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Abstract: -  This article reveals the detailed analyses of the uniform stability and the transient stability of an 
adaptive sliding-mode load-torque observer. Using the Lyapunov’s direct method, the stability can be 
concluded only in some time intervals during transient state. Using the LaSalle’s invariance principle, it can be 
concluded that by the end of the transient state the observer definitely enters the stable steady-state. 
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Notation Lists: 
a , b , c         mechanical parameters of the motor- 

load system, 
â  , b            online estimated mechanical ˆ

parameters, 

0â , ,   initial values of the estimated 0̂b 0L̂T
mechanical parameters, 

Bt                 viscous friction coefficient (N⋅m⋅s/rad), 
eψα , eψβ        errors of the estimated rotor flux, 
eω                 error of the estimated rotor speed 

obtained from the double estimation, 
hω                 integral of the eω , 
ieq ,           equivalent current proportional to the eqî

electromagnetic torque, and the 
corresponding estimated current, 
respectively, 

isα , isβ           two-phase stator currents (A) in 
horizontal and vertical axes, 
respectively, 

Jt                  moment of inertia (kg⋅m2), 
kia , kib , kil    integral gains, 
kpa , kpb , kpl   proportional gains, 
KT         electromagnetic torque constant (N⋅m /A), 
k3          surface gain, 
p           number of motor poles, 
sω          surface signal, 
t            time (s), 
Te          electromagnetic torque of the motor (N⋅m), 
TL ,     actual load-torque (N⋅m) and online LT̂

estimated load-torque, respectively, 
V             Lyapunov function, 

α , β        subscripts indicating the horizontal and 
the vertical axes, respectively, of the 
stator reference frame, 

∆a , ∆b    errors of the mechanical parameters 
obtained from online estimation, 

∆ieq          error of the equivalent current proportional 
to the electromagnetic torque, 

∆TL          error of the estimated load-torque, 
∆ωr         error of the estimated rotor speed, 
δo            correction signal, 
τ              integration time-constant, 
φ3, φ4, Λ3   correction gains, 

αψ rˆ , βψ rˆ   estimated rotor flux (Wb), 

ωr , rω̂       rotor speed (rad/s), and estimated rotor 
speed, respectively, 

rω ′′ˆ             double estimated rotor speed (rad/s), and 
2ρl ∆t         equivalent quantity of the rate of change 

of load-torque with respect to time (N⋅m). 
 
 

1   Introduction 
Control community has been familiar with the 
sliding-mode approach for many years. New 
developments in control can usually be found, e.g. 
control of buck converters [1], position servo control 
[2, 3], minimum energy control of PMSM drives [4], 
etc. Not many applications in observer development 
can be found. Recently, researchers [5] have 
published their work on the development of a 
sliding-mode observer, and [6] has presented an 
adaptive flux observer considered linear. For motor 
operation in general, load-torque dynamic is not 
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usually known. Acquiring the load-torque needs an 
expensive transducer as a common practice. An 
alternative is to use a good load-torque observer for 
an economical reason. Even though the recent work 
[5] confirms steady-state stability, it is questionable 
whether the observer still performs stably well 
during the transient state. So far, there has not been 
a previous work answering this question. This article 
provides an extension of our previous work to 
explain the uniform stability and transient stability 
analyses. The analysis has applied the Lyapunov’s 
direct method, the Lyapunov’s theorem under 
relaxation, and the LaSalle’s invariance principle. 
Simulation results are also presented. 

 
 

2   Adaptive Sliding-Mode Load- 
Torque Observer – A Brief Review 

The load-torque observer of our previous work 
delineated in Fig. 1 operates in a cascade connection 
with a speed observer that provides the estimation of 
the rotor flux and speed of an induction motor. The 
load-torque observer has the estimated rotor speed 
and the equivalent current ( ) 
proportional to the electromagnetic torque of the 
motor (T

βααβ ψψ rsrseq iii ˆ  ˆ    ˆ −=

e = KTieq) as its inputs. The observer 
performs an online estimation according to (1) 

 

oLeqrr Tciba δωω   ˆ  ˆˆ  ˆˆ    ˆ +++′′=′′&                                    (1) 
 

in which rω ′′ˆ  is the double estimated rotor speed, , 

 are the estimated mechanical parameters,  is 
the estimated load-torque, and δ

â

b̂ LT̂

o is the correction 
signal. This δo is to compensate for the estimation 
errors. The equation (2) expresses the integral of the 
error resulted from the double estimated rotor speed. 
The equation (3) expresses the surface signal in 
which  k3  >  0  is the surface gain 

 

rreh ωωωω ˆ  ˆ        −′′=−=&                                           (2), 
 

sω  =  eω − k3hω                                                     (3). 
 

     The composition of the correction signal is as 
shown in (4) in which φ3, φ4 and Λ3 are the 
correction gains 

 
δo  =  φ3eω + φ4k3hω + Λ3                                       (4). 

 
     The surface signal, sω , must converge to zero, 
and hence six logical rules designed are as follows 

 
if    sω eω  >  0    then     φ3  >  |a + k3|, 
if    sω eω  <  0    then     φ3  <  −|a + k3|, 
if    sω hω  >  0    then     φ4  >  0, 
if    sω hω  <  0    then     φ4  <  0, 
if    sω  >  0        then     Λ3  >  | f3| , and 
if    sω  <  0        then     Λ3  <  −| f3|                        (5). 

 
     According to these rules, the terms 

( ) 0        <−= tt JBa ,  ( ) 0    2    >= Tt KJpb , 
( )[ ]dtdibaf reqr ωω ∆−∆+∆=         3  , 

and ∆ieq  =  isβ eψα − isα eψβ . The last two terms are 
unknown since eψα, eψβ , and rrr ωωω ˆ      −=∆  are 

unreachable. Three PI adaptive laws for a , , and 
are shown in (6)-(8), respectively 

ˆ b̂

LT̂
 

( )∫Θ+Θ+=
t

aiaapa dkkaa
0

0      ˆ    ˆ ττ                            (6), 

 

( )∫Θ+Θ+=
t

bibbpb dkkbb
0

0      ˆ    ˆ ττ                            (7), 

 

( )∫−−=
t

ilplLL dskskTT
0

0      ˆ    ˆ ττωω                           (8). 

 
     According to the equations (6)-(8), the terms  

( ) ωω ωω ss rraa ′′=′′Θ=Θ ˆ    ˆ ,      , 
( ) ωω siis eqeqbb

ˆ    ˆ ,      =Θ=Θ , 
kpa , kpb , kpl  are the proportional gains (positive),  kia 
, kib , kil  are the integral gains (positive),  ,  and 

 are the initial estimated values of the terms , 

 and , respectively. To conduct the stability 
analysis, it is assumed that the mechanical 
parameters are almost constant ( , 0  and 

),  and the Lyapunov function can be written 
as in (9) 

0â 0̂b

0L̂T â

b̂ LT̂

0    ≈a&     ≈b&

0    ≈LT&

 

( ) ( )

( ) 0    
2
1     

2
          

   
2

1     
2

1    

22 

2 2 

≥+−∆−

Θ+∆+Θ+∆=

ωω sskT
k
c

kb
k

ka
k

V

plL
il

bpb
ib

apa
ia  

(9), 
 

where aaa ˆ      −=∆ , , and bbb ˆ      −=∆

LLL TTT ˆ      −=∆  are the errors of the estimated 
mechanical parameters, and the online estimated 
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Fig. 1  Block diagram of the adaptive sliding-mode speed-torque observer. 
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load-torque, respectively. Furthermore, 
( ) 0    2    <−= tJpc , and henceforth the time 

derivative of the Lyapunov function is expressed by 
(10) 

 
( ) (

0                  

               
222

333433

≤+Θ−Θ−

Λ−+−−+=

ω

ωωωωω φφ

sckkk

sfhskeskaV

plbpbapa

& )
 

(10), 
 

where  (a + k3 − φ3)sωeω  ≤  0 ,  −φ4k3sωhω  ≤  0  and  
( f3 − Λ3)sω  ≤  0. The equations (9) and (10) suggest 
that if the actual load-toque is continuously constant, 
the load-torque observer always remains stable 
because  is negative semi-definite. The analysis 
follows in the next section. 

V&

 
 

3   Uniform Stability of the Proposed 
Observer 

The whole system comprising a plant (an induction 
motor, its mechanical load, and the speed observer) 
and the load-torque observer shown in Fig. 1 is 
classified as non-autonomous. Stability analysis of 
the system can be conducted according to the 
Lyapunov’s theorem under relaxation [7]. Regarding 
this, three error expressions of online parameter 
estimations can be written as 

 
∆a  =  ∆a + kpaΘa − kpaΘa                                   (11), 

 
∆b  =  ∆b + kpbΘb − kpbΘb                                   (12), 

 
∆TL  =  ∆TL − kpl sω + kpl sω                                 (13). 

 
     Every composition in the right-hand side of the 
correction signal in the equation (4) can be rewritten 
as 

 
( )

ω

ω
ω

ωω

ωω
ω

ωω

ωω

ωδω

φφ

ϕδ

s
shk

hs
hse

es
es

sso

3343                   

    

Λ++=

=
 

(14), 
 

where  ( )
ωω

ωω
ωω φφφ

es
eses 333     sgn    ==  , 

( )
ωω

ωω
ωω φφφ

hs
hshs 444     sgn    ==  , 

( )
ω

ω
ω s

ss 333     sgn    Λ=Λ=Λ  , and 

0            324323 ≥
Λ

++=
ω

ω
ωω

ω
ωω

δ
φφ

ϕ
s

h
hs

k
e

es
. 

     The equation (15) denotes the time derivative of 
the surface signal, 

 
( ) oLeqr fTcibaekas δωωω       ˆ  ˆ         33 −+∆+∆+′′∆++=&  

(15). 
 

     The surface signal in the equation (3) is rewritten 
as 

 
eω  =  sω + k3hω                                                   (16). 

 
     By substituting the equation (16) into the 
equation (15), the time derivative of the surface 
signal becomes 

 
( ) ( )

oLeq

r

fTcib

ahkkaskas

δ

ωωωω

      ˆ            

ˆ              

3

333

−+∆+∆+

′′∆++++=&
             (17). 

 
     Afterwards, the terms ∆a , ∆b , ∆TL , and δo in the 
equation (17) are substituted by the equations (11) to 
(14) and then the resultant equation is rearranged 
into the form of 

 

( ){ }
( ) ( )
( ) ( ) 3

33

22
3

      ˆ                

ˆ                     

   ˆ  ˆ         

fskTcikb

kahkka

sckikkkas

plLeqbpb

rapa

pleqpbrpa

+−∆+Θ+∆+

′′Θ+∆+++

+−′′−−+=

ω

ω

ωδω

ω

ωϕ&

 

(18). 
 

     Differentiating three PI adaptive laws in the 
equations (6) to (8) and rewriting them gives 

 

aiaapaapa kkaka Θ−=Θ+−=Θ+∆       ˆ      &&&&                (19), 
 

bibbpbbpb kkbkb Θ−=Θ+−=Θ+∆       ̂      &&&&                (20), 
 

ωωω skskTskT ilplLplL       ˆ      =−−=−∆ &
&

&&                   (21). 
 

     Thereafter, the last four equations (18)-(21) are 
collected into a single form of 

 
( )lll tF χχ  ,     =&                                                    (22), 

 
where 

[ ]T
plLbpbapa

l

skTkbkas          

  

ωω

χ

−∆Θ+∆Θ+∆

=
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is regarded as a state vector. 
     Anyone can comfortably choose 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ilibia k
c

kk 2
  , 

2
1  , 

2
1  , 

2
1min    min

2γ  and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

ilibia k
c

kk 2
  , 

2
1  , 

2
1  , 

2
1max    max

2γ . 

Such choice generally exhibits a certain boundary of 
the Lyapunov function along 

 
2max

2
2min

2           ll V χγχγ ≤≤                              (23), 
 

where  0          ≥= l
T
ll χχχ , and 

2 lχ  is a strictly non-decreasing quadratic scalar 
function. Thus, at a point in time, real value of the 
Lyapunov function is always bounded within this 
sector. Moreover, the time derivative of the 
Lyapunov function can be expressed as the next 
equation (24) and the inequality (25), respectively, 

 
( ){ }

( )
0              

                  

            

2

22
33

4333

≤+

Θ−Θ−−Λ−

−+−−=

ω

ωω

ωωωωωω φφ

sck

kksfs

hskeskaesV

pl

bpbapa

&

 

(24), 
 

( 0            33 ≤−Λ−≤ ωω sfsV& )

)

                              (25). 
 

     From the inequality (25), one can conclude that 
the proposed load-torque observer is uniformly 
stable. 

 
 

4   Analysis 
Considering the expression (10), if the load-torque is 
not steady ( ), the term will appear in the 
relation. The expression (10) becomes (26) 
indicating that the time derivative of the Lyapunov 
function can be either positive or negative 

0    ≠LT& LT&

 
( ) (

( ) LplL
il

plbpbapa

TskT
k
c

sckkk

sfhskeskaV

&

&

             

              

                
222

333433

ω

ω

ωωωωω φφ

−∆−

+Θ−Θ−

Λ−+−−+=

 

(26). 
 

     Considering an infinitesimal time interval t to t + 
∆t, the time rate of change of load-torque (ρl) during 

the transient state is assumed constant, i.e.  
or  T

lLT ρ    ≈&

L(t + ∆t)  =  TL(t) + ρl∆t  for a very small 
positive value of ∆t → 0. The derivative of the 
Lyapunov function can be rewritten as 

 
( ) ( )

( ) ( ) ([ ]
( )ttT

ttskttTttT
k
c

ttVttV

L

plLL
il

∆+×

∆+−∆+−∆+−

∆+=∆+

            

       ˆ             

        

&

&&

ω )  

(27), 
 

where 
( ) ( )

( ) 0                    

                 
222

33

3433

≤+Θ−Θ−Λ−+

−−+==∆+

ωω

ωωωω φφ

sckkksf

hskeskaVttV

plbpbapa

&&
 

is the time derivative of the Lyapunov function 
when the load-torque is constant. By substituting the 
terms ( ) lL ttT ρ      ≈∆+&  and TL(t + ∆t) into (27), and 
re-arranging the terms, one could obtain (28) 

 

( ) ( ttV
k

c
k

tcttV l
il

L
l

il
∆++

Ω
− )∆

−=∆+              2 && ρρ        (28), 

 
where 

( )( )
( ) ( ) ( ) .         ˆ            

 ,ˆ ,     

ttskttTtT

sTtT

plLL

LLLL

∆+−∆+−=

Ω=Ω

ω

ω  

     One could obtain the two inequalities (29) and 
(30), respectively from rearranging the (28). The 
inequality (30) is useful for the determination of 
stability of the observer in such a way that the rate 
of change of load-torque ( ) must be 
bounded within the region indicated by the relation 
(31) 

ttT lL ∆≈∆ ρ2    2 &

 
( ) 0          2 ≤∆++Ω−∆− ttVkctc illLl
&ρρ                     (29), 

 

( ) 0          2 ≤∆+
∆

−
∆
Ω

+ ttV
tc

k
t

il
l

L
l

&ρρ                         (30), 

 

c
Vtk

t
c

Vtk

il
LL

l
il

LL

&

&

∆
+Ω+Ω−≤

∆≤
∆

+Ω−Ω−

4                              

2    4      

2

2 ρ
          (31). 

 
     The relation (31) expresses the transient stability 

condition, in which 
c

Vtkil
L

&∆
+Ω

4  2  is the  
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discriminant, 
c

Vtkil
LL

&∆
+Ω−Ω−

4      2  is the lower 

bound, and 
c

Vtkil
LL

&∆
+Ω+Ω−

4      2  is the upper 

bound. Within a period of time and under the 
positive discriminant, if the inequality (31) is true, 

 in (26) is negative. Thus, the load-torque 
observer is stable. However, if the inequality (31) 
becomes false, i.e. 

V&

c
Vtkt il

LLl

&∆
+Ω+Ω−≥∆

4          2 2ρ   or 

c
Vtkt il

LLl

&∆
+Ω−Ω−≤∆

4          2 2ρ ,  in (26) is 

positive. Then, the stability conclusion cannot be 
drawn. A negative discriminant may lead the 
inequality (32) to become false 

V&

 

( )
0    4  

4
1  

2
  2

2

2

≤
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ ∆
+Ω

∆
−⎟

⎠
⎞

⎜
⎝
⎛

∆
Ω

+
c

Vtk
tt

il
L

L
l

&
ρ       (32). 

 
An unconcluded situation again occurs because V  
in (26) is positive. Practically, only some certain 
time intervals are subjected to the bounds. The 
existence of the bounds depends on the load 
characteristics, and the observer gains. Once the 
discriminant is successively negative or the actual 
load-torque is consistently constant, the bounds 
become meaningless. 

&

     The equation (33) represents the error due to the 
observer, and assuming that it is satisfied with the 
Lipschitz’s condition [8] 

 

oLeqr fTcibaaee δωωω       ˆ  ˆ      3 −+∆+∆+′′∆+=&         (33). 
 

     Whenever all the observer gains are properly 

adjusted such that ( ) ( ) ∞<∫ −
∞

        
0

3 dtttf oδ , and the 

quantities of ∆a , ∆b , and ∆TL converge to a very 
small constant ε, ε → 0 as t → ∞, the dynamic 
system (33) becomes asymptotically autonomous 
[9]. Hence, a nonempty set ΞC governing the 
derivative of the Lyapunov function to be negative 
semi-definite in transient and steady states is 
expressed as 

 

{

}
{

}  0      , 0                   

, 0      , , ,                     

   4         2               

, 0    
4

                

,0      , , , ,              

2

2

≤=

=∆∃∆∃∆∃ℜ∈

∆
+Ω≤Ω+∆

≥
∆

+Ω

≠∆∃∆∃∆∃∆∃ℜ∈=Ξ

VT

TTbae

c
Vtkt

c
Vtk

tTbae

L

LL

il
LLl

il
L

lLC

&&&

&

U
&

&

ω

ω

ρ

ρ

 

(34), 
 

where ℜ is a set of real numbers. Whenever |eω| is 
bounded, there is a nonempty, compact, and 
invariant set confined inside ΞC. While the load and 
motor set rotates at a constant speed, and the load-
torque is also constant, the load-torque observer is 
operating in a steady state mode as well as V is a 
decreasing function of t so long as . Thus, V 
declines until , and thereby V becomes 
constant. The equations (9) and (10) represent this 
case, i.e.  t  → ∞  and hence  s

0    <V&
−→ 0    V&

ω → 0,  eω → 0, Θa → 
0, Θb → 0  while  ∆a, ∆b and ∆TL converge to a 
fixed tiny constant resulting in a compact set ΞI as 
follows 

 
{

} 0      , 0      , 0      , 0                  

, 0      , , ,              
−→→→=

=∆∃∆∃∆∃ℜ∈=Ξ

VeeT

TTbae

L

LLI

&&&&

&

ωω

ω  

(35). 
 

     Whenever the trajectory eω lies in ΞI, it is equal 
to 0 exactly and also V  = 0. So far, Ξ&

I is an invariant 
set because the trajectory is yet trapped inside ΞI 
until the rotor speed varies again due to either Te or 
TL changing. Through the inequality (30), at the 

instance of  ρl  ≠  0, when  0        2 =
∆

−
∆
Ω

+ V
tc

k
t

il
l

L
l

&ρρ  

temporarily,  also equals zero momentarily. 
Therefore, a set Ξ

V&

O governing the derivative of the 
Lyapunov function to be zero in both transient and 
steady states is written as 

 
{

} I
il

LLl

il
L

lLO

c
Vtkt

c
Vtk

tTbae

Ξ
∆

+Ω=Ω+∆

≥
∆

+Ω

≠∆∃∆∃∆∃∆∃ℜ∈=Ξ

     4         2               

, 0    4                

,0      , , , ,              

2

2

U
&

&

ρ

ρω

 

(36). 
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     According to the LaSalle’s theorem of invariant 
set [8], if  ΞI ⊂ ΞO ⊂ ΞC  then  eω ∈ ΞC  moves to eω 
∈ ΞI as t → ∞. Therefore, the invariant set ΞI 
possesses the property of asymptotic stability. 
Hence, the load-torque observer converges to a 
stable region by the final stage of the transient 
period, and becomes surely stable throughout the 
steady state period. 

 
 

5   Simulation Results 
The load-torque observer of our previous work 
performs an online estimation by acquiring from the 
speed observer the estimated rotor speed, and the 
equivalent current proportional to the 
electromagnetic torque of an induction motor 
coupled with an inertia load. The motor and two 
observers form an open-loop system. According to 
direct-on-line starting, at the initial instant of time (t 
= 0) the motor previously de-energized at standstill 
is connected directly to a  220 V, 50 Hz three-phase 
ac supply. All initial conditions of state variables of 
both the motor-load system and the observers are 
zeroed. A first-order low-pass filter having 7.95-Hz 
cut-off frequency is used to denoise the estimated 
speed signal. The surface gains  k1 and k2 of the 
speed observer, and k3 of the torque observer are 
equal to 5. The correction gains for the speed 
observer are |φ1α| = |φ1β| = 290, |φ2α| = |φ2β| = 1, and  
|Λα| = |Λβ| = 10, whereas those of the torque 
observer are |φ3| = 6, |φ4| = 1, and |Λ3| = 0.2. The PI 
gains of the adaptive laws of the speed observer are 
set to  ksp = ksi = krp = kri = kmp = kmi = 0.00001, kωp = 
10, and kωi = 800 while those of the adaptive laws of 
the torque observer are set to kpa = kia = 0.000001, 
kpb = kib = 0.001, kpl = 2, and kil = 40, respectively. 
     The results in Figs 2 and 3 show that very large 
errors of the estimated rotor speed and flux only 
occur at the beginning of the estimation process. 
After about 0.5 seconds, the estimated load-torque 
converges to the actual value as shown by Fig. 4 
with its magnified picture shown in Fig. 5. When the 
speed observer more accurately estimates the rotor 
speed and flux, the load-torque estimation is 
likewise valid. Although the actual load-torque 
changes in a step-ramp manner at the starting and 
during the constant speed operation of the motor, the 
observer still satisfactorily tracks this load as shown 
in Fig. 5. During the ramp period, the load-torque 
estimation is more erroneous than the one during the 
constant period as shown in Fig. 6. 

 
 

 
 

Fig. 2  Errors of the estimated rotor speed. 
 

 
 

Fig. 3  Errors of the estimated rotor flux. 
 

 
 

Fig. 4  Actual and estimated load-torques. 
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Fig. 5  The vertical axis of Fig. 4 magnified within 
0−11 N⋅m. 

 

 
 

Fig. 6  Errors of the estimated load-torque. 
 
 

     The set ΞC contains an invariant set because |eω| 
is bounded. Fig. 7 illustrates the waveform of |eω|. 
Figs. 8 and 9 indicate that the nonzero equivalent 
quantity of the load-torque derivative (2ρl∆t) is 
outside the bounds during the time 5.0−5.12 seconds 
while the discriminant is progressively positive (eω 
∉ ΞC). As a result, the derivative of the Lyapunov 
function becomes positive and V grows positively 
during this time interval as illustrated in Figs. 10 and 
11. This means that the observer’s stability cannot 
be concluded momentarily. Thereafter, the quantity 
2ρl∆t is within the bounds temporarily and the 
observer becomes stable for a certain period of time. 
Once the actual load-torque is constant (  and 

), the quantity 2ρ
0    =LT&

0    =LT&& l∆t locates within the 
bounds again, and the observer resumes its stability 
(eω ∈ ΞC). The derivative of V becomes negative 
definite ( ) and further remains negative semi-
definite ( ) throughout the steady-state 

operation of the observer. Consequently, V becomes 
a non-increasing function and e

0    <V&

0    ≤V&

ω ∈ ΞC → eω ∈ ΞI. In 
the meantime, the estimated load-torque is nearly 
equal to the actual value as shown in Figs. 5 and 6. 
In addition, the results shown in Figs. 12 to 16 
illustrate some similar situations during the time 
7.9−9.4 seconds. In steady state, the trajectory eω 
sinks within ΞI as indicated by V becoming constant 
as shown in Figs. 17 and 18. 

 
 

 
 

Fig. 7  |eω| during transient state and approaching 
steady state (4.9−5.9 seconds). 

 

 
 

Fig. 8  Discriminant of the quantity 2ρl∆t (4.9−5.9 
seconds). 
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Fig. 9  Rate of change of load-torque, upper and 
lower bounds (4.9−5.9 seconds). 

 

 
 

Fig. 10  Time derivative of the Lyapunov function in 
(26) (4.9−5.9 seconds). 

 

 
 

Fig. 11  The Lyapunov function in (9) (4.9−5.9 
seconds). 

 

 
 

Fig. 12  |eω| during transient state and approaching 
steady state (7.9−9.4 seconds). 

 

 
 

Fig. 13  Discriminant of the quantity 2ρl∆t (7.9−9.4 
seconds). 

 

 
 

Fig. 14  Rate of change of load-torque, upper and 
lower bounds (7.9−9.4 seconds). 
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Fig. 15  Time derivative of the Lyapunov function in 
(26) (7.9−9.4 seconds). 

 

 
 

Fig. 16  The Lyapunov function in (9) (7.9−9.4 
seconds). 

 

 
 

Fig. 17  The Lyapunov function in (9) throughout 
the simulation time of 11 seconds. 

 

 
 

Fig. 18  |eω| throughout the simulation time of 11 
seconds. 

 
 

6   Conclusions 
During the transient state, the adaptive sliding-mode 
load-torque observer is stable in the Lyapunov’s 
sense for some time intervals, while during some 
intervals the stability cannot be concluded. The 
observer’s uniform stability is guaranteed for 
steady-state period. Based on the Lyapunov’s direct 
method, the above conclusion has been drawn using 
the quadratic inequality describing the stability 
without the knowledge of the load-torque dynamic 
as a priori. The LaSalle’s theorem of invariant sets 
has been applied to confirm that the observer, by the 
end of the transient state, certainly enters the stable 
steady-state. To make the load-torque observer 
become widely accepted for industrial practice, its 
transient stability and accuracy problems must be 
solved carefully. 
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Appendix: 
Derivation towards the equation (10). 
Multiplying both sides of the equation (15) by sω and 
rearranging the resultant equation lead to 
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     Then, differentiating the equation (9) with 
respect to time yields 
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     Three errors due to the online mechanical 
parameter and load-torque estimations as well as 
their derivatives are written together as follows: 

aaa ˆ      −=∆ , , and , as 

well as , , and  
owing to 

bbb ˆ      −=∆ LLL TTT ˆ      −=∆

aa && ˆ    −≈∆ bb && ˆ    −≈∆ LL TT && ˆ    −≈∆

0    ≈a& , , and . Then, three 
PI adaptive laws through the equations (6)-(8) are 
rearranged into 

0    ≈b& 0    ≈LT&

 

aiaapa kkaa Θ+Θ=≈∆−       ˆ    &&&                                      , 
 

bibbpb kkbb Θ+Θ=≈∆−       ˆ    &&&                                      , 
 

ωω skskTT ilplLL       ˆ    −−==∆− &
&&                                  . 

 
     Three derivatives in the relevant equations above 
become 

 
aiaapa kka Θ−Θ−=∆       &&                                              , 

 

bibbpb kkb Θ−Θ−=∆       &&                                              , 
 

ωω skskT ilplL       +=∆ &&                                                 . 
 

     So far, the three above derivatives are rewritten 
into 
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aiaapa kka Θ−=Θ+∆       &&                                        (39), 
 

bibbpb kkb Θ−=Θ+∆       &&                                        (40), 
 

ωω skskT ilplL       =−∆ &&                                           (41). 
 

     Thereafter, substituting the last three equations 
(39)-(41) and the term  from the equation (37) 
into the equation (38) brings about 

ωωss &
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     Finally, the equation (42) is identical with the 
one (10). 

 

Derivation towards the equation (26). 
Whenever the load-torque is not constant ( ), 
the derivative of the error due to the load-torque 

estimation becomes  and is rewritten 
as   and  then 
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ωω skTskT ilLplL         +=−∆ &&&                                    (43), 

 
respectively. Afterwards, the last expression in the 
right-hand side of the equation (38) is substituted 
from the equation (43). This expression would be 
rewritten as 
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     Thereafter, by substituting two expressions from 
the equations (39)-(40), the term  from the 
equation (37), and the expression from the equation 
(44) into the equation (38), this procedure brings 
about 
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     Eventually, the equation (45) is identical with the 
one (26). 
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Derivation towards the equation (27). 
When the time derivative of the Lyapunov function 
is evaluated at a point of time t + ∆t, the equation 
(26) would be rewritten in a form of 

 

( LplLL
il

TskTT
k
cVV &&&    ˆ         ω−−−= )                               , 

 
( ) ( )

( ) ( ) ( )[ ]
( )ttT

ttskttTttT
k
c

ttVttV

L

plLL
il

∆+×

∆+−∆+−∆+−

∆+=∆+

                  

       ˆ              

        

&

&&

ω  

(46). 
 

     Finally, the equation (46) is identical with the 
one (27). 

 
Derivation towards the equation (28). 
By substituting the two terms  TL(t + ∆t)  =  TL(t) + 
ρl∆t  and   into the equation (27) and 
then rearranging the resultant equation, these 
procedures yield 
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     Eventually, the equation (47) is identical with the 
one (28). 

 

Derivation towards the solution of the 
inequality (30). 
When the quadratic inequality (30) is arranged into 
type of completing the square, it could be written as 

 

( )

0                                                                        

    
2

   
2

    
22

2

≤

∆+
∆

−⎟
⎠
⎞

⎜
⎝
⎛

∆
Ω

−⎟
⎠
⎞

⎜
⎝
⎛

∆
Ω

+
∆
Ω

+ ttV
tc

k
ttt

ilLL
l

L
l

&ρρ      , 

 

( )
( ) 0        

4
  

2
  2

22

≤∆+
∆

−
∆
Ω

−⎟
⎠
⎞

⎜
⎝
⎛

∆
Ω

+ ttV
tc

k
tt

ilLL
l

&ρ               , 

 

( ) ( )
( ) 0      

4
4  

4
  

2
  22

22

≤∆+
∆
∆

−
∆
Ω

−⎟
⎠
⎞

⎜
⎝
⎛

∆
Ω

+ ttV
tc
tk

tt
ilLL

l
&ρ         , 

 

( )
( ) 0      4  

4
1  

2
  2

2

2

≤⎥⎦
⎤

⎢⎣
⎡ ∆+

∆
+Ω

∆
−⎟

⎠
⎞

⎜
⎝
⎛

∆
Ω

+ ttV
c

tk
tt

il
L

L
l

&ρ   , 

 

( )
(

0                                                                   

  4  
4

1  
2

  2 2
2

2

≤

⎥⎦
⎤

⎢⎣
⎡ ∆+

∆
+Ω

∆
−⎟

⎠
⎞

⎜
⎝
⎛

∆
Ω+∆ ttV

c
tk

tt
t il

L
Ll &ρ )     , 

 
( )

( ) ( )
( )

0                                                                        

  4  
4

1  
4

  2 2
22

2

≤

⎥⎦
⎤

⎢⎣
⎡ ∆+

∆
+Ω

∆
−

∆
Ω+∆ ttV

c
tk

tt
t il

L
Ll &ρ

      , 

 

( ) 0    4      2 22 ≤⎟
⎠
⎞

⎜
⎝
⎛ ∆

+Ω−Ω+∆ V
c

tkt il
LLl

&ρ                     , 

 

( ) 0    4       2
2

22 ≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∆
+Ω−Ω+∆ V

c
tkt il

LLl
&ρ                , 

 

0    4       2

4       2

2

2

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∆
+Ω+Ω+∆×

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∆
+Ω−Ω+∆

V
c

tkt

V
c

tkt

il
LLl

il
LLl

&

&

ρ

ρ

            (48). 

 
     The either of two solutions taken from the above 
inequality is 
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is the correct solution of the inequality (30). It is 
corresponding to the relation (31). V
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