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1 Introduction 
The Travelling Salesman Problem (TSP) belongs in 
logistic management to the oldest and most 
frequently solved tasks for which new model 
solutions have been constantly sought.  In a basic 
version it means a simple problem, easy to define, 
however, in a certain extent it becomes difficult to 
solve. The basic situation is given by existence of a 
certain starting point (basis, let us label it e.g. A1) 
from which a product is supposed to be distributed 
to (n-1) other places (let us label them A2, A3, … 
An) so that every place is visited just once and the 
travelling sales person finishes their route back 
again at the basis A1 and the objective value (e.g. 
travel distance in km) is minimal. 
Theoretical solution of the basic model is easy. It is 
sufficient to explore all possible routes (i.e. 
sequence of visits to particular places) and find out 
which of them provides the minimum value of the 
objective function. If we are to visit (n-1) places in 
sequence, then the total number of all possible 
routes (closed circuits) is given by a permutation of 
the number (n-1)!. For a low-value n these routes 
can be explicitly defined, but with an increasing 
number of visited places the total number of all 
possible routes rises sharply. For example for (n-1) 
= 6 places, there are 720 possible circuits, for (n-1) 
= 12, there are 479 001 600 and for (n-1) = 18, 
there are already hardly imaginable 6,402*1015 
various routes. 
 In logistics numerous possibilities and practical 
examples of application of the travelling sales 
person model can be found.  Typically, e.g. 

distribution of food products from producers to 
shops, distribution of fuel to petrol stations, 
distribution of various products from producers or 
distributors to customers, visits of doctors at 
patients´ homes, orbital inspection walks or check-
ups starting at a certain point and leading through 
individual checking points etc.  
 
 

2 Formulating the travelling 
salesman problem 
Literature provides numerous differing methods 
and approaches in terms of the TSP solutions. 
From a theoretical point of view the TSP is seen by 
some authors as a specific problem within the 
theory of graphs and networks, because visited 
places can be viewed as certain nodes and the 
network edges create transport links between them. 
([1],[2] etc.) In case the nodes are particular places 
in a certain geographical territory, they can be 
perceived as destinations in a map and a 
contemporary navigation technology can be used 
for the solution.  
From a methodological viewpoint the task is often 
solved as a problem of integer linear programming 
with specific conditions. There is a noticeable 
connection with assignment models used in solving 
certain problems of production planning.   
Let us label the variable xij as a link between the 
nodes i and j and acquiring only two values: 
 xij = 1 if the transport is carried via the 
route (i,j) and 
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 xij = 0 if the transport is not carried via the 
route (i,j)  
and further let the cij = objective function rate on 
the route (i,j).  
Then the TSP model can be formally expressed as 
follows: 
Minimize objective function z = ∑i ∑j xijcij 
Respecting constraints: ∑i xij = 1   for i = 1,2, ... n 
   ∑j xij = 1   for j = 1,2, ... n 
    xi1,j1 +  xi2,j2 + ...  + xin,jn = n 
  for j1 = i2, j2 = i3, ... jn = i1 
The last constraint introduces a requirement of a 
sequenced route, where each place is visited just 
once and all the route makes a closed circuit 
finishing in the starting point again. [3] 
A basic model can be described also as a graph of 
nodes (places) and edges (connecting) between 
them and these connections can be put in a matrix 
of distances between nodes.  
 
 

3 Methods of solving a TSP 
Literature cites a whole range of TSP methods 
differing in various approaches to the solutions, 
efficiency of the procedures and also the outcomes. 
Let us quote brief characteristics of the most often 
used ones.  
 
Method of total enumeration 
In principle it is a combinatorial solution. The 
method rests in evaluation of all potential routes 
(sequences) in the total number of (n – 1)!. The 
advantage is that a global optimum is always found, 
however, it is not employable if higher numbers of 
visited places are considered. With every added 
element (node) the amount of possible solutions 
grows exponentially and not even nowadays do we 
have computers powerful enough for being able to 
provide optimum solution within reasonable time. 
[4] 
 
Method of branches and bounds  
This method belongs to the oldest ones and the 
most often used algorithms for the TSP solutions. 
The merit of the method rests in a gradual 
decomposition of a possible solution set into a 
number of mutually disjunctive subsets labelled as 
branches. In each step the following is estimated: 
• The upper limit of the objective function that is 
most often the value of the objective function  zH 
without respecting limits and 
• Maximum lower bound of an objective 
function zD of acceptable solutions which are 
known to us within the step. 

Both the estimates can be employed for seeking 
non-prospective directions of further procedures:  if 
for any branch zH < zD, then the given direction can 
be excluded. However, this method is also, 
especially for higher n, too laborious and does not 
always guarantee an optimum solution at the first 
attempt. For more detail see e.g. [5] 
 
Efficient algorithm of Clarke and Wright 
A significant progress in TSP solutions was 
provided by the Clarke’s and Wright’s method. The 
initial situation assumes that each place is supplied 
individually and always a return to the starting base 
follows. The essential idea is based on the 
calculation of economies achieved through 
integrating other places into the circular route. An 
indisputable asset of this algorithm is its function to 
respect further restrictions often generated by the 
practice, e.g. the need to optimize more orbital 
routes, to use more vehicles while respecting their 
various capacities etc. (For detail see [4])  
Guerra, Murino and Romano worked with this 
algorithm for optimize the routing phase in a 
Location-Routing Problem (LRP) in [6]. LRP can 
by assimilate to a Vehicle Routing Problem (VRP) 
and after that they combine and balance VRP with 
TSP. Both problems were solved with Clarke and 
Wright saving algorithm and the Branch and Bound 
model. 
 
Computer Simulation 
The development of simulation models, their 
program support and increasing computing power 
brought about attempts at use of simulation 
techniques for solving large TSPs. Their merit rests 
in random PC sampling in large scale that is later 
evaluated according to a selected objective 
function.  Though the solution does not guarantee 
the global optimum, a sufficiently large number of 
simulations will issue in achieving the best possible 
solution, the value of which will be close to the 
optimum [7]. 
 
Ant Colony Optimization Algorithm (ACO)  
ACO is one of the metaheuristic methods for 
solving TSP. Jalali, Afshar and Marino [8] 
described ACO as observation of real ants, and 
upon finding food return to their colony while 
laying down pheromone trails. If other ants find 
such a path, they are likely not to keep travelling at 
random, but to instead follow the trail, returning 
and reinforcing it if they eventually find food. 
There is a higher probability that the trail with a 
higher pheromone concentration will be chosen. 
The pheromone trail allows ants to find their way 
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back to the food source and in the opposite way. 
The trail is used by other ants to locate food source 
discovered by any ant. When a number of paths 
available from the nest to a food source, a colony of 
ants may by able to exploit the pheromone trail left 
by individual members of the colony to discover 
the shortest path from the nest to the food source 
and back. As more ants choose a path to follow, the 
pheromone on the path builds up, making it more 
attractive to be followed by other ants.  
To solve TSP, we keep the strength of pheromone 
trail τi,j for each combination of two points. The 
role of each ant is to find a valid solution, thus 
possible routes. From the starting point, the ant 
gradually repeats a move when it chooses a place 
where it has not been yet while moving to it from 
its current location. Once there are no more 
vacancies left, the ant returns to the starting 
location. As a result, the ant keeps its path T. If the 
ant k is currently at the location i, then the 
probability that it goes to the city j is 

( ) ( )
( ) ( )∑

= βα

βα

ητ

ητ

ijij

ijijk
ijP  

Where τkij is the total pheromone deposited on path 
ij, ηk

ij is the heuristic value of path ij according to 
the measure of the objective function (a priori 
knowledge, typically 1/cij, where cij is distance). α,β 
are parameters that control the relative importance 
of the pheromone trail versus heuristic value. When 
all the ants have completed a solution, the trails are 

updated by ( ) k
ij

k
ij

k
ij ττρτ ∆+−= 1  

where ρ is the pheromone evaporation coefficient 
and ∆τkij is the amount of pheromone deposited, for 
a TSP problem by Q/Lk if ant k uses way ij  in its 
tour, where Lk is the cost of the kth ant’s tour 
(typically length) and Q is a constant. 
Ant colony optimization algorithms have been used 
to produce near-optimal solutions to the travelling 
salesman problem. The first ACO algorithm was 
aimed to solve the travelling salesman problem, in 
which the goal is to find the shortest round-trip to 
link a series of cities. It is able to find the global 
optimum in a finite time.  
Rudeanu and Craus [9] presented Parallel 
implementation of ant colony optimization that is 
faster and more efficient. It’s a framework based on 
the message-passing communication paradigm 
(MPI). MPI is a language-independent 
communications protocol used to program parallel 
computers. Another using of parallel algorithm 
using MPI was presented in [10]. 
ACO is one of the Swarm Intelligence systems 
which include many other algorithms such as 

Particle Swarm Optimization and River formation 
dynamics [11]. 
 
Particle Swarm Optimization Algorithm (PSO) 
PSO proceed from the social behavior of organisms 
such as bird flocking and fishing schooling. 
Through cooperation between individuals, the 
group often can achieve their goal efficiently and 
effectively. PSO simulates this social behavior as 
an optimization tool to solve some optimization 
problems. Each particle flies in the search space 
with a velocity that is dynamically adjusted based 
on its own flying experience and its companions’ 
flying experience. In other word, every particle will 
utilize both the present best position information of 
its own (pbest) and the global best position 
information (gbest) that swarm has searched up-to-
now to change its velocity and thus arrives in the 
new position. 
More about this algorithm and its mathematical 
description is in [12]. 
 
Genetic algorithms 
In recent years there have been attempts to use so 
called genetic algorithms for TSP solutions. Simply 
stated, genetic algorithms transfer evolution 
principles in living organisms into intelligent 
searching and model optimization in other fields.  
Biological terminology is applied also to this very 
description of the algorithm. Genetic algorithm, as 
well as nature, works with population of 
individuals (P) defined by one or more 
mathematical genes – chromosomes (i.e. sequences 
of numbers in binary notation).  
The genetic algorithm (GA) uses the following 
steps: 
1. Generate a population. The GA randomly 
samples values of the changing cells between the 
lower and upper bounds to generate a set of 
(usually at least 50) chromosomes. The initial set of 
chromosomes is called the population.  
2. Create a new generation. In the new 
generation, chromosomes with a smaller fitness 
function (in a minimization problem) have a greater 
chance of surviving to the next generation. 
Crossover and mutation are used to generate 
chromosomes for the next generation. 
3. Stopping conditions. At each generation, 
the best value of the fitness function in the 
generation is recorded, and the algorithm repeats 
step 2. If no improvement in the best fitness value 
is observed after many consecutive generations, the 
GA terminates.(For detail see [1]) 
Technically, the GA is the sort of a simulation 
model. For solving of GA and other specific tasks 
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in Excel there was developed a new Evolutionary 
Solver. This Evolutionary Solver is available since 
Excel 2007 and later versions. The Evolutionary 
Solver is good for solving of “nonsmooth” 
problems with more local extremes or for solving 
of combinatorial models with few constrains. 
Respecting the simulation background of GA, the 
Evolutionary Solver finds usually a very good 
solution, but there is no guarantee that it will find 
the best solution. Evolutionary Solver doesn’t 
handle constraints well and therefore it is usually 
better to penalize constraints violations and include 
the penalties in the objective. Because of the 
solution process is driven by random numbers, two 
different runs can lead to different solutions. In 
spite of these “weaknesses”, the Evolutionary 
Solver is an effective tool for solving of GA and 
similar problems.  
More authors propose new modifications and 
improvements of GA. For example, an effective 
parallel model was presented from Bai Xiaojuan 
and Zhou Liang in [13]. It is based on the 
traditional genetic algorithm, but a new operating 
mechanism of GA was improved means of adaptive 
crossover and mutation. It uses probability of GA, 
which can keep the solution space effective. 
Further, 2-opt neighbourhood search optimization 
techniques are imported, which can ensure the 
evolution process is not stagnation, and improve 
the efficiency of solving. Another improving 
proposals of Genetic Algorithm were presented in 
[14] [15]. The interest of many authors about GA 
proved to be the promising and effective solving 
method for the specific group of optimization 
models. 
 
Solutions in geographically oriented databases  
Significant advantage in solutions for orbital 
transport problems can be seen in software products 
using geographical databases or maps. For 
example, the MapInfo Professional software can 
find, inter alia, an optimum transport vehicle circuit 
in the map by means of its tool “Rote View”, just 
on the basis of labelling the starting point and the 
places to be visited. After a selection has been done 
from various offered criteria (e.g. minimum travel 
distance or minimum travel time), the screen 
directly shows the optimum route. [5] 
The asset of these software types subsists also in 
the capacity to reflect other limiting conditions 
which are inherent to particular tasks in the 
working practice. Their drawback consists in a 
relatively high price.  
 
 

4 Application of the TSP in 
logistic practice 
When solving real travelling salesman problems in 
logistic practice a lot of other constraints occur, 
modifying the described basic model and imposing 
new requirements on it. In some cases new 
limitations can be considered within the model, in 
other situations these requirements have to be 
solved outside the model.  
When constructing a model for particular situations 
these varied conditions need to be respected to 
ensure a successful model implementation.  
Above all, there is a need for distinguishing 
between situations when a circular route is always 
fixed to the same number of given places or when 
the circular routes vary for each distribution 
transport. In the first case, the task can be solved 
once forever, in the second case it is inevitable to 
count on planning and optimizing each distribution 
delivery all over again. In this case the early and 
correct demand forecasting and planning can 
contribute to planning improvement of products 
transport to clients. [16]  
In his thesis [17], the author encountered a problem 
where a company was to distribute daily a variety 
of chemical products under orders to about 20 
customers virtually all around the Czech Republic. 
This set of customers was different every day as 
some customers occurred therein more frequently 
while some only rarely or once. Optimization 
should therefore be carried out every day. 
However, the everyday application should be 
supported by a simple and suitable type of 
software.  
 
4.1 Objective Function Selection Issue 
The most commonly used objective function is 
minimization of the distance, i.e. the total number 
of miles driven. If we disregard the fact that the 
distances obtained from the GPS system typically 
do not copy exactly the distance according to the 
road network, the criterion of the minimum of the 
distances travelled does not always have to be 
satisfactory. In some cases, the carrier may prefer 
the criterion of minimum time or cost. In both the 
cases, however, it is much more difficult to obtain 
data to the input matrix of the coefficients.  
The matrix of objective function rates between the 
starting point, marked with index 1, and all the 
customers may be found on the basis of the 
addresses of customers, for example using the route 
planner at www.mapy.cz. In this route planner we 
have two choices at first. We can choose between 
finding the shortest or fastest connections of the 
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places. In both cases, we obtain data on the 
connection length in km and, at the same time, the 
duration of the connection in minutes. In total, we 
can get up to 4 matrixes of the objective function 
rates: the matrix of distances in km found for the 
shortest connection, the matrix of time in minutes 
found for the shortest connection, the matrix of 
distances in km found for the fastest connection 
and the matrix of time in minutes found for the 
fastest connection. The matrices found for the same 
type of the objective function (by the route planner) 
express one connection along the same route in two 

different units (km and minutes). In contrast, when 
comparing two matrices with the same units (but 
found by to the route planner in a different way) we 
can easily find out that the connection two same 
points may take a different path (different distance 
and time for the same connection). Each of these 
matrices can therefore give a different optimal 
solution! For a sample solution of one selected day 
when 15 customers were to be served (Fig. 1), we 
found the following four matrices of the objective 
function rates (Table 1-4). 

 
Fig. 1: Customers location (blue point represents starting point)  

 
Table 1: Matrix of distances in km found for the shortest connection 

i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0 138,2 25,9 137,3 130,2 63,9 118,2 121,8 193,6 180,4 180,6 127,1 180,5 197,6 179,7 82,6 

2 138,2 0 134,2 57,4 246,8 122,3 245,2 248,9 105,7 71,6 71,8 254 71,8 109,8 70,9 205,7 

3 25,9 134,2 0 124,4 149,3 80,4 119,5 123,1 179,4 167,4 167,7 128,4 167,6 183,5 166,8 95,9 

4 137,3 57,4 124,4 0 261,1 152,7 240,4 244 63,3 43 43,3 249,3 43,2 67,3 42,4 218,4 

5 130,2 246,8 149,3 261,1 0 131,8 97,7 93,9 317,4 301,2 301,5 86,8 301,4 321,5 300,6 72,3 

6 63,9 122,3 80,4 152,7 131,8 0 145 148,7 208,7 178,5 178,8 153,9 178,7 212,8 177,9 105,5 

7 118,2 245,2 119,5 240,4 97,7 145 0 5,5 292 281,8 282,1 10,7 282 296 281,1 39,9 

8 121,8 248,9 123,1 244 93,9 148,7 5,5 0 290 285 285,2 7,1 285,1 294 284,3 44,6 

9 193,6 105,7 179,4 63,3 317,4 208,7 292 290 0 43,8 41,3 296,8 45,7 7 43,5 273,3 

10 180,4 71,6 167,4 43 301,2 178,5 281,8 285 43,8 0 4,5 291,5 1,9 40,8 2,6 260,4 

11 180,6 71,8 167,7 43,3 301,5 178,8 282,1 285,2 41,3 4,5 0 291,7 5 38,9 2,6 260,7 

12 127,1 254 128,4 249,3 86,8 153,9 10,7 7,1 296,8 291,5 291,7 0 291 299,9 290,2 49,5 

13 180,5 71,8 167,6 43,2 301,4 178,7 282 285,1 45,7 1,9 5 291 0 42,6 3,3 260,5 

14 197,6 109,8 183,5 67,3 321,5 212,8 296 294 7 40,8 38,9 299,9 42,6 0 40,8 277,5 

15 179,7 70,9 166,8 42,4 300,6 177,9 281,1 284,3 43,5 2,6 2,6 290,2 3,3 40,8 0 259,7 

16 82,6 205,7 95,9 218,4 72,3 105,5 39,9 44,6 273,3 260,4 260,7 49,5 260,5 277,5 259,7 0 
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Table 2: Matrix of time in minutes found for the shortest connection 
i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0 161 31 155 124 73 137 140 206 206 207 148 207 207 205 90 

2 161 0 137 61 240 137 222 232 99 88 88 234 88 100 87 193 

3 31 137 0 132 136 90 130 134 161 183 184 142 184 163 182 94 

4 155 61 132 0 263 156 251 255 62 51 52 262 52 63 50 250 

5 124 240 136 263 0 131 89 86 314 286 286 76 286 315 285 85 

6 73 137 90 156 131 0 125 125 195 181 182 137 182 196 180 95 

7 137 222 130 251 89 125 0 8 208 299 300 16 300 219 298 30 

8 140 232 134 255 86 125 8 0 203 211 211 10 211 205 210 37 

9 206 99 161 62 314 195 208 203 0 49 43 199 52 6 47 248 

10 206 88 183 51 286 181 299 211 49 0 7 204 3 45 4 237 

11 207 88 184 52 286 182 300 211 43 7 0 204 8 44 5 237 

12 148 234 142 262 76 137 16 10 199 204 204 0 208 201 206 43 

13 207 88 184 52 286 182 300 211 52 3 8 208 0 47 6 237 

14 207 100 163 63 315 196 219 205 6 45 44 201 47 0 45 248 

15 205 87 182 50 285 180 298 210 47 4 5 206 6 45 0 236 

16 90 193 94 250 85 95 30 37 248 237 237 43 237 248 236 0 

 
Table 3: Matrix of distances in km found for the fastest connection 

i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0 149,8 26,2 160,3 133,1 66,2 129 126,2 215,6 207 205,9 133,2 206,5 219,6 205,2 89,5 

2 149,8 0 141,7 58,4 255,9 139 310,5 307,7 110,9 80,8 80,6 314,7 80,3 115 79,4 212,4 

3 26,2 141,7 0 134,5 151,5 82,2 145,2 142,3 189,7 181,2 180 149,4 180,7 193,8 179,4 96,3 

4 160,3 58,4 134,5 0 280,6 171,7 268,4 265,5 67,1 44,9 54,4 272,6 44,4 71,2 43,5 237,1 

5 133,1 255,9 151,5 280,6 0 146,9 101,4 97,3 393,1 329,4 328,2 90,2 328,9 397,1 327,6 81,5 

6 66,2 139 82,2 171,7 146,9 0 145,9 150,1 229,6 221 219,9 155,3 220,6 233,7 219,2 106,4 

7 129 310,5 145,2 268,4 101,4 145,9 0 5,5 300,9 297,5 296,3 11,6 297 305 295,7 40,3 

8 126,2 307,7 142,3 265,5 97,3 150,1 5,5 0 299,4 296 294,9 7,9 295,5 303,5 294,2 45,6 

9 215,6 110,9 189,7 67,1 393,1 229,6 300,9 299,4 0 51 42,8 305,3 47,9 7 45,2 294,8 

10 207 80,8 181,2 44,9 329,4 221 297,5 296 51 0 4,6 301 1,9 56,1 2,6 285,4 

11 205,9 80,6 180 54,4 328,2 219,9 296,3 294,9 42,8 4,6 0 300,4 5,1 46,8 2,8 284,9 

12 133,2 314,7 149,4 272,6 90,2 155,3 11,6 7,9 305,3 301 300,4 0 301 308,9 299,6 50,7 

13 205,5 80,3 180,7 44,4 328,9 220,6 297 295,5 47,9 1,9 5,1 301 0 53 3,5 285,7 

14 216,6 115 193,8 71,2 397,1 233,7 305 303,5 7 56,1 46,8 308,9 53 0 49,2 298,9 

15 205,2 79,4 179,4 43,5 327,6 219,2 295,7 294,2 45,2 2,6 2,8 299,6 3,5 49,2 0 284,1 

16 89,5 212,4 96,3 237,1 81,5 106,4 40,3 45,6 294,8 285,4 284,9 50,7 285,7 298,9 284,1 0 

 
The optimal solutions were found using the Solver 
Evolution, which works on the principle of genetic 
algorithm. Table 5 shows that we have three 
different "optimal" routes in the order of places 
visited, and even four different "optimal" routes by 
the actual route used. The "correct" optimal route 
then depends on the choice of the objective 
function and on the way of finding the rates matrix. 
Optimization by distance found using the shortest 

route results in the absolutely shortest route    
(814,4 km), but on the other hand, the most time-
consuming route at the same time (857 minutes). In 
contrast, by optimizing the time, found using the 
fastest route, we get the absolutely fastest route 
(756 minutes). This route, however, is the longest 
one in terms of distance (944,9 km). The other two 
optimization methods are a kind of compromise 
between the shortest time and the shortest distance. 
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Table 4: Matrix of time in minutes found for the fastest connection 
i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 0 123 30 113 106 67 101 97 136 135 131 99 135 137 133 74 

2 123 0 120 60 207 180 184 179 91 76 76 181 75 92 75 175 

3 30 120 0 110 130 86 101 96 133 132 129 99 132 135 131 93 

4 113 60 110 0 207 187 221 216 53 48 49 159 47 55 46 176 

5 103 207 130 207 0 123 70 65 223 228 225 58 228 225 226 73 

6 67 180 86 187 123 0 122 127 149 148 145 131 148 150 146 93 

7 101 184 101 221 70 122 0 8 172 178 175 13 178 173 177 30 

8 97 179 96 216 65 127 8 0 168 174 171 8 174 169 173 36 

9 136 91 133 53 223 149 172 168 0 37 31 170 38 6 35 199 

10 135 76 132 48 228 148 178 174 37 0 7 177 3 39 4 197 

11 131 76 129 49 225 145 175 171 31 7 0 176 8 33 5 196 

12 99 181 99 159 58 131 13 8 170 177 176 0 176 171 175 40 

13 135 75 132 47 228 148 178 174 38 3 8 176 0 40 6 197 

14 137 92 135 55 225 150 173 169 6 39 33 171 40 0 37 200 

15 133 75 131 46 226 146 177 173 35 4 5 175 6 37 0 196 

16 74 175 93 176 73 93 30 36 199 197 196 40 197 200 196 0 

 
Table 5: Solving by Solver Evolution 
used matrices of different objective functions optimal route time  

[min] 
distance 

[km] 

distances found for the shortest connection 1 3 4 9 14 11 15 10 13 2 6 5 12 8 7 16 1 857 814,4 
time found for the shortest connection 1 3 9 14 11 15 10 13 4 2 6 16 7 8 12 5 1 847 856,2 
distances found for the fastest connection 1 3 4 9 14 11 15 10 13 2 6 5 12 8 7 16 1 800 888,5 
time found for the fastest connection 1 3 2 4 13 10 15 11 9 14 6 16 7 8 12 5 1 756 944,9 
 
4.2 Capacity Limitations of the Model in 
Practice 
The solutions presented, however, proved 
unfeasible in practice due to capacity constraints. 
Above all, it was not possible to serve all customers 
in one day with one car, both in terms of the 
capacity of the car and capabilities to handle this 
circuit in one day.  
In this case, there is a possibility to divide the entire 
transport request into two or more circuits. 
First, there is therefore the task how to best create 
sub-sets of nodes (points) so that the distances 
between the nodes within the subsets were smaller 
than the distances between the nodes of different 
subsets. Similar tasks are addressed by, for 
instance, the cluster analysis (see [1], p. 444). If we 
have locations of customers on the map, we can 
usually create sub-circuits intuitively. (See fig. 1) 
In more complicated cases, the application of the 
Generalized Travelling Salesman Problem (GTSP) 
can be employed. The GTSP is a generalization of 
the Travelling Salesman Problem (TSP), in which 
the set of nodes is dividend into mutually exclusive 
clusters. The objective of the GTSP consists in 

visiting each cluster exactly once in a tour, while 
minimizing the sum of the routing costs.  
In [18] it was proposed a solution method for the 
Generalized Travelling Salesman Problem based on 
a memetic algorithm. Memetic algorithm is a 
genetic algorithm paired with local search 
techniques. The main contribution of the paper 
stands in the crossover operator based on the 
exploration of a large neighbourhood around the 
father and mother individuals. 
Camelia M. Pintea at al presented in [19] an 
effective metaheuristic algorithm based on ant 
colony system in the case of the dynamic 
generalized travelling salesman problem. The 
dynamism is there at each moment when a cluster, 
determined with a given probability, is missing 
from the tour. In the real life frequently appear 
blocked ways due to poor weather, accidents, 
maintenance, etc. The objective is to find a 
minimum cost tour passing through exactly one 
node from each available cluster. 
The company, where the thesis [17] was prepared, 
historically created two routs, which are, however, 
modified with each distribution according to 
customer requirements. 
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Tab. 6: Distance matrix in km 
i \ j 1 9 10 11 13 14 15 

1 0 193,6 180,4 180,6 180,5 197,6 179,7 

9 193,6 0 43,8 41,3 45,7 7 43,5 

10 180,4 43,8 0 4,5 1,9 40,8 2,6 

11 180,6 41,3 4,5 0 5 38,9 2,6 

13 180,5 45,7 1,9 5 0 42,6 3,3 

14 197,6 7 40,8 38,9 42,6 0 40,8 

15 179,7 43,5 2,6 2,6 3,3 40,8 0 

 
For a given day, customers are classified into the 
following categories. One route consists of points 
7, 8, 12, 16, with the starting point 1. The second 
route contains points 9, 10, 11, 13, 14, 15, again 
with the starting location 1. The remaining 
customers 2, 3, 4, 5 and 6 were not included in any 
of the routes. To demonstrate, we give an example 
of the optimization of the second rout. The starting 
point is the distance matrix (found for the shortest 
connection) between the company headquarters (i = 
1) and six other customers, who are to be served 
that day (Table 6). 
The optimization used a procedure combining the 
Hungarian method and the branch and bound 
method (see: Exnar [17]). It resulted in a 
recommended circuit 1 – 9 – 14– 11 – 15 – 10 – 13 
– 1 which required travelling minimum of       
427,1 km. The same result can be obtained by 
travelling the circuit in a reverse order. The found 
solution is optimum, as it was verified by means of 
Solver Evolution in Excel according to [1]. In our 
case there would not be a problem to verify either 
an optimum solution or total enumeration, as the 
total number of routes is merely 6!, i.e. 720 various 
routes. However, if a larger group of served 
customers was considered, a more sophisticated 
procedure integrating accessible suitable software 
would be necessary. (E.g. above mentioned Solver 
Evolution according to [1]) 
Further complications within the model solution 
can be caused by certain other limits and 
prerequisites, such as obligatory breaks for drivers 
or statutory requirements regarding transport of 
specific products (chemicals, explosives etc.). The 
model solution can also be impaired by specific 
requirements of some customers concerning the 
delivery just within a short and precisely defined 
time period. The efforts to fully meet the 
customer’s requirements depends i.a. also on their 
importance for the supplier, i.e. for example on the 
volume and frequency of orders on regular basis.   
 
 

 
4.3 Mix of internal and external transport 
services 
Many production and distribution companies are to 
solve the strategic decision transport problem: to 
carry on the transport of products by own vehicles 
or to use services of external transport firms. Above 
all, it is an economic task, but not only one. The 
mix of both strategies is used often.  
Our contribution to solving of the problem consists 
in suggestion and construction a comparing chart 
that enables, depending on the distance and the 
weight of the delivery, to decide, if the delivery 
should to be transported by own vehicles or if it 
should be better to use the service of a special 
transport firm. 
When solving a diploma paper (Exnar [17]) we 
have come across a requirement of a company to 
find out conditions under which it pays to 
subcontract a forwarder or to integrate a delivery 
into a circular route ensured by their own delivery 
vehicle.  The criterion should rest in forwarding 
costs. Ironically enough, it was much easier to find 
out the forwarding costs charged by a 
subcontracted company as it calculates the costs 
from fixed tariffs related to the weight of the 
delivery and the distance.  The calculation of their 
own forwarding costs is complicated by the fact is 
consists of various parts: a part of costs is variable 
(fuel costs), a part is mixed (drivers´ salaries) and 
another part is fixed (depreciation of vehicles, 
maintenance and repairs). The author solved the 
company’s requirement by creating a comparing 
chart which enables to decide when it is still 
advantageous to integrate the delivery into the 
circular route, or as the case may be, to forward the 
delivery individually by their own vehicle or to 
subcontract an external company.  The table is 
created on the basis of a logical reasoning that for 
the same money that we would pay to an external 
company we are able to cover a certain number of 
kilometres with our own vehicle. The following 
sample is a part of the comparing chart (Fig 2)
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Fig. 2: Comparing chart 

 Distance (in km)  Distance in km 
Consignment 
weight in kg 50 100 200 300  50 100 200 300 

0,1 - 5 36 39 45 54  18 20 22 27 

5,1 - 10 52 58 69 72  26 29 35 36 

10,1 - 20 68 75 91 95  34 38 45 48 

20,1 - 30 81 90 113 117  40 45 56 58 

30,1 - 50 113 124 154 165  56 62 77 83 

50,1 - 75 139 152 189 205  69 76 95 103 

75,1 - 100 161 180 231 251  81 90 115 126 

100,1 - 150 202 232 302 329  101 116 151 164 

150,1 - 200 228 263 360 371  114 131 180 186 

200,1 - 300 291 336 446 492  146 168 223 246 

300,1 - 400 345 395 532 588  172 198 266 294 

400,1 - 500 390 449 609 677  195 225 304 339 

500,1 - 700 457 541 746 832  228 271 373 416 

700,1 - 1000 555 654 913 1035  278 327 456 517 

 
Particular boxes in the left part of the chart give 
distance in km travelled by their own vehicle for 
variable costs of fuel, which equals tariffs of a 
subcontractor for forwarding under a given 
combination of weight and tariff zones. This part of 
a chart gives the distance which can extend the 
current circuit and be still economical for a 
company to carry the transport on their own.    
The right part of the chart may serve for decision-
making in case of selecting individual means of 
transport to a particular customer. For this purpose 
the chart is divided into three parts. The green 
colour highlights delivery orders with which the 
preferred transport is always more economical by a 
company’s own vehicle. The yellow boxes show 
deliveries with which individual transport is 
economical only if the customer is located in a 
maximum distance stated in the chart. The white 
part of the chart shows the delivery orders that 
should never be served individually. On the basis of 
this right part of the table we can also specify what 
is the smallest possible weight of any customer's 
order (knowing his/her distance from our company) 
so that it paid out to serve the customer in a 
separate journey.  
In the example from Chapter 4.2 there remained 
five unserved customers and now we examine what 
transportation service can be recommended to each 
customer using Figure 2. On the left side of the 
comparative table we find distances in kilometres, 
which can be used to maximally extend the existing 
circuit to make it still economically advantageous. 
This value can be found on the basis of the known 
weight of the shipment and the distance of the 

customer from our enterprise (the first line in  
Table 1 in Chapter 4.1) and subsequently we 
compare it with the distance between the newly 
incorporated customer and the two closest stops 
already included in the circuit (see the distance 
matrix in Table 1). 
Practically, there may be two cases: 
a) the distance between the new stop and the 

already included stop + the distance between 
the new and the second stop already included 
stop is greater than the distance between these 
two included stops + the value from the left 
side of the comparative table  

b) the distance between the new stop and the 
already included stop + the distance between 
the new and the second stop already included 
stop is smaller than the distance between these 
two included stops + the value from the left 
side of the comparative table   

In case a) it does not pay out to include the 
customer in this circuit, in case b) the inclusion of 
the customer in the circuit pays out because the cost 
of transportation using an external carrier would be 
greater than the cost of extending the existing route.  
For illustration, let us give an example how to 
optimally solve the customer's order at point 2 who 
requires delivery of 50 kg. The best option here 
seems to be including the point at the end of the 
circuit between the connection 13 – 1. The distance 
2 - 13 is 71,8 km, 2 - 1 is 138,2 km and 13 - 1 is 
180,5 km. From the left side of the comparative 
table (Figure 2) we find out that the maximum 
possible extension of the relevant route is 154 km. 
The sum of the distances 2 - 13 and 2 -1 is smaller 
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than the sum of 13 - 1 + 154 km (210,0 < 334,5), so 
it pays economically out to include the client 2 in 
this circuit. The resulting circuit will then have the 
following form - 9 – 14– 11 – 15 – 10 – 13 – 2 – 1.  
As another example we will address inclusion of 
the client at the point 5 with a delivery of 4 kg 
weight again in the second circuit. The best option 
here seems to be inclusion at the end of the 
connection between 2 – 1. The distance 2 - 5 is 
246,8 km, the distance 1 - 5 is 130,2 km and the 
distance 2 - 1 is 138,2 km. From the left side of the 
comparative table we find out that the maximum 
possible extension of the route is 45 km. The sum 
of the distances 2 - 5 and 1 - 5 is greater than 2 - 1 
+ 45 km (377 > 183,2), and therefore it does not 
pay out economically to include the client 5 in this 
circuit.  
We demonstrate the use of the right side of the 
comparative table with the example of customer 6 
and his/her shipment weighing 70 kg. The distance 
of this customer from our enterprise is 63,9 km 
(Table 1). On the right side of the comparative 
table we have a value of 76 km for the given 
contract. It applies to the yellow fields that it pays 
out to transport the given order separately if the 
customer is in the distance no longer than the one 
shown in the table. In our case, 63,9 < 76 and 
therefore it pays out economically to serve the 
customer 6 even separately without incorporating 
into the existing circuit.  
In the same manner we find out whether it would 
be worthwhile to go individually to the above 
mentioned customer 5. Looking to the right side of 
the table we find a white field with a value of       
22 km. It applies to the white fields that it does not 
pay out to serve the given orders individually. Now 
we will try to find out what minimum weight an 
order would have to have for the customer 5 that 
would make it worthwhile to go to him/her 
individually. The distance of the company from the 
customer is 130,2 km; we shall then use the third 
column (right part of Figure 2 and the fare distance 
up to 200 km) while looking for a field with the 
lowest value greater than 130,2. We find the value 
of 151 for an order weighing 100,1 - 150 kg. The 
minimum shipment weight for individual serving of 
the customer 5 is thus 100,1 kg.  
For the final decision, however, it is important to 
take into account considerations other than just 
economic. When extending the circuit, the 
permitted loading capacity could, for example, be 
exceeded or the route could be disproportionately 
lengthened in terms of time, etc. 
The comparing chart in fig. 2 was constructed for 
the particular situation in the particular company. 

However, the approach to solving this problem is 
universal and any company in similar situation can 
use it. Naturally, it must be adjusted to particular 
conditions in the concerned company.  
 
 

5 Conclusion 
In the article, we tried to prove that optimization of 
circular transport task is still topical in the logistic 
transport management and its use may bring 
significant benefits to the business, such as saving 
fuel, time and cost.  
Practical applications withal require respecting a 
range of other specific conditions and requirements 
so that the solution was effective and usable in 
practice. Firstly, it is necessary to take into account 
various capacity constraints of the vehicles and 
their operators as well as other specific customer 
requirements. A special case is the option to choose 
between our own means of transport and external 
transport. We have proposed an analytical 
procedure of this problem and consequently we 
have constructed a comparing chart for decision 
support of this problem. A prerequisite is also a 
functional information system that can provide 
necessary input information and, ultimately, 
appropriate software to solve ODP, which can 
repeatedly and effectively carry out the 
optimization calculation. 
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