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Abstract: - In this paper, a new polynomial neuron-based network is proposed to tackle the problem of nonlinear 
Independent Component Analysis (ICA). We extend our research from a recently presented mono-nonlinearity 
mixture where a linear mixing matrix is sandwiched between two mutually inverse nonlinearities to a so-called 
multi-nonlinearity constrained mixing model. Our aim is to generalize the mono-nonlinearity mixing system to 
the situation that different nonlinearities are now allowed to be used for sources. Meanwhile, the theory of Series 
Reversion is adopted with the neural network demixer to make use of the a priori ‘inverse’ information between 
two layers of nonlinearities. The parameter learning algorithm for this special polynomial network demixer is 
also presented. Simulations have been carried out to verify the efficacy of the proposed approach. We 
demonstrate that the proposed network can successfully recover the original source signals in a blind mode 
under nonlinear mixing conditions. 
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1   Introduction 
With the rapid development during the last decade, 
Independent Component Analysis (ICA) has 
attracted considerable attention in both science and 
industry since it becomes one of the most powerful 
tools in Blind Signal Separation (BSS) [1-4 and 
reference therein]. The applications of ICA have 
involved in the area of wireless communications, 
biomedical signals analysis, and underwater acoustic 
signal processing etc [1, 3, 4]. Generally, the blind 
separation problem of independent sources can be 
defined as follows: Given a set of observations 
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 ( )1 2, , ,i i qx f s s s= �  (1) 
 

where if  is an unknown differentiable bijective 
mapping, 1,2, ,i p= �  and t is the time or sample 
index, the method of Independent Component 
Analysis (ICA) consists of estimating both the 
mixture mappings if ’s and the original sources 

( ),  1,2, ,is t i q= � . In linear ICA, the mixing mapping 
takes the form of the linear combination as 
 

 ( )1 2 1 1 2 2, , ,i i q i i iq qx f s s s m s m s m s= = + + +� �  (2) 
 

which is presupposed in most existing ICA 

algorithms. However, the linear assumption is 
always violated due to the existence of the nonlinear 
distortion in practice and the linear methods 
therefore fail to extract the original source signals 
[5]. For example, the auditory nervous system is 
modelled as a memoryless nonlinear system and 
many physiological signals in biomedical cases are 
nonlinearly distorted. Thus the identification of 
nonlinear dynamics should be taken into 
consideration in separation algorithms. Another 
instance is the recording of multiple speech source 
signals by carbon-button microphones which 
introduce some form of nonlinearity [6]. Hence, the 
search for a nonlinear solution becomes urgent and 
paramount in both theoretical and practical levels. 
     In this paper, based on an extension of the recently 
proposed mono-nonlinearity mixing model, we 
generalize the demixer to the situation that different 
nonlinearities can be utilized for the sources. A 
polynomial-based neural network is proposed as one 
of the solutions for nonlinear ICA. Furthermore, due 
to the special structure of the demixing network, the 
theory of Series Reversion is integrated into the 
network with modification to our current method. 
 
 
2   Nonlinear Mixing and Demixing 

Model for ICA 
Practically speaking, a realistic mixture needs to be 
nonlinear and concurrently capable of treating the 



linear mixture as a special case. In Nonlinear ICA, 
the separation problem become much more difficult 
than the conventional linear case since the 
independent property still holds even after the 
nonlinear transformation. Furthermore, it has been 
pointed out in [7] that there always exist infinite 
number of solutions in nonlinear separation of 
independent sources if the mixing functions if ’s in 
(1) are not constrained. Recently, instead of using the 
general form of mixture displayed in (1), the 
so-called mono-nonlinearity mixing model which is 
originally stemmed from the theory of functional 
analysis is proposed in [8] and expressed as 
 

 ( )1( )f f −=x M s  (3) 
 

where 
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p� �= � �M m m m�  with dimension p q×  

and 1 2

T

i i i iqm m m� �= � �m � .For simplicity, we 

assume that the number of sources is equal to that of 
observations, i.e. p q N= = . It can be recognized 
that the structure of this model is actually one linear 
mixing matrix slotted into two layers of 
nonlinearities, one of which is the inverse function of 
the other. The term of ‘mono-nonlinearity’ results 
from the fact that identical nonlinear distortion is 
applied to each source signal. However, there is no 
guarantee that this condition is always fulfilled in 
practice. In fact, the channels between observations 
and sources are displayed to have arbitrary distortion 
due to the uncertainty of environment. Hence, in this 
paper, preserving the special relationship between the 
two layers in (3), we represent the 
‘multi-nonlinearity’ constrained mixing system by 
the following model: 
 

 -1( )= ⊗ ⊗x F MF s  (4) 
 

where  
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and u  is a matrix with the dimension N T× . 
Obviously, the expression in (4) will reduce to the 
mono-nonlinearity mixing model when 

1 2 Nf f f f= = = =�  and can further treat the linear 

mixture as a special case if { } 1

N
i i

f
=  is linear. 

Moreover, the demixing system, shown in (5), is 
expected to inverse the mixing system and estimate 
the original sources directly. 
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where W is the demixing matrix. From (5), it can be 
inferred that given the observed signals only, our aim 
is to estimate F  and W such that the resulting 
transformed signals are mutually as independent as 
possible and statistically as close as possible to the 
source signals. 
 
 
3  General Polynomial Neural Network 

Approach  
In current literature, nonlinear ICA methods have 
mostly combined with different types of neural 
networks. Pajunen et al [9] provided one of the 
earliest nonlinear ICA solutions by using the 
Self-Organizing Maps (SOM). Since the theoretical 
foundation of the SOM algorithm is based on 
rectangular map, the main limitation of SOM lies in 
the inevitable distortion when the source signals 
differ considerably from the uniform distribution. To 
overcome the disadvantages associated with SOM, 
Pajunen and Karhunen [10] propose the generative 
topographic mapping (GTM) approach for nonlinear 
ICA. However, in order to apply non-uniformly 
distributed source signals, the GTM method requires 
the known probability density function (pdf) of the 
source signals, which may limit the applications of 
this method. Signal transformation methods based on 
Radial-Basis Function (RBF) [11] and Multilayer 
Perceptron (MLP) [5] neural networks have recently 
drawn a substantial amount of attention for their 
flexible nonlinear capability. Under the nonlinear 
condition, both methods provide acceptable 
performance. RBF-based system can provide fast 
convergence at the cost of less accuracy whereas 
MLP can recover the original signals more precisely 
but suffer from high computational complexity. 
Besides the structure of the network, the performance 
of the demixer also depends on the selection of the 
nonlinear activation function in the hidden neurons. 
Besides the structure of the network, the performance 
of the demixer also depends on the selection of the 
nonlinear activation function in the hidden neurons. 
Demixers using SOM [9], GTM [10], RBF [11] and 
MLP with sigmoidal nonlinearity [5] are intrinsically 
nonlinear because of the utilization of fixed 
nonlinearities in the hidden neurons. However, the 
execution by using the fixed degree of nonlinearity 



will lead to the oversized network, which inevitably 
subjects to huge computational complexity. Also, in 
[12], it is argued that the generation of arbitrary 
independent components is accentuated especially 
when an oversized network is used which 
subsequently leads to ‘overfitting’. Hence, in order to 
regulate the outputs of the demixer into one unique 
solution, one approach is to allow the network to 
control its inherent capability and prevent the 
demixer from ‘overfitting’. Therefore, instead of 
using a fixed form of nonlinearity in the hidden 
neurons, we propose to design a network whereby its 
intrinsic nonlinearity can be flexibly controlled. In 
this paper, based on the Weierstrass Approximation 
Theorem, polynomials are performed as the 
activation function in the hidden neurons. The 
coefficients in the polynomials are adaptively 
adjusted by the corresponding parameter learning 
algorithm to control the nonlinearities of the hidden 
layers in the network. 
 
 
3.1 Polynomial Neuron-Based Network for 

Nonlinear ICA 
In the Weierstrass Approximation Theorem [13], it is 
pointed out that for every continuous function 

:[ , ]u vΩ →� , there always exists a polynomial series 
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which can uniformly approximate Ω  with arbitrary 
accuracy. The Weierstrass Approximation Theorem 
plays an important role in the proposed approach 
since it guarantees the existence of the effective 
polynomial approximation and provides the 
theoretical foundation of the polynomial neural 
network. Therefore, according to the structure of the 
multi-nonlinearity constrained demixing system as in 
(5), a feedforward polynomial neuron-based network 
is proposed as shown in Fig. 1 where the hidden layer 
neurons in the network perform the polynomial series 

to approximate the mixing mapping functions { } 1
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=
. Accordingly, in vector notation, the 

outputs of the demixer assume the following form of 
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where 
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and [ , ]j iy  denotes the ith output of the jth layer in the 

demixer, { }[ , ] 1 [0,  ];  [1,  ];  ,  m ia m M i N m i∈ ∈ ∈�  

and { }[ , ] 2 [1,  ];  [1,  ];  ,  n ib n M i N m i∈ ∈ ∈�  are the 

coefficients while M1 and M2 represent the order of 
the series expansion; ‘ � ’ denotes the Hadamard 
product. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Multi-nonlinearity Constrained Mixing 
Model and Neuron-based Nonlinear ICA Demixer 
 
3.2   Series Reversion 
As shown in Fig. 1, the implementation of the 
proposed demixer requires the inverse function of the 
polynomial series. It is possible to express the inverse 
function of a polynomial as a closed form when the 
order of the forward function is 3 or less; however, 
the problem becomes difficult and intractable as soon 
as the order increases. The theory of the Series 
Reversion provides an alternative solution and 
further establishes the foundation for computing the 
inverse function of a general polynomial expansion. 

According to the theory of Series Reversion [14], 
if the function g has a polynomial expression as 
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Hence, the derivative of the reverse series with 
respect to the coefficients in the forward polynomial 

1

m

g
α

−∂
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 can be easily obtained by using 
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�  which is necessary for the 

derivation of the parameter learning algorithm. 
 
3.3   Parameter Learning Algorithm 
In nonlinear ICA, the goal of the demixer is to obtain 
a set of signals as independent as possible and as 
close as possible to the original sources. The cost 
function rooted in the Kullback-Leibler Divergence 
(KLD) [1-2] is commonly used in most blind signal 
separation problem. However, under nonlinear 
condition, the independence preservation is not 
strong enough for ensuring signal separability and 
inadvertently results in non-uniqueness of solutions. 
Therefore, to reduce the indeterminacy of non-unique 
solutions, the cost function is modified by 
augmenting a set of signal constraints to the original 
KLD cost function as follows: 
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iε ’s are a set of constants to control the importance of 
the additional constraints, ( ),cum u j  represents the jth 
order cumulant of u and D is the maximum order of 
the cumulant. In fact, these constraints imply the use 
of a priori information about the source distributions 
which is intended to match the outputs of the demixer 

to the original source signals in terms of cumulants. 
Making use of the relationship between the forward 
and reverse polynomial series as in (7)-(8), only the 
weight W and the coefficients  

{ }[ , ] 1 [0,  ];  [1,  ];  ,  m ia m M i N m i∈ ∈ ∈�  are the 

parameters which need to be updated to optimize the 
cost function. 

Based on the architecture of the proposed 
polynomial neural network expressed as in (6), the 
derivative of the cost function with respect to the 
parameters can therefore be derived as 
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By inserting (10)-(12) into (13)-(14), the gradient 
descent based learning algorithm can be obtained. 
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4   Results 
Five subgaussian signals are generated synthetically 
as the original sources in the experiment, expressed 
as 
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Simulation has been carried out iteratively with 2500 
samples and the sampling frequency is 1kHz. The 
source signals are then mixed according to (4) where 
M is a 5 5×  random mixing matrix, and 
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The learning rates for the weights and the coefficients 

ma  are set to 0.001µ =W  and 0.00003
m

µ =a , 

respectively. 
In order to assess the performance of the proposed 
approach, we compare it with the well-known 
algorithms (Linear ICA, RBF and FMLP Network) 
by the performance index expressed as 
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The original source signals, nonlinearly mixed 
signals, recovered signals by Linear ICA method [15] 
and the proposed polynomial-based network are 
shown in Fig. 2. The performance index of the tested 
algorithms is displayed in Fig. 3. As can be seen, the 
proposed approach has demonstrated its efficacy in 
separating signals under the nonlinear mixture. The 
success is consecutively followed by the MLP and 
RBF but the separation results achieved by the linear 
method falls far from optimal and this indicates the 
crucial need for nonlinear separation techniques. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2:  (a) Original source signals. 
  (b) Nonlinearly mixed signals. 
  (c) Recovered signals by the linear ICA. 

(d) Recovered signals by proposed method. 
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Fig. 3: Performance index of the tested algorithms 
 
 
4   Conclusion 
A new demixing scheme for blind separation of 
nonlinearly mixed signals is proposed in this paper. 
The key feature of the proposed approach is 
summarized as follows: (a) Compared with the 
mono-nonlinearity demixer, multiple nonlinearities 
are now allowed to be used for the sources since the 
multi-nonlinearity constrained mixing model is 
based. (b) A set of adaptively adjustable nonlinear 
functions is performed as the hidden neurons’ 
activation function. (c) The theory of Series 
Reversion is integrated with neural networks to 
compute the inverse of the forward polynomial 
series. 
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