be shown here that the
proposed optimal controller structure may include some

static dependencies in this case too. The controller
structure without acceptable static dependencies and the
given MIMO plant do not necessary constitute the
optimal CS.

Theaim of this paper isto design the discrete optimal
CSfor agenera plant, i.e. for a plant that includes some
static dependencies.

This paper is organized as follows. A discrete control
system is described in the section 2. The problem of the
standard design of the optimal control strategy is
formulated in the section 3 and the generalized problem
of the optimal control is formulated in the section 4. The
section 5 presents the applications of graph theory in
system theory. Rules delimitative the set of admissible
"static input-output structures' (this term is explained in
the definition 2) of the controller are formulated in the
section 6 and a design of the optimal contral is solved in
the section 7. The illustrative example is given in the
section 8 followed by the conclusion.

2 Discrete control system

The presented problem of the optimal control system
design is based on a new approach to system theory [4]
because this approach enables a correct design of an
optimal controlling subsystem. The CS is composed of a
given controlled subsystem S; (plant) and a controlling
subsystem S, (controller) which is to be proposed. S;
and S, are interconnected only by informational
interconnections; precisely defined in [4]. This situation
is illustrated in the Fig. 1 where x is vector of non-
measurable v of inner and yx and ux of measurable
variables of the CS S at thetimek.
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Figure 1: Stochastic control system

The CS S will be studied on afinite time set
T={0,1 ..., F}, (@)
where F isacontrol horizon.

3 Standard problem of the optimal

control
The controlled subsystem is usually described by so-
called causal probability density functions (pdf)

f (x(K).y(K)[x(k- D,y(k- 1,u(k- 1))

kT T,

where the parametric part of fi(-) represents a complete

immediate cause of variables x(k) and y(k) of the plant at
thetimek.

The aim of the optimal control design is to choose

such an admissible controller that minimizes the mean
value J of theloss function L

J=E{LxE,y5 uf ), &)
where uf denotes the sequence (u(0),...,u(F)) and

)

accordingly X¢,Y¢ .
It is possible to prove that the controller (or

controllers) minimizing the formula (3) is generaly

described by (deterministic) functions
vk = gy(vik-1.y(k- 1) ”
uk) = gi(v(k.y) ki T.

The design of the discrete optimal CS can be solved e.g.

with using mathematical programming [5,6] or with the

Bellman principle [1,3]. General basses of this principle

arementioned in sections 7 and 8.

The application of the Bellman principle is nontrivial
and leads to solutions that are not analytically solvablein
a many cases. In a special case (linearity of the CS,
additive quadratic loss function, Gaussian causal pdf) the
problem of the minimization of the expression (3) leads
to the LQG problem solvable with using the Riccati
equation [1]. Ancther special case is the LnQ problem
(Linear non-quadratic problem). This problem is solved

for examplein [7,8].

4 Generalized problem of the optimal

control
Thanks to appropriate definition of the system in the
system theory [4], it is possible to precisely specify the
sets of input variables U(Sg)={u,...,un} and of output
variables Y(Sg)={y1,...yn} Of the subsystem S, at the
timeinstant k.

In the general, the controller and the plant can include
some static dependencies. This property of the
subsystem leads to the introduction of a relation (A:B).
This relation means that each variable from the set A at
the time k is determined by each variable from the set B
at the same time k. With this relation, it is possible to
describe static dependencies of the subsystems and thus,
to avoid causal (algebraic) loopsin the discrete CS.

Suppose the plant S; with some static dependencies.

Thatthesets U, 1 U(S,), i =1...k,and Y, 1 Y(S,),

] =1,...,], exist with the property (\?j :U,) for somei

and j. The problem is that the equation (4) makes it
possible to create the controller with property (U:Y). It
holds
((Y; ;U UU :Y)U(Y; | Y)UU, I U))
P U, :Y))P (YY),

and at least one causal (algebraic) loop exists within the
CS and it is in a contradiction to the causality law
because the given plant and the controller described by
the equation (4) can form unredlistic CS.

Therefore, we need to find another description of the
controlling subsystem. The simplest way to avoid the
creation of the causal (algebraic) loop in the CS is to
design the controller without any static dependencies.
However, it will be shown that such controller does not
necessary lead to the optimal CS because the optimal
controller structure can generally contain some static
dependencies.

5 Thegraph theory in the system theory
Definition 1 Consider a subsystem S; with m input
variables {u;; i = 1,....,m} and n output variables {y;; j=
1,...,n}. Suppose that the output variable y; at the time k
depends (directly or indirectly) on the input variable u; at
the same time instant k. This dependence is called a
"static input-output dependence® (SI-OD) of the
subsystem.

Definition 2 A set of all static input-output dependencies
of the subsystem S; is called a "static input-output
structure' (SI-0OS) of the subsystem.



Only the SI-ODs of subsystems S; and S, must be
watched to prevent causal (algebraic) loops in the
discrete CS. This is why the set P can be found by the
determination of the set Q of all admissible SI-OSs of
the controller S,. Each controller structure with the SI-
OS beeing an element of the set Q is an element of the
set P.

The delimitation of the complete set Q is not atrivial
problem and it seems that the graph theory is an
appropriate instrument for the solving of this puzzler. A
disadvantage of the graph theory is a multivalent
terminology. This paper uses the terminology defined in
[9].

The SI-OS of the subsystem S, can be represented by

abigraph E(S,) =(V,E) wherethe set V(E) is the
set of vertices and the set E(E) isthe set of edges.

Remark 1 Bigraph is a bipartite graph with directed
edges only and its mathematical specification is

B =(V,E) V(B)=U(B)EY(B);
U(B)CY(B)={}; E(B)=U(B) Y(B).

where

The set U(E) of the bigraph E represents the set
U(S) of the input variables of the subsystem S, and the
set Y(E) constitutes the set Y(S)) of the output variables
of the subsystem S. The edge
e =(u,y)I E(B,) represents the SI-OD between

variables u; and y; and the set E(E) represents SI-OS of

the subsystem S, .

It is reasonable to determine that the number of the
input values of the S; is identical as the number of the
output values of the S; and the number of the input
values of the S, is identical as the number of the output
values of the S,, hence U(Sy)=Y(S;) and U(S1)=Y(S,).
This fact means in the graph theory, that
V(B,(S,)) =V(B,(S,))°Vand al SI-ODs of the
controller and the plant can be represented by one
directed graph (digraph) G(S)=B,EB,° (V,

E(B,) E E(B,)) (illustrated in the Fig. 2).

The SI-OS of the plant is given and the SI-OS of the
controller is to be found. When the SI-OS of the
controller is being proposed, the causality law must be
respected. It means that the CS S cannot contain causal

(algebraic) loops [4], hence, the graph 6(8) must be a

digraph without directed cycles (directed acyclic graph
(DAG)).

Bi(Z) Ba(2) 9E10T) B—

Figure 2: Description of the CS Sby the DAG

6 Set of all admissible SI-OSs of the

controller
Consider the controller S, with n input and m output

variables. Suppose a set Q with elements a where each

6{ is a bigraph describing the SI-OS of the controller S,
admissiable to control the plant S;. The set Q is finite
and its cardinality is

|Q| £2™,
Some elements of the set Q are mgjor than the others. A
set of these major elements is denoted by S(SI Q) with

dements S (i=1,..; 1<|Q)). Elements S are
bigraphs and each bigraph a (6; T Q) isasubgraph of
some bigraph ST (ng S) . The bigraphs from the set S
are major because SI-OSs of the subsystem S,
represented by bigraphs from theset Q\' S do not use all
available information at the time k which can be used.
The SI-OS of the optimal controller structure at the
time instant k is an element of the set S but it is not
generally simple to determine which particular e ement

fromthesat S itis. Thisis areason why all elements of
the set S must be discovered. Each eement

S =(V(S),E(S)) of theset S has to satisfy both of
therules:

—

1. G=B,ES istheDAG.
2. Thegraph G™ =B, E S™ isthe directed cyclic
graph for each admissibler, s. S" is a bigraph,

S =(V(S).ES)E®U,,v.).uT US")
=U(S), Y, T Y(S®)=Y(S) (uy) E(S).

The Elements § can be denoted as maximal elements
of the set Q (therule 2 associates this title).



The finding of one element of the se&¢ S is a
polynomial problem with complexity
£0((m+n)’(m+n)®) (common using of a "hungry"
algorithm [10] and the Floyd's algorithm [11]) but it
seams that the finding of all elements of the set Sis an
problem with complexity m! (m is the number of the
input variables of the plant and “!” denotes factorial).

7 Bellman principle

The Bellman principle is used for the design of the
optimal behavior of the CS. In a standard case (plant
without SI-ODs) the Bellman principle has the well
known form [3]

WL, = E{L(3|yE, U},
W (y§,ug l) min E{W,.. (V5™ Ug)| Yo, U}

= arg min E{(W,., 3]y, ug}.

k=F,.,0, J=EW,(>}.

The function Wi(:) is called the generalized Bellman
function and it is derived from the equation
F

J = (-(Xg, Yo Ug)P(Xg Yo » Ug )oiXg dyo dug =
O-0-(Xo Y5 U5 )P(XG | Yo U5 )y

©)

P(U:|Yg,Ug dug plye|ye * ug dy, (6)
(Ue_o| Yo ™ Up )dup. ... p(U| Yo)duy
P(Y,)dy,.
If theloss function is additive,
L(Xg,Uo.Yo) =@ Li(Xo,Up,Yo), @)

i=0
the optimizing recursion (5) has the well known form
[1.3]
Veu = 0

Vi (yb.ub ™) = min (L0 +Vi (3|58},
=ag min E{L, (3 +Viea (3]s, U},

k=F,..0, J = E{V,(3}.
Thefunction Vi(-) is called the Bellman function.

In general, when the plant includes some SI-ODs the
application of the Bellman principle is a little different
because the equation (6) must be specified precisdy. It is
necessary to determine an order of a computation of the
S, output variables at time k (at first, the SI-OS of the
controller S, must be determined).

This order is given by the DAG G=(B,E B)
whereB, represents the SI-OS of the plant S, and B,

represents some element fromtheset S. It is possible to
use the following algorithm to find this order:

1. Consider DAG é—(BlE B) with m nodes
from the st U and n nod&s from the s¢t Y;
V(G) UEY;sai= 1andG °G

2. Find a node with no input edge in the grapha .

Remove this node from the graph a with all
output edges of this node. Denote the obtained

graph by Q and the removed node by b;. Set
i=i+1.

3. if i>(m+n) then end the algorithm else go to the
Step 2

Remark 2 The edge (a;, &) is called the input edge of
the node & and the output edge of the node a;.

Now, the st V/(G)can be divided into subsets A,

j=1,...,J£ m+n by the algorithm:
1. Seti=1, j=1, A={}. If by Y then J=Y dse
J=U.

2. if bl Jthen A={A, b}, seti=i+1esebeginif J
is Y then J=U dse J=Y. st j=j+1, A={b},
i=i+1, end.

3. if i>(mtn) then end the algorithm else go to the
step 2.

Now, it is possible to derive more detailed equation
then (6)
= -0 (5,5, Ug ) P(Xg |yg . Ug )axg
P@y ¢|ay e rmdye, Yot Ug )da,
cCHPP - WP W Vi
-P(age |y ug t)day
o] - VPN N VA VI Ts -

.P(a,0|a,,)da, o p(ay ) day

ug-l)daJ-l,F (8)

where aji is the vector of elements of the set A; at the
time instant k and J is the number of sets A;, j=1.. ,J.

Now, the slightly modified Bellman principle is used
to minimize the function (8). The modification consists
in partitioning of the Bellman function V into its parts
Vik(+) (k constitutes the time instant and i constitutes the
set A with input elements of the plant). This problem is
illustrated in the section 8.



8 Illustrative example
Consider a plant S, described by:
S, i(K) =uy (k) +2x(k)
¥,(K) = u, (k) + x(k)
x(k+1) =a x(k) +x (k)
where X isanoise of a Gaussian distribution N(0,s ).
The given quality index is
F
J=E{@ () + 0%} (9)
i=0
If the controller structure does not include direct
dependencies (mentioned in the section 4) the relevant

description of the behavior of the controller which
minimizes function (9) is
S k)= -a(y(k-1)- uk-1)
U(K) = -a(y,(k-1)- u,(k- D)
and the value of the function (9) is J(S*)=5Fs>.

Now the behavior of the CS S will be computed with
using the method presented in this contribution.

A bigraph B,(S,) of the SI-OS of theplant S; is
B(S) = (V. (U, Y2), (U, V)1

where V={uy, Uy, Y1, Y5} is the set of nodes. The set Shas
2 dements

S:(VAY,ul),
Let B,(S,) =5 .
bi=U, b=y, bs=u, bu=w

S (VY u}).

and
A]_ = {b]_}, Az = {bz}, A3 = {bg}, A4 = {b4}
The equation (8) isin this case

3= 3-0-OP(X; |Y6,ug) PO (F)|ug, Yo (F)ye ™)
P (F)[u,(F), Y,(F).us ™Yo ) p(Y, (F)|u, (F),
Uo ™Yo ) P(U(F)[ug ™Yo ) P(Y:(F - Dug ™,
Ya(F - Y5 ) PUy(F - D]u,(F - 1), y,(F - D,ug 2,

Yo ). P(U,(0)dy, (F)...du, (0).
The estimation of the value x(K) is

E{x(K)|ug",ys '} =a(y,(k- D - uy(k- 1)
and the partitioned Bellman functions are
VF+1 = O!

Vo = mMInE{ (u,(F) + 2X(F))?| y,(F). ug.y5 )
=min{ (w(F) + 2(y,(F)- u,(F))} =0,

U (F) = 2(uy(F) - y,(F))
Vi =minE{y,(F)* +0u5 ™,y =

=min E{u,(F)?+2u,(F)x(F) +x(F )2|...},

u,(F)=-a(y,(F - 1- u,(F- 1),
Vor1 = min E{y,(F - D +s 7| y,(F - 1),..},

Vie =8 ’

—_c 2
V3,F-l =S,

U (F - )= 2(u,(F - 1)- y,(F - 1),

U(F-D=-a(y,(F- 2)- u(F-2), Vi, =27
M

The resulting  behavior

minimizes function (9) is

S;: u(k)= 2(u, (k) - y,(k))

U (K) = -a(y,(k-1)- uy(k- 1)
and the value of the function (9) is J(S")=Fs?.
Let B,(S,) =S,

bi=u, b=y, bs=uw, bs=y,

of the controller which

and

A]_ = {b]_}, Az = {bz}, A3 = {bg}, A4 = {b4}
The principle of the calculation of the partitioned
I%uellman fldpctions is analogous as in previous case of

B,(S,) =S and theresulting behavior of the controller

which minimizes the function (9) is
Si: u(k)= -a(y(k-1)-u(k-1)

u(K) = 0,5u(k)- y, (k).
The value of the function (9) is J(S)=4Fs? in this case.
It is shown that

J(SM)>J(S%) > I(S)
and J(-) depends only on s ? hencethe optimal structure
is S and the optimal controller is the subsystem S3.

9 Conclusion
The prablem of the discrete optimal CS design when the
plant include SI-ODs was presented in this contribution.

A determination of the set of all admissible controller
structures for the given structure of the plant is necessary
for a design of the optimal CS. This determination can
be transformed into the determination of the set of all
admissible maximal SI-OSs of controller S, (set S). The
problem is solved by using the graph theory.

A problem of the determination of the set Siis that it
is necessary to find all elements of this set for a design
of the optimal CS because it is not generally possible to
determine which element of the set S will produce the
optimal control strategy.

The behavior which minimizes given quality index
for each SI-OS from the set Smust be computed whereas
more detailed Bellman principle which was presented in
sections 7 and 8 is used for the determination of these



behavior. Now, it is possible to choose the optimal
behavior of the CS Sfrom these behavior by using
Bellman principle.

It seams that the determination of the set S is
complicated algorithmic problem but it was shown that
finding of one element of the set S is polynomial
problem only and the controller with the SI-OS from the
set S produces better or equal behavior of the CS S that
controller without acceptable SI-ODs.

The problem with time variable structure of the
controller S, is mentioned in the section 1. This problem
is very complicated and it is solved at present.
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