
Distilled Entity Relationship Model
Richard Elling Moe

Department of information science and media studies
University of Bergen

ABSTRACT
We formalize the syntax of ER-diagrams, trying to expli-
cate details left unclear in the literature either by neglect or
by a lack of consensus with regard to the basic elements
of ER-modelling and the restrictions on their use. Some
of these restrictions and the consequences of relaxing them
are discussed.

KEY WORDS
Entity relationship model, ER-diagram syntax, Conceptual
modelling, Database design

1 Introduction

The Entity relationship (ER) model has come of age. It
is widely adopted and has been part of common database
design-practise for years. Still, nearly thirty years after
its conception [6] different authors does not seem to agree
about every detail about its contents. Even with decent
standard textbooks, the attempt to figure out the complete
picture involves reading between the lines and downright
guessing.

We need a precise and complete description of ER-
diagram syntax. Bysyntax, we mean the basic elements
ER-diagrams are made up of and the constraints on their
use. This should not be confused withnotation. We do not
adhere to any particular way of drawing the diagrams.

Formal definitions of ER-syntax are not too common
in the literature. Approaches can be found in [4, 11]. We
provide an alternative account, formalizing the notion of an
ER-diagram, with careful focus on details of syntax. In the
process we run into matters of debate, neglected points or
disagreement between authors. Our main goal then is to
choose between the possibilities, polling the literature and
practises of ER-modelling. The result is a version of ER,
distilled from the varieties found in the literature. Even
if this necessarily represents mainstream ER, we get the
opportunity to discuss possible novel features, though not
necessarily proposing their inclusion into the model.

We focus on the pure ER-model, disregarding exten-
sions such as specialization and categories of the EER-
model.

2 Conceptual modelling

ER-modelling is part of the database design methodology
and serves as a conceptual level on which the users of the
database should be able to participate in the design process.

The meaning of the word ’conceptual’ has been dis-
cussed, but for our purposes, in the context of database de-
sign, it will suffice to observe that it involves the following
principle:

The ER-model should describe the part of the ’re-
ality’, themini-world, that is to be represented in
the database. It should not reflect aspects of its
implementation or use.

This is not inconsistent with the practise of database experts
among themselves putting database specific details into the
ER-diagram. When this happens there has been a shift of
focus from the users perspective towards viewing the data-
base itself as the mini-world.

3 The syntax of ER-diagrams

The literature on the entity relationship model varies con-
siderably when it comes to ER-diagrams. Not only
notation-wise but also with regard to the basic elements
and the constraints on their use. Many accounts, it must
be said, are unclear and/or incomplete on syntactic matters.
Unsurprisingly, this affects the exposition of the semantics
too.

3.1 Weak entity types

In particular, the so-calledweakentity types receives inade-
quate treatment in many textbooks when it comes to detail
and completeness. Atzeni et al. [2] are among the better
expositions on this matter, and we adapt their approach us-
ing the concepts of internal and external identifiers. How-
ever, we stick to the widely used terminology of ’keys’
and ’weak’ entity types (and the use of the term ’strong’
to mean non-weak) with the notions of partial keys, identi-
fying relationship types, owners etc. Chen [7] further clas-
sifies weak entity types into existence dependencies and ID
dependencies, but we go with the bulk of standard text-
books on this matter and disregard this distinction.

3.2 Names

In ER-diagrams, all sorts of things are assigned names:
Entity types, attributes, relationship types and the roles
they combine/specify. When drawing an ER-diagram, you
would typically label all entity types, attributes and rela-
tionship types, but not necessarily the roles. Moreover, the
entity types would have unique names but otherwise the
reuse of names is allowed, free of implications for the in-
terpretation of the diagram. However, it is not necessary
to allow the reuse of names. Any ER-diagram could be
rewritten to avoid such ambiguity without any harm to its
descriptive power.

3.2.1 The formal use of names

For our purposes, the actual choice of names will have no
significance. Our need for names is only to distinguish be-
tween the different bits and pieces found in a diagram. We
are not trying to replicate the labelling conventions found
in the actual drawing of an ER-diagram. Rather we will as-
sume that names are unique. Such uniqueness has its par-
allel in real diagrams in that no elements coincide spatially.
I.e. different attributes are distinguished by the fact that
they occupy locations.

Attributes should be labelled: When an entity type or
relationship type holds several attributes it must be possible
to tell them apart.

Roles should be labelled: Take the case of a so-called
recursive relationship type where two roles refer to the
same entity type. Then, if these roles can not be distin-
guished by other means, they must be given names to avoid
confusion. For simplicity we demand thatall roles should
be labelled.

When all roles have unique names, there is no need
for relationship types to be labelled at all: They can be dis-
tinguished by the collections of roles they are associated
with.

One might be tempted to avoid names for entity types
in a similar manner by relying upon the collections of at-
tributes to set the difference. However, we should allow
for the possibility that entity types have no attributes spec-
ified. This is in line with the overall desire to avoid unnec-
essary restrictions in the expressive power on the concep-
tual level1. Besides, it should be possible to make sense
of a preliminary ER-diagram, where the attributes have yet
to be specified. Hence, we require all entity types to have
names. In fact, the entity type will be the name itself, which
reflects the fact that what we are dealing with here is mere
syntax.

Definition 3.1 We fix three mutually disjoint name spaces:

• ANameis an infinite set ofattribute names.

1Furthermore, some people (of the NIAM persuasion) would claim
that the distinction between attributes and relationships is artificial or even
harmful [10].

• RNameis an infinite set ofrole names.

• ENameis an infinite set ofentity type names.

3.3 The boxes, the lines and the whatnots

Now, let us scrutinize the ER-model and establish the for-
mal notion of a diagram, with the restrictions that apply to
its construction.

Definition 3.2 Anattributeis a finite tree where every node
is uniquely labelled with an element ofAName. We may
refer to an attribute using the label of its root.

Definition 3.3 Anentity typeis an element ofEName

Definition 3.4 A role is a tuple〈l ,e,min,max〉 where

• l ∈ RName

• e is an entity type

• min∈ IN

• max∈ IN ∪{∗}

Here,min andmax represents the lower and upper cardi-
nality constraints for the role. The ’∗’ corresponds to an
unspecified ’many’ cardinality.

For notational convenience: When given a setR of
roles where all entity types are members of some specific
setE, we may refer to the following functions:

• label : R→ RNamereturning the role-name of any
given role.

• etype: R→E returning the entity type for a given role.

• min: R→ IN returning the lower cardinality constraint
of a role.

• max : R→ IN ∪ {∗} returning the upper cardinality
constraint of a role.

Definition 3.5 A relationship typeis a finite setT of roles
with |T| ≥ 2.

Let E be a set of entity types. The relationship typeT
is said to bebased onE iff for all r ∈ T : etype(r) ∈ E.

Definition 3.6 A diagramis a pair 〈E,R〉 where

• E is a finite set of entity types

• R is a finite set of relationship types based onE.

Associated with the diagram〈E,R〉 are some further
syntactic specifications, given by the following relations:

• Root ⊆ AName specifiesprecisely which attribute
names identify roots, in the sense that an attribute is
a root in the diagramif and only if it is a member of
Root. Rootshould be finite.

• Eattribute⊆ E×Root specifies precisely which at-
tributes belong to which entity types. I.e. an entity
typeehas the attributea iff Eattribute(e,a)

• Rattribute⊆ R×Root specifies precisely which at-
tributes belong to which relationship types.

• Multivalued ⊆ Root specifies precisely which at-
tributes are multi-valued. Note that only roots can be
multi-valued.

In order to specify keys and weak entity types in the dia-
gram we adapt the notions of internal and external identi-
fiers (see [2]).

Definition 3.7 An identifier for an entity typee is a pair
〈Attrs,Roles〉 where

• Attrs⊆ {a | Eattribute(e,a)}.
• Roles⊆ {r | r ∈

⋃

T∈R

T, etype(r) = e}

So, an identifier for an entity type consists of a set of at-
tributes and a set of roles, either of which can be empty.
Note that an entity type may be associated with several
identifiers.

The following relation specifies all identifiers in the
diagram〈E,R〉 with the entity types they belong to:

Id ⊆ E×P(Root)×P(
⋃

T∈R

T)

I.e. Id(e,Attrs,Roles) holds iff 〈Attrs,Roles〉 is an identi-
fier for the entity typee.

Furthermore, for eache ∈ E there should be some
Attrs andRolessuch thatId(e,Attrs,Roles) holds. I.e. all
entity types should have at least one identifier, even if it
is just〈 /0, /0〉. Note that this requirement is made for conve-
nience only: The presence or absence of the identifier〈 /0, /0〉
would make no difference to us, because in ER-diagrams
there is no status of beingundetermined, marking a dis-
tinction from being either strong or weak.

Clearly, the weak entity types are those associated
with an identifier whereRoles6= /0, in which caseAttrs
specifies its partial keys. The elements ofRolesare thus
theidentifying rolesreferring to theidentifying relationship
types, which in turn specify theownersof the weak entity
types. Accordingly, in cases whereRoles= /0 we may refer
to the entity type as being strong,Attrs being the key.

Some further restrictions apply for any diagram
〈E,R〉. First,

Attribute names should be unique.(1)

Furthermore, they should belong to a single entity- or rela-
tionship type only:

There is noa such that either of the following holds(2)

a) Eattribute(e,a) andEattribute(e′,a) for anye 6= e′

b) Rattribute(r,a) andRattribute(r ′,a) for anyr 6= r ′

c) Eattribute(e,a) andRattribute(r ,a) for anyeandr

Role names too should be unique:

For any pair of relationship types{T1,T2} ⊆ R :(3)

label(r) 6= label(r ′) for any pair{r, r ′} ⊆ T1∪T2

This requirement entails that the elements ofRare mutually
disjoint.

Identifiers are restricted in the usual way:

For anye,Attrs andRoles: Id(e,Attrs,Roles) implies(4)

a)Attrs∩Multivalued= /0 and

b) min(r) = 1 = max(r), for all r ∈ Roles

I.e. keys and partial keys can not be multi-valued, and
the identifying roles should have the appropriate cardinal-
ity constraints.

A relationship type specifies the ownership for at most
one weak entity type:

For eachT ∈ R :(5)

|T ∩{r | Id(e,As,{r}∪Rs) for somee,As,Rs}| ≤ 1

3.3.1 Groundedness for weak entity types

A further syntactic restriction is that every ownership shall
be based on proper entity types. A weak entity type may
well be an owner of an other weak entity type, but all such
propagated ownerships must originate in a non-weak entity
type. This requirement is hinted at in Chen’s original paper
on ER-modelling [6], and it seems to be underlying in the
bulk of standard textbooks, but it is rarely mentioned ex-
plicitly. Exceptions are Atzeni et al [2] and Batini et al. [5]
where the problem of circularity in the ownership structure
is addressed. Thalheim [11] also discusses related ’iden-
tification problems’ of weak entity types, so does Balaban
and Shoval [3].

Apart from phrases like ’circularity should be
avoided’ we have found no formal explication of the re-
quirement that ownership loops should be banned. Here is
our proposal:

Definition 3.8 Let 〈E,R〉 be a diagram.

• An ownership chainis a sequence〈e1,e2, . . .〉, possi-
bly infinite, such that for each consecutive pairei , ei+1

there isT ∈ R and {r, r ′} ⊆ T such thatetype(r) =
ei+1 and Id(ei ,Attrs,Roles∪ {r ′}) holds for some
Attrs andRoles.

• An ownership chain isgroundediff it is on the form
〈e1,e2, . . . ,ek〉 whereId(ek,Attrs, /0) for someAttrs.

Note that grounded ownership chains are, by definition, fi-
nite. If we require that in any diagram,

all ownership chains should be grounded,(6)

ownership loops would be ruled out so that no weak en-
tity type can directly or indirectly be identified in terms of
itself.

4 A second look at the syntax restrictions

Much work in the field of entity relationship modelling in-
volves proposing enhancements to the model. This has
not been our goal at all. We would be reluctant to add
to the jungle of proposed constructs and notation that has
grown over the years. Nonetheless, we shall look briefly at
what could be the consequences of lifting some of the con-
straints on the ER-diagrams. (Hoping that the removal of
constraints will not create a need for new notation.) Other
requirements, such as (2) and (3), are so fundamental that
we feel they are best left untouched.

4.1 Restriction (1)

The demand that attribute names should be unique was in-
cluded for convenience, in order to simplify theformalno-
tion of an ER-diagram. It is not held to be a restriction on
the practise of drawing diagrams.

Still, if we were to attach special meaning to the shar-
ing of attribute-names we propose that auniquedomain is
associated with every attribute. I.e. Attributes sharing a
name should take the same kind of values.

4.2 Restriction (4)

We discuss point b) stating that a weak entity should have
one, and only one, owner. Chen [7] relaxes this requirement
to allow for many-many ownerships. He explains this us-
ing an example: When storing information about employ-
ees and their dependents, such as children or spouses, one
might run into the situation where a dependent is associated
with several employees. For instance the children having
both their parents registered as employees in the database.
In this case, according to Chen, a many-many ownership
could be used in the ER-diagram meaning that the child
should remain in the database as long as at least one parent
is still registered.

We feel that Chen’s argument relies a little too much
on the presence of a database, and details of its use, for
granting the many-many ownership the status of an entirely
conceptualnotion. We propose an alternative interpretation
which is much in the same vein as Chen’s but remains in-
dependent of the database, its implementation and use.

4.2.1 Groups and entities

As the name suggests, theentityrelationship model is con-
cerned with entities only and does not involvegroupsof
entities as a basic notion. Certainly, it is possible to model
various kinds of groups that might exist in a mini-world but
only by viewing them as entities possessing some kind of
group identifier. The idea of letting a group be identified by
its members alone is simply not present in the ER-model.
Here lies a weakness. Many applications involve concepts

that are groups by nature. Take for instance spatial infor-
mation systems: The concept of a polygon is defined solely
as a collection of lines [1], but in order to fit polygons and
such into the ER-model we are forced to make use of some
sort of key which is conceptually redundant.

We suggest that groups of entities could be included
in the ER-model for the interpretation of many-many own-
erships. I.e. that a weak entity type may have a group of
entities as its owner, without the implication that each of
the members of the group is an owner in itself. Then a
polygon could straightforwardly have a group of lines as
its owner.

So far so good, but if groups are to become full mem-
bers of the ER-model it seems that it ought to be possible
to specify attributes that pertain to a group as such. Then it
seems inevitable that new notation must be introduced for
that purpose.

4.3 Restriction (5)

This requirement appears to be fundamental in almost
every account of weak entity types. To our knowledge, only
Thalheim [11] discusses the matter and identifies problems
that would arise if the requirement was dropped.

4.4 Restriction (6)

Is the groundedness restriction (6) really necessary? It has
certainly been called for in order to avoid so-called infinite
keys (see for instance [3]). Naturally, there is no room for
infinite keys in an actual database, but recall that we are
dealing with theconceptuallevel here. If the state of the
world involves infinite keys, then we should be able to say
so. The (dirty) tricks we would have to come up with in
order to squeeze some finite representation of an infinite
whole into a database, is not our concern at this point.

For example: There was a time when the human mind
had yet to recognize the Social Security Number as a basic
necessity for everyday life. What would be the key con-
straints for the PERSON entity type when the world de-
scribed stretches into those dark ages?

Back then, a person was often referred to by his/her
ancestry. That is, a person was identified by his/her parents,
along with the name. The parents, in turn, were identified
in terms of their parents and names, and so on.

Certainly, this model has its flaws when we think of
it. Our view of the world involves Big Bangs, Origins of
Species and, hence, an initiation of mankind. So there can
not be an infinite spiraling structure of human predeces-
sors. However, if we leave such deep reflections out of the
picture, our everyday view of ancestry fits this description
quite nicely2. (See also [11, 9])

2For an actual database there would be no need for such keys to be
infinite. It would suffice that the chains of predecessors are long enough
to distinguish every person from every other. However, we suspect that
database designers will typically find the idea of keys with variable and
unbounded length unacceptable.

Now it would seem that PERSON could be a weak en-
tity type with a partial key ’Name’ and two owners, via the
roles ’father’ and ’mother’,themselves beingPERSONs.
So, apparently we can make good use of ownership loops
but, unfortunately, they violate the groundedness require-
ment (6). In view of this, the demand that ownership chains
must be grounded may seem too strong and should perhaps
be abandoned.

If so, should we be making a great fuzz about least fix-
points? Loops in the diagram can be thought of as giving
rise to a system of (recursive) ’equations’, which may have
several ’solutions’. The least fixpoint, if it exists, would
be a distinguished solution singled out to be the chosen
meaning of the circular/recursive relationship. (Cf Thal-
heim [11]) The case against narrowing the interpretation
down to fixpoint semantics is that we do not want to harm
the expressiveness. After all, if the mini-world we are deal-
ing with does involve several such ’solutions’, it should be
possible to retain them in the conceptual model. On the
other hand, when faced with questions ofidentification,
some could prefer to pick a distinguished member from the
set of solutions that a recursive relationship might produce.
So, here lies a debate but we shall not enter into it.

5 On multiple identifying relationship types

As presented above, a weak entity type could have several
identifying relationship types, possibly representing alter-
native ways of identifying a weak entity. This point is
rarely debated.

However, sometimes it is argued that relationship
types should be binary. This, it is claimed, is unproblem-
atic since relationship type of higher order can be trans-
formed into a collection of binary ones. Sometimes this
transformation introduces weak entity-types havingseveral
binary identifying relationship types whichcollectivelyde-
fine a unique ownership of the weak entity type [8]. If it is
mandatory that all identifying roles are taken to be pulling
together to form a single way of identification, the possi-
bility for having alternative keys is lost. This would be an
obvious weakness, but even worse is that commonly used
notation would be ambiguous. In the diagram shown below

there are two weak entity-types and three identifying rela-

tionship types. Hence, one of the weak entity types has two
owners. The trouble is, the notation does not reveal which
one.

It should be remarked that the notation of Atzeni et al
[2] avoids such problems.

6 Conclusion

This has been an attempt to extract the mainstream of entity
relationship modelling to form the basis for the formaliza-
tion of ER-diagrams. The result is an account of ER-syntax
with a higher level of detail and rigor than is usually found
in the literature. We have discussed the consequences of
relaxing some of the requirements involved, and identified
possible new features to the ER-model, such as comple-
menting individual entities withgroupsof entities as a ba-
sic notion.

References

[1] S. Aronoff,Geographic information systems: A man-
gagement perspective, WDL Publications

[2] P. Atzeni, S. Ceri, S Paraboschi, R. Torlone,Data-
base systems. Concepts, languages and architectures,
McGraw Hill 1999

[3] M. Balaban, P. Shoval, Resolving the ’weak status’ of
weak entity types in entity relationship schemas. In
Akoka, Bouzeghoub, Comyn-Wattiau, Metais (Eds)
Conceptual Modeling - ER’99: proceedings of the
18th international conference on conceptual mod-
eling, Lecture Notes in Computer Science 1728,
Springer Verlag 1999

[4] M. Balaban, P. Shoval, Enhancing the ER model with
integrity methods,Journal of Database Management,
Vol 10, No 4, 1999.

[5] C. Batini, S. Ceri, S. Navathe,Conceptual data-
base design. An entity relationship approach, Ben-
jamin/Cummings 1992

[6] P. Chen, The entity-relationship model – Toward a
unified view of data.,ACM transactions on database
systemsVol1, No. 1, 1976

[7] P. Chen P, Database design based on entity and rela-
tionship, In Yao (ed),Principles of database design
Volume I, Prentice Hall 1985

[8] R. Elmasri, S. Navathe,Fundamentals of database
systems, Addison Wesley 2003

[9] J. Grant, T. W. Ling, M. L. Lee, ERL: Logic for
entity-relationship databases,Journal of intelligent in-
formation systems2, 1993

[10] G. M. Nijssen, D. J. Duke, S. M. Twine, The entity-
relationship data model considered harmful.,Proc.
6th symposium on empirical foundations of informa-
tion and software sciences, Atlanta, Ga. 1988

[11] B. Thalheim,Entity-Relationship Modeling. Founda-
tions of Database Technology, Springer Verlag 2000

