Zero-Term Rank Preservers over Fields and Rings

LEROY B. BEASLEY Department of Mathematics Utah State University Logan, Utah 84322-3900 U.S.A lbeasley@math.usu.edu

&

SEOK-ZUN SONG Department of Mathematics Cheju National University Cheju, 690-756 REPUBLIC OF KOREA szsong@cheju.cheju.ac.kr

Abstract: - The zero-term rank of a matrix is the maximum number of zeros in any generalized diagonal. This article characterizes the linear operators that preserve zero-term rank of $m \times n$ matrices when the matrices have entries either in a field with at least $mn+1$ elements or in a ring whose characteristic is not 2.

Key-Words: - Zero-term rank, term rank, linear operator, preserver, (*P*,*Q*,*B*)-operator, cell.

1 Introduction

Let M $_{m,n}(F)$ denote the set of $m \times n$ matrices over *F* , where *F* is an algebraic set, usually a field. Let $A \in M_{m,n}(F)$ and let #A denote the number of nonzero entries of *A*. Let **B** be the two element Boolean algebra, and \overline{A} denote the $m \times n$ matrix with entries in **B** such that $\overline{a_{i,j}} = 0$ if and only if $a_{i,j} = 0$. Let $E_{i,j}$ be the matrix in M $_{m,n}(F)$ which has a "1"in the (i, j) entry and is zero elsewhere.

We call *Ei*, *^j* a *cell*. A matrix *A* is said to *dominate* matrix *B* if $a_{i,j} = 0$ implies that $b_{i,j} = 0$, and we write $A \geq B$.

The *term rank* of $A \in M_{m,n}(F)$ is the maxumum number of nonzero elements on any generalized diagonal. Equivalently, the term rank of *A* is the smallest *k* such that for some permutation matrices *P* and *Q*, *PAQ* has an $(m-r) \times (n-s)$ submatrix of zeros and $r + s = k$. We denote the term rank of *A* by *t*(*A*) . Let *J* denote the matrix of all 1's. If *B* is a (0,1) matrix such that $B = \overline{A}$ then the *zeroterm rank* of *A*, $z(A)$, is the term rank of $J - B$, that is, $z(A) = t(J - B)$. In other words, the zeroterm rank of a matrix is the maximum number of zeros in any generalized diagonal.

If $T: M_{m,n}(F) \to M_{m,n}(F)$ is a linear operator,

define $T: M_{m,n}(\mathbf{B}) \to M_{m,n}(\mathbf{B})$ by

$$
\overline{T}(\overline{A}) = \sum_{i=1}^m \sum_{j=1}^n \overline{T(a_{i,j}E_{i,j})} .
$$

A linear operator *T preserves* a set Χ if $T(X) \subset X$. A linear operator *T strongly preserves* a set Χ if *T* preserves the set and *T* preserves the complement of the set in $M_{m,n}(F)$. *T* preserves a function $f: M_{m,n}(F) \to F$ if

$$
f(T(X)) = f(X)
$$

for every $X \in M_{m,n}(F)$.

 In [1] and [2], Beasley and Pullman characterized the term rank preservers and term rank-1 preservers. In [3] Beasley, Song and Lee have characterized the zero-term rank preservers, as well as zero-term rank 1 preservers with additional conditions. Those works were over antinegative semirings. Our results below require that the entries of the matrices come from a field with at least $mn + 1$ entries.

A linear operator $T: M_{m,n}(F) \to M_{m,n}(F)$ is called a (*P*,*Q*,*B*)-*operator* if there exist permutation matrices *P* and *Q*, and a matrix *B* all of whose entries are nonzero such that

 $T(X) = P(X \circ B)Q$ for all $X \in M_{m,n}(F)$ or, if $m = n$, $T(X) = P(X \circ B)^t Q$ for all $X \in M_{m,n}(F)$, where $X \circ B$ denotes the Hadamard(or Schur) product of *X* and *B* , i.e., $X \circ B = (x_{i,j}b_{i,j})$. In [3], the linear operators which preserve zero-term rank were shown to be (P, Q, B) operators. We now state that result for later reference.

Theorem 1.1 [3] If *S* is any antinegative semiring, and *T* is a linear operator on $M_{m,n}(S)$, then the following are equivalent:

-) *T* is a (P,Q,B) -operator;
-) *T* preserves zero-term rank;
-) *T* preserves zero-term rank 1 and $\overline{T(J)} = J$.

Theorem 1.2 [2] If *S* is any semiring, and *T* is a linear operator on $M_{m,n}(S)$, then the following are equivalent:

-) *T* is a (P, Q, B) -operator;
-) *T* preserves term rank;
-) *T* preserves term ranks 1 and 2.

2 Zero-term rank preservers over fields

 We begin with two lemmas upon which the main theorems will rely.

Lemma 2.1 If F is a field with at least $mn+1$ elements and $T: M_{m,n}(F) \to M_{m,n}(F)$ preserves zero-term rank 1, then there exists $X \in M_{m,n}(F)$ such that $\overline{T(X)} = J$. That is $\#T(X) = mn$.

Proof. Choose $X \in M_{m,n}(F)$ such that $#T(X) \ge$ $#T(A)$ for all $A \in M_{m,n}(F)$. Since F has at least $mn+1$ elements, we can find *X* such that $T(X) \geq T(A)$ for all $A \in M_{m,n}(F)$.

Suppose that $\overline{T(J)} \neq J$. Then, for some (i, j) , $T(A) \circ E_{i,j} = 0$, for all $A \in M_{m,n}(F)$. Further by permuting rows and columns, we may assume that $(i, j) = (1,1)$. Also, since *F* has at least $mn+1$

elements, we may assume that $\overline{X} = J$, so that $z(X) = 0$. Let $E_{k,l}$ be a cell such that $T(E_{k,l})$ has a nonzero (s,t) entry with $s,t \geq 2$. If no such cell existed we should have that $z(X - x_{i,j}E_{i,j}) = 1$ for every cell $E_{i,j}$ and necessarily,

$$
z(T(X - x_{i,j}E_{i,j})) = \min\{m,n\},\,
$$

a contradiction. Now, for $T(E_{k,l}) = R = (r_{i,j})$, we

have that
$$
z(T(X - \frac{x_{s,t}}{r_{s,t}} E_{k,l})) \geq 2
$$
,

and

$$
z(X-\frac{x_{s,t}}{r_{s,t}}E_{k,l})\leq 1.
$$

Thus, we must have that $z(X)$ *x r* $E^{s,t}E$ *s t* $(X - \frac{x_{s,t}}{n} E_{k,l})$, $-\frac{x_{s,t}}{x}E_{k,l}$ = 0. Let

Y X x r $\frac{s,t}{c}E$ *s t* $= X - \frac{x_{s,t}}{s} E_{k,l}$, $E_{c,d}$ is a cell whose image under T has an (s,t) entry which is zero, then $z(Y - y_{c,d} E_{c,d}) = 1$, while $z(T(Y - y_{c,d} E_{c,d})) \ge 2$, a contradiction. Thus the image of every cell has a nonzero (s,t) entry. Let $T(Y) = W$. If

$$
T(E_{1,1}) = U
$$
 and $T(E_{1,2}) = V$,

then

$$
T\left(Y - y_{1,1}E_{1,1} + \left(\frac{y_{1,1}u_{s,t} - w_{s,t}}{v_{s,t}}\right)E_{1,2}\right)
$$

has zeros in the $(1,1)$ and (s,t) entries, and hence has zero term rank at least 2, while

$$
z\left(Y - y_{1,1}E_{1,1} + \left(\frac{y_{1,1}u_{s,t} - y_{s,t}}{v_{s,t}}\right)E_{1,2}\right) = 1,
$$

tradiction. Thus $\overline{T(X)} = J$.

a contradiction. Thus $T(X) = J$.

 The hypothesis in the above lemma requiring the field to have at least *mn* +1 elements can be seen to be necessary by the following example.

Example 2.1 Let
$$
F = Z_2
$$
. Consider
\n $T: M_{3,1}(Z_2) \rightarrow M_{3,1}(Z_2)$

defined by

$$
T(E_{1,1}) = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad T(E_{2,1}) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \text{ and } T(E_{3,1}) = 0.
$$

Then *T* preserves zero-term rank 1, but $\overline{T(J)} \neq J$ since for any $A \in M_{3,1}(Z_2)$, $T(A)$ is 1 1 0 L L L L L $\overline{}$ J $\overline{}$ $\overline{}$ $\overline{}$, 1 0 1 I L I I L $\overline{}$ J $\overline{}$ $\overline{}$ $\overline{}$,

0 **x** 1 I L .
أ $\overline{\mathsf{I}}$ L $\overline{}$ J II Ί $\overline{}$, or the zero matrix, and is zero only if $A = 0$ or

$$
E_{3,1}.
$$

 As the following lemma illustrates, characterizing linear operators which preserve the set of matrices of zero-term rank 1 can be assisted by first looking at linear operators on $M_{m,n}(\mathbf{B})$.

Lemma 2.2 If F is a field with at least $mn+1$ elements and $T: M_{m,n}(F) \to M_{m,n}(F)$ preserves zero-term rank 1, then \overline{T} is bijective on the set of cells in $M_{m,n}(\mathbf{B})$.

Proof. From the above proof of Lemma 2.1, there exists $X \in M_{m,n}(F)$ such that $T(X)$ has all nonzero entries. That is $#T(X) = mn$. Since *F* has at least $mn+1$ elements, there exists a pair (k, l) such that for some x_{k} , \in *F*,

$$
T(E_{i,j} + x_{k,l} E_{k,l}) > T(E_{i,j})
$$

unless $#T(E_{i,j}) = mn$. Let $Y_1 = E_{i,j} + x_{k,l}E_{k,l}$. If $#T(Y_1) \neq mn$ there is some cell $E_{r,s}$ such that for some *x*_{*r*,*s*} ∈ *F*, *T*(*Y*₁ + *x*_{*r*,*s*} *E*_{*r*,*s*}) > *T*(*Y*₁). Repeating this process, one finds a matrix *Y* such that $#Y < mn$ while $\#T(Y) = mn$. Since $\#Y < mn$, we may assume without loss of generality that $y_{11} = 0$. Since *F* has at least $mn+1$ elements, there is $x \in F$ such that

and

$$
#(Y + x(J - E_{1,1})) = mn - 1.
$$

 $#T(Y + x(J - E_{11})) = mn$

That is,

$$
z(T(Y + x(J - E_{1,1}))) = 0
$$

while $z(Y+x(J-E_{11}))=1$, a contradiction. Thus $#T(E_{i,j}) \leq 1$, for all cells $E_{i,j}$. Further, if $T(E_{i,j}) = 0$, then since $#T(X) = mn$, $T(E_{r,s})$ must have at least 2 entries for some (*r*,*s*) , a contradiction. That is \overline{T} is bijective on the set of cells $\Box M_{m,n}(\mathbf{B})$.

Theorem 2.1 If F is a field with at least $mn+1$ elements and $T: M_{m,n}(F) \to M_{m,n}(F)$ preserves zero-term rank 1, then *T* is a (P, Q, B) -operator.

Proof. From lemma 2.2, \overline{T} is bijective on the set of cells in $M_{m,n}(\mathbf{B})$. Since *T* preserves zero-term rank 1 we have that \overline{T} does also. By Theorem 1.1, \overline{T} is a (P, Q, B) -operator, where $B = J$. Thus, P^tTQ^t is the identity linear operator on $M_{m,n}(\mathbf{B})$. That is, $P^{t}T(E_{i,j})Q^{t} = b_{i,j}E^{t}$ *i j t* $(E_{i,j})Q^t = b_{i,j}E_{j,i}$ for each pair (i, j) (or perhaps $P^t T(E_{i,i}) Q^t = b_{i,i} E$ *i j t* $(E_{i,j})Q^{t} = b_{i,j}E_{j,i}$ in the case $m = n$). Then, $T(X) = P(X \circ B)Q$ for all $X \in M_{m,n}(F)$ or $m = n$ and $T(X) = P(X \circ B)^t Q$ for all $X \in \mathbf{M}_{m,n}(F)$.

 By application of theorem 2.1 to theorems 1.1 and 1.2 we obtain the characterizations of the linear operators that preserve zero-term rank of matrices over fields .

Theorem 2.2 If F is a field with at least $mn+1$ elenents and $T: M_{m,n}(F) \to M_{m,n}(F)$ then the following are equivalent:

-) *T* is a (P, Q, B) -operator;
-) *T* preserves zero-term rank;
-) *T* preserves zero-term rank 1.
-) *T* preverves term rank;
-) *T* preserves term rank 1 and term rank 2.

Proof. Obviously) implies) and) implies). Theorem 2.1 shows that) implies). Since),) and) are equal alent by theorem 1.2, we have done.

3 Zero-term rank preservers over rings

 In this section, we obtain the characterizations of the linear operators that preserve zero-term tank of matrices over rings.

Lemma 3.1. Let \Re be any ring whose characteristic is not 2. If $T: M_{m,n}(\mathfrak{R}) \to M_{m,n}(\mathfrak{R})$ preserves zero-term ranks 0 and 1 then *T* maps each cell to a nonzero multiple of some cell which induces a bijection on the set of indices $\{1,\dots,m\} \times \{1,\dots,n\}$.

Proof. Since *T* preserves zero-term rank 0, We have $T(J) = K$ for some $K \in M_{m,n}(\mathfrak{R})$ with $k_{i,j} \neq 0$ for all (i, j) . If $T(E_{i,j}) = 0$ then $T(J \setminus E_{i,j}) = 0$ *T*(*J*). But $z(T(J)) = z(K) = 0$ while $z(T(J \setminus E_{i,j})) = 1$ since *T* preserves zero-term rank 1. This contradiction implies that $T(E_{i,j}) \neq 0$ for all (i, j) . Since $z(T(J \setminus E_{i,j})) = 1$, there is some pair (r, s) such that $T(J \setminus E_{i,j})$ has (r, s) entry zero. Let $T(E_{i,j}) = X = (x_{c,d})$. Then $K = T(J) = T(J \setminus E_{i,j}) + T(E_{i,j})$ and hence $k_{r,s} = x_{r,s}$. If $x_{c,d} \neq 0$ and $x_{c,d} \neq k_{c,d}$, then $z(x_{c,d} - I - k_{c,d}E_{i,j}) = 0$ while the (c,d) entry of $T(x_{c,d} - k_{c,d} E_{i,j}) = x_{c,d} T(J) - k_{c,d} T(E_{i,j})$ is $x_{c,d} k_{c,d} - k_{c,d} x_{c,d} = 0$, a contradiction. Thus if $x_{c,d} \neq 0$, then $x_{c,d} = k_{c,d}$ for all (c,d) . Further for $T(J \setminus E_{i,j}) = C$, we must have $C + X = K$. Hence if $x_{r,s} \neq 0$, we have $c_{r,s} + x_{r,s} = k_{r,s}$ or $c_{r,s} + k_{r,s} = k_{r,s}$. Necessarily, $c_{r,s} = 0$. Since $z(T(J \setminus E_{i,j})) = 1$, we must have all the zero entries of *C* lie in a single row or column. For our purpose we may assume all zero entries of *C* and hence all nonzero entries of *X* lie in row *r* .

Suppose that $T(E_{i,j}) = X = (x_{c,d})$ and

 $T(E_{h,l}) = Y = (y_{e,f})$. If the (r, s) entries of both *X* and *Y* are not zero, then $k_{r,s} = x_{r,s} = y_{r,s}$ and hence $T(E_{i,j} + E_{h,l})$ has (r, s) entry $2k_{r,s}$. Since the characteristic of \Re is not 2, $2k_r$, \neq 0. Hence $T(2J - E_{i,j} - E_{h,l})$ has zero in the (r, s) entry so $z(T(2J - E_{i,j} - E_{h,l})) \ge 1$ while $z(2J - E_{i,j} - E_{h,l}) = 0$, a contradiction. By the pigeon hole principle, since $T(E_{i,j}) \neq 0$ for all (i, j) , $T(E_{i,j})$ must be a single weighted cell. Since $T(J) = K$ has zero-term rank 0, the mapping *T* must induce a bijection on the set of indices $\{1,\dots,m\}\times\{1,\dots,n\}.$

 Now, we have the following theorems 3.1 and 3.2 by the similar methods to those of theorems 2.1 and 2.2

Theorem 3.1. Let \Re be any ring whose characteristic is not 2. If $T: M_{m,n}(\mathfrak{R}) \to M_{m,n}(\mathfrak{R})$ preserves zero-term ranks 0 and 1, then *T* is a \Box (P, Q, B) -operator.

Theorem 3.2. Let \Re be any ring whose characteristic is not 2, and $T: M_{m,n}(\mathfrak{R}) \to M_{m,n}(\mathfrak{R})$ be a linear operator. Then the following are equivalent :

-) *T* preserves zero-term ranks 0 and 1;
-) *T* is a (P, Q, B) -operator;
-) *T* preserves zero-term rank;
-) *T* preverves term rank;
-) *T* preserves term rank 1 and term rank 2.

 \Box

References:

- [1] L. B. Beasley and N. J. Pullman, Term rank, permanent and rook polynomial preservers, Linear Algebra and Its Applications, Vol 90, 1987, pp 33-46.
- [2] L. B. Beasley and N. J. Pullman, Linear operators that preserve term rank 1, Proc. Royal Irish Academy, Vol 91, 1990, pp 71-78.

[3] L. B. Beasley, S.-Z. Song and S.-G. Lee, Zeroterm rank preservers, Linear and Multilinear Algebra (Special Issue on Linear Preserver Problems), 2000, to appear.